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4 E li m i na t i on Th e Ory Last updated: 12 February 2023

Elimination theory reduces a system of polynomial equations in
many variables to systems in a smaller number of variables. From
a geometric perspective, these methods lead to the equations for
closures of the image of a rational map.

4.0 Implicitization

How is implicitization related to elimination?

4.0.0 Proposition (Polynomial implicitization). Let K be an infinite
field and let X := V(f1, f2,..., fr) be an affine subvariety in A''. For any
polynomial map p: X — A", consider the ideal

I::<]/1 _Pll]/Z _P2/---/]/m _Pm/fl/f2/~--/fr>
in the polynomial ring K[x1,x2, ..., Xn, Y1, Y2, -.,Ym|. The Zariski closure
of the image p(X) is V(INKy1,y2, .-, Ym)).

Proof. Let Z =V(I) C A" and set J:= INK[y1,y2,...,ym]. Choose
an algebraic closure K of the field K. When K = K, the Closure
Theorem 3.2.5 establishes that V() is the smallest affine subvariety

containing the image p(X) = 7»(Z) where 7: A" — A" is defined

by (x1,%2, -, X0, Y1,Y2, -, Ym) — Y1,Y2,---,Ym). When K # K, we

cannot apply the closure theorem directly. Since the algorithm, that

returns the elimination ideal, is unaffected by the underlying field,

passing to the larger field does not change the ideal |. We prove that We use a subscript to keep track of the

Vi (]) i's the SI.nallest affine variety in A" (K) conitaining p(X). ffﬁ”’?;(;/]gr(\é) \i/sit(k}s i’sff:}rl‘: ls;];:rsl:};n
We first claim that p(X) = m2(Z) € Vk(J). Fix f € J. For each A"(K).

point a € (X)), choose a point b = (b, by, ..., by, a1,a2,...,4n) € Z

such that 715(b) = a. We have f(a) = 75 (f(b)) = 0. This shows that

the polynomial f vanishes at all points in 715(Z).
Let Y(K) = Vk(81,82 ---,8s) € A"(K) be any affine subvariety

such that p(X(K)) C Y(K). We must show Vi (J) C Y(KK). Observe

that each g; vanishes on Y (K), so it also vanishes on the smaller set

p(X(K)). This shows that each g; o p vanishes on A" (K). Since K

is infinite, we see that g; o p is the zero polynomial and vanishes

on A" (K). Hence, each g; vanishes on p(X(K)). We deduce that

p(X(K)) € Y(K) = Vg(g1,82---,8s) € A"(K). Since the theorem

is true over K, it follows that Vi(J) € Y(K). Concentrating on the

points that lie in A" (K), we conclude that Vi () C Y(K). O
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4.0.1 Example. Let m be a positive integers. The affine cone over the
rational normal curve of degree m is the closure of image of the map
o: A? — A" defined by (x1,x2) (x’ln,x’l"*lxz, fozx%, o, X3 Its
ideal is generated by the 2-minors of the Hankel (2 x m)-matrix

1 m—2 m—1

M
X \1 Xn X~

1 2 2
X Al Y2 c Ym
v | Y2 Y3 o Ym+l

For instance, when m = 3, the Grobner basis with respect to the

lexicographic order of (y; — x3,y2 — X322, Y3 — X1%3, Y4 — X3) is

V- VaYs Yay3s— Vs Y3 Yiys, Xays—Xays, X2 — iy,
Yoy —X1Y2, X3 —Ya, X3 —Ys,  XiXa—Ya, X -y
y1 y2 ya} RN
Y2 Y3 Ya
4.0.2 Remark. The cone over the rational curve of degree 3 in A? is

X = V(Y3 = Va¥4 Y2Y3 — Y14 Y3 — V1¥3)- All three equations are
needed to obtain an irreducible variety . The affine subvariety cut out

so closure of the image is cut out by the 2-minors of [

by any two equations is a union:

V(Y5 — Y193, Y23 — V1Ya) = XUV (y1,12),
V(Y3 — Yol Yols — Y1¥s) = XUV (y3,1,),
V(3 = YoYa ¥ —y1v3) = XUV (Y, v3) -

4.0.3 Example. For any two positive integers n and m, the Segre
embedding is the map 0y, A" x A" — A" defined by

(xl/er e Xn, Y1,Y2 - /xm) — (xlyll X1Y2, -+« s X1Ym, X2Y1, X2Y2, - - -, X2Ym, - - -

Its ideal is generated by the 2-minors of the generic (1 x m)-matrix

Ul Y2 Ym

X 21 22 o Zm
x2 Zm+1 Zm+2 o Z22m
. . . . o
o Zm=1)m+1 EZ(m-1)m4+2 " Znm

4.0.4 Example. For any positive integer n and d, set m := (“Z‘l ).

The Veronese (or d-uple) embedding is the map v;: A" — A" defined
by (x1,x2,...,%,) — (x’lj, x‘fflxz, .. ,x‘fl). Its ideal is generated by the
2-minors of a catalecticant (1 x (dgffz))—matrix. When (1,d) equals

(3,2) or (3,3), the matrices are

=

NN
=

N
=
0

X1 X2 X3 .\% XqX, X1 X3 X .
o Y2 s vy o v2 Y3 va Vs Ve
o |Y2 Y4 Y5 and 2 (Y2 Y4 Ys Y7 Ys Yo . o

3 |\Ys Ys Ye 3 |Ys Ys Yo Ys Yo Y10

X3
3
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This affine subvariety is a cone because
it contains all lines joining the point
(0,0,...,0) with a point on the curve
parametrized by x, — (1,x,,...,x5").

