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Gröbner basis provide a crucial computational tool for solving sys-
tems of polynomial equations and computing the Zariski closure of
images of algebraic varieties under rational maps.

2.0 Noetherian rings

Which affine subvarieties are defined by finitely many polynomials?

2.0.0 Theorem (Hilbert basis). Let n be nonnegative integer. Every ideal in

the polynomial ring S := K[x1, x2, . . . , xn] is finitely generated.

David Hilbert’s original proof in 1888
was nonconstructive. It is reported that
when Paul Gordan first saw Hilbert’s
proof, he said, “This is not mathematics,
but theology!” However, when Gordan
published his proof of the Hilbert
basis theorem in 1899, he said, “I have
convinced myself that theology also has
it advantages.”

Proof by Gordon. Fix a monomial order > on S and let I be an ideal
in S. By definition, the leading term ideal LT(I) is generated by the
monomials LM( f ) for all f 2 I. The Dickson Lemma 1.1.4 implies
that monomial ideal LT(I) is finitely generated. Hence, there exists
g1, g2, . . . , gm 2 I such that LT(I) = hLM(g1), LM(g2), . . . , LM(gm)i. It
suffices to show that I = hg1, g2, . . . , gmi.

Clearly, we have hg1, g2, . . . , gmi ✓ I. For the converse, suppose that
f 2 I. Applying the Division Algorithm 1.2.2, we obtain

f = q1 g1 + q2 g2 + · · ·+ qm gm + r

where none of the monomials in the remainder r belong to LT(I).
When r 6= 0, the equation r = f � q1 g1 � q2 g2 � · · · � qm gm 2 I

implies that LT(r) 2 LT(I). It follows that LT(r) is divisible by some
LT(gi), which is a contradiction. Consequently, we must have r = 0,
f 2hg1, g2, . . . , gmi, and I ✓hg1, g2, . . . , gmi ✓ I.

The contemporary form of the Hilbert basis theorem allows for
coefficients in more general commutative rings. Before explaining
this variant, we need an additional concept.

2.0.1 Theorem. A commutative ring R is noetherian if it satisfies the

following three equivalent conditions.

(a) Every ascending chain of ideals in the ring R becomes stationary: for

any nested sequence I0 ✓ I1 ✓ I3 ✓ · · · of ideals in R, there exists a

nonnegative integer m such that Im = Im+1 = Im+2 = · · · .

Emmy Noether introduced the ascend-
ing chain condition in 1921.

(b) Every nonempty set of ideals in R, partially ordered by inclusion, has a

maximal element.

(c) Every ideal in R is finitely generated.

All principal ideal domains, including
fields, Z, and K[x], are noetherian.
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Proof.

(a) ) (b): Suppose that I be a nonempty family of ideals in R having
no maximal element. Choose I1 2 I. Since I1 is not maximal, there
exists I2 2 I such that I1 ⇢ I2. The ideal I2 is not maximal, so there
is I3 2 I with I2 ⇢ I3. Continuing in this way, we would construct
a non-stationary ascending chain of ideals in R, contradicting the
ascending chain condition.

(b) ) (c): Let I be an ideal in R and define I to be the family of
all the finitely generated ideals contained in I. This family is
nonempty, because it contains the zero ideal. By hypothesis, there
exists a maximal M 2 I. We have M ✓ I because M 2 I. If M ⇢ I,
then there exists f 2 I such that f 62 M. The ideal

J := {g + r f | g 2 M and r 2 R} = M +h f i ✓ I

is finitely generated, so J 2 I and M ⇢ J contradicting the
maximality of M. We deduce that M = I and the ideal I is finitely
generated.

(c) ) (a): Assume that every ideal in R is finitely generated and
let I0 ✓ I1 ✓ · · · ✓ Ij ✓ · · · be an ascending chain of ideals in
R. The union J :=

S
j2N Ij is an ideal. By hypothesis, there exists

g1, g2, . . . , gk 2 J such that J = hg1, g2, . . . , gki. For each i 2 N, the
element gi belongs to J by being in Iji

for some ji. Setting m to be
the largest ji, we see that Iji

✓ Im for all i. It follows that gi 2 Im

for all i, so J = hg1, g2, . . . , gki ✓ Im ✓ J. We deduce that, for
all j > m, we have J = Im ✓ Ij ✓ J and Im = J. Therefore, the
ascending chain stops and the ring R satisfies the ascending chain
condition.

Let R be the ring of all real-valued
functions on the reals under pointwise
operations. For any n 2 N, the set

In := { f : R!R | f (x) = 0 for all x > n}

is an ideal in R and In ⇢ In+1. Thus, the
ring R is not noetherian.

2.0.2 Theorem. For any noetherian ring R, R[x] is also noetherian.

Proof. Let I be an ideal in R[x]. Suppose that I is not finitely gener-
ated. Choose a sequence f0, f1, f2, . . . in I such that fi+1 has minimal
degree in the set I \h f0, f1, . . . , fii. For all i 2 N, set ai := LC( fi) and
let J := ha0, a1, a2, . . .i be the ideal in R. As R is noetherian, there is
m 2 N such that J = ha0, a1, . . . , ami. For some bj 2 R with 0 6 j 6 m,
we have am+1 = b0 a0 + b1 a1 + · · ·+ bm am. Consider the polynomial

g := b0 f0 x
d0 + b1 f1 x

d1 + · · ·+ bm fm x
dm

where dj := deg( fm+1)� deg( fi). Because deg(g) = deg( fm+1) and
the leading coefficient of g and fm+1 agree, the difference fm+1 � g has
degree strictly less than the degree of fm+1, contradicting the choice
of fm+1. Therefore, the ideal I is finitely generated.

2.0.3 Corollary. Let R be a noetherian ring. For all nonnegative integers n,

the polynomial ring R[x1, x2, . . . , xn] is also noetherian.
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Proof. We proceed by induction on n. The base case n = 0 is vacuous.
Assuming that R[x1, x2, . . . , xn�1] is noetherian, Theorem 2.0.2 shows
that (R[x1, x2, . . . , xn�1])[xn] = R[x1, x2, . . . , xn] is noetherian.

2.1 Remainders

How do Gröbner basis effect division?

2.1.0 Proposition. Fix a monomial order on S := K[x1, x2, . . . , xn] and

assume that g1, g2, . . . , gm 2 S form a Gröbner basis for an ideal I in S. For

any f 2 S, there exists a unique polynomial r 2 S such that

• none of monomials in r are divisible by monomials of LT(I), and

• there is an element g 2 I such that f = g + r.

When g1, g2, . . . , gm is a Gröbner basis,
the remainder f on division by vector
[g1 g2 · · · gm]T is independent of the
order of the entries.

Proof. Set G := [g1 g2 · · · gm]
T. The Division Algorithm 1.2.2

demonstrates that f = q1 g1 + q2 g2 + · · · + qm gm + r for some
q1, q2, . . . , qm, r 2 S where none of the monomials in r are divisible by
a monomial in LT(I). Setting g = q1 g1 + q2 g2 + · · ·+ qm gm, we see
that there exists a polynomial r with the desired properties.

Given two expressions f = g + r and f = g
0 + r

0, it follows that
r � r

0 = g
0 � g 2 I. If r 6= r

0, then we have LT(r � r
0) 2 LT(I), so

some monomial in r or r
0 is divisible by an element of LT(I). As this

contradicts the properties of r and r
0, we must have r = r

0.

2.1.1 Corollary. Let g1, g2, . . . , gm be a Gröbner basis for the ideal I in S.

A polynomial f 2 S belongs to the ideal I if and only if its remainder on

division by [g1 g2 · · · gm]
T

is zero.

By constructing a Gröbner basis for any
ideal in S, we obtain a solution to the
ideal membership problem [1.0.1].

Proof. Having the remainder being zero means that

f = q1 g1 + q2 g2 + · · ·+ qm gm

which implies f 2 hg1, g2, . . . , gmi = I. Conversely, for any f 2 I, the
expression f + 0 satisfies the conditions in Proposition 2.1.0. It follows
that 0 is the remainder.

2.2 Gröbner basics

How can we recognize a Gröbner basis? To answer this question, we
exploit some auxiliary polynomials.

2.2.0 Definition. For two polynomials f and g in S := K[x1, x2, . . . , xn],
the S-polynomial is

By design, the leading terms of f and
g cancel in their S-polynomial. The “S”
apparently refers to either “subtraction”
or “syzygy”.

spoly( f , g) :=
lcm

�
LM( f ), LM(g)

�

LT( f )
f �

lcm
�
LM( f ), LM(g)

�

LT(g)
g .
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2.2.1 Example. Choose a monomial order on Q[x, y] such that x > y.
When f := 2xy � x and g := 3x

3 � y, we have

spoly( f , g) =
lcm(xy, x

3)
2xy

f � lcm(xy, x
3)

3x3 g

=
x

2

2
(2xy � x)� y

3
(3x

3 � y) = �1
2

x
3 +

1
3

y
2 . ⇧

2.2.2 Theorem (Buchberger criterion). The polynomials g1, g2, . . . , gm

in the ring S form a Gröbner basis if and only if, for all 1 6 i < j 6 m, the

remainder of spoly(gi, gj) on division by G := [g1 g2 · · · gm]
T

is zero.

In 1965, Bruno Buchberger introduced
this criterion in his PhD thesis super-
vised by Wolfgang Gröbner.

Proof. Set I := hg1, g2, . . . , gmi.
): Assuming that g1, g2, · · · , gm form a Gröbner basis, it follows that

spoly(gi, gj) 2 I, so spoly(gi, gj) % G = 0 for all 1 6 i < j 6 m.
(: Suppose that the remainder of each S-polynomial is zero. When

g1, g2, . . . , gm do not form a Gröbner basis, some f 2 I does not
have its leading term in the ideal hLT(g1), LT(g2), · · · , LT(gm)i.
Choose f1, f2, . . . , fm 2 S such that f = f1 g1 + f2 g2 + · · ·+ fm gm

and two minimality assumptions hold:
• the monomial x

u = maxj

�
LM( f j gj)

 
is minimal, and

• the number of indices j realizing the maximum is minimal.
After reindexing the gj’s, we may assume that

LM( f1 g1) = LM( f2 g2) = · · · = LM( fk gk) = x
u

and, for all j > k, we also have LM( f j gj) < x
u. We observe that

k > 2, because the x
u-terms cancel. Since spoly(g1, g2) % G = 0,

there exists polynomials h1, h2, . . . , hm 2 S such that

spoly(g1, g2) = h1 g1 + h2 g2 + · · ·+ hmgm

and, for all 1 6 j 6 m, we have LM
�
spoly(g1, g2)

�
> LM(hj gj). The

definition of an S-polynomial gives

lcm
�
LM(g1), LM(g2)

�

LT(g1)
g1 �

lcm
�
LM(g1), LM(g2)

�

LT(g2)
g2 � h1 g1 � h2 g2 � · · ·� hm gm = 0 . (‡)

The least common multiple of the two monomials LM(g1) and
LM(g2) divides x

u because LM( f1 g1) = x
u = LM( f2 g2). Hence,

there is a monomial q 2 S such that

q · lcm
�
LM(g1), LM(g2)

�
= LT( f1) LT(g1) .

Subtracting q times (‡) from chosen expression for f , we obtain
f = ef1 g1 + ef2 g2 + · · ·+ efm gm such that x

u > LM( ef j gj) with strict
inequality from j > k and j = 1. This contradicts the minimality
assumption in our chosen expression for f .
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2.2.3 Problem. Fix a monomial order > on Q[x, y] such that x > y.
Show that polynomials x

2 � y, xy � x, y
2 � y form a Gröbner basis for

the ideal I := hx
2 � y, xy � x, y

2 � yi.

Solution. Since

spoly(x
2 � y, xy � x) = y(x

2 � y)� x(xy � x)

= y
2 � y 2 I

spoly(x
2 � y, y

2 � y) = y
2(x

2 � y)� x
2(y2 � y)

= x
2
y � y

3 = y(x
2 � y)� y(y2 � y) 2 I

spoly(xy � x, y
2 � y) = y(xy � x)� x(y2 � y)

= 0 2 I ,

the Buchberger criterion establishes that the three polynomials are a
Gröbner basis.

2.2.4 Proposition (Buchberger second criterion). For any two polyno-

mials g1 and g2 in the ring S such that gcd
�
LM(g1), LM(g2)

�
= 1, we

have

spoly(g1, g2) % [g1 g2]
T = 0 .

Proof. For all 1 6 j 6 2, set egj := gj � LT(gj). It follows that
Observe that

gcd(x
u, x

v) lcm(x
u, x

v) = x
u

x
v .spoly(g1, g2)

=
lcm

�
LM(g1), LM(g2)

�

LT(g1)
g1 �

lcm
�
LM(g1), LM(g2)

�

LT(g2)
g2

=
LM(g2)

LC(g1) gcd
�
LM(g1), LM(g2)

� g1 �
LM(g1)

LC(g2) gcd
�
LM(g1), LM(g2)

� g2

=
1

LC(g1)
LM(g2) g1 �

1
LC(g2)

LM(g1) g2

=
1

LC(g1)LC(g2)

�
(g2 � eg2)g1 � (g1 � eg1)g2

�

=
1

LC(g1)LC(g2)
(eg1 g2 � eg2 g1) 2hg1, g2i .