This map is named after Corrado Segre,
an Italian mathematician responsible for
important early work in algebraic
geometry.

S XnY1, XnY2, - XnYm) -

When n = m = 2, the ideal for the
image of the Segre map generated by
quadratic polynomial z; z4 — 25 z3.

This map is named after Giuseppe
Veronese, an Italian mathematician who
worked on the geometry of
multidimensional spaces.
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4.1 Toric Ideals

How do we solve the rational implicitization problem?

4.1.0 Theorem (Rational implicitization). Let K be an infinite field and
let p: A" --» A" be a rational map where p; = f;/g; forall 1 < j < m.
Consider the ideal

The graph of a rational map may not be

I = <g1 v — f1,g2 Yo — f2/ s 8mYm — fm,g1 L 8mZ— 1> an affine subvariety.

in the ring K|z, x1, X2, ..., Xu, Y1,Y2, - - ., Ym|. The Zariski closure of the
image p(A") is V(INK[y1,y2,-- -, Ym))-

Proof. By setting ¢:= g192 - - - gm, wWe see that the rational map p is
well-defined over the open set U = {a € A" | g(a) # 0}. Consider
the affine subvariety Y:= V(zg — 1) C A" and the projection map
s A" A" defined by (z,x1,x2...,%,) — (x1,X2,...,X,). The map
7 is a birational morphism: the rational map ¢: A" --» Y defined by
(x1,x2,...,xn) — (1/g,x1,%2,...,%,) satisfies both 7t o ¢ = idy and
P o m = idy. Moreover, the morphism ¢: Y — A" defined by

(zx1,%2,...,x0) = (f182- - §mz,81 /283 - 8mZ -, 81" §m—1 fmZ)

satisfies ¢ = p o 7t. Thus, we have ¢(Y) = p(U) and the result follows
from the polynomial implicitization theorem. O

4.1.1 Problem. Consider the rational map p: Al --» A? defined, for all

te Al by t — (%;—i, 1%2) Find the Zariski closure of its image.

Solution. The reduced Grobner basis, with respect to >y, for the
ideal (14 #)y; — (1 —#2), (1 + *)y2 — 2t,1 — (1 + #*)z) in the ring
Kz t,y1,y2) is 2 +y3 — Ltya +y1 — Ltys +t — 2,2z — y; — 1, so the
closure of the image is the unit circle. O

4.1.2 Definition (Toric ideals). Fix an integer matrix A € Z" with
columns aj,ay...,a,; € Z%. The affine toric variety X associated to
the matrix A is the Zariski closure of the image of the rational map
PA: Al 5 A" where (x1,%2,...,x4) — (x®,x%2,..., x%).

4.1.3 Examples. The cone over the rational normal curve of degree
m, the Veronese embedding v,: A> — A%, and the Segre embedding
0200 A% x A*— A* correspond to the matrices

211000 1100

mm—1m-2 --- 1 0 0011

0 1 2 --m—-=1ml|’ 0102101, 1010
001012

0101

respectively. o



38 Introduction to Algebraic Geometry

4.1.4 Remark. The rational map pa: A? --» A" corresponds to the
ring map @a: K[y1,y2, ..., yn) = Kxi, x5, ..., x5! defined, for all
1 <i < n, by y; — x%. The toric ideal 15 in the ring Kly1, 12, ..., Yn]
associated to the matrix A is Ker ¢5. The rational implicitization
theorem implies that Xp = V(Ker ¢4 ).

4.1.5 Lemma. Let A be an integer (d x n)-matrix. The toric ideal I in the
ring K[y1,Y2, ..., yn] is spanned as a K-vector space by the set of binomials
{y* —y" | for all u, v € N" satisfying Au = Av}.

Proof. A binomial y* — y" lies in the ideal I, if and only if we have
Au = Av. Thus, it suffices to show that each polynomial in I, is
a K-linear combination of these binomials. Fix a monomial order
on the polynomial ring K[y1, 2, ...,Yx]. Suppose f € I cannot be
written as a IKK-linear combination of the binomials. Choose f with
this property such that LT(f) = y" is minimal with respect to the
monomial order. When expanding f o pa = f(x®,x%,...,x%),

we obtain the zero polynomial. The term xA"

in f must cancel out.
Hence, there is some other monomial x¥ < x" appearing in f such
that Au = Av. The polynomial f’ = f — x" + x¥ cannot be written as
a K-linear combination of binomials in I5. Since LT(f’) < LT(f), we

have a contradiction. O

4.1.6 Remark. Any vector u € Z" can be expressed uniquely in the
form u = u™ — u~ where the vectors u™ and u™ are nonnegative and
have disjoint support. More precisely, the i-th coordinate in u™* equals
u; if u; > 0 and equals 0 otherwise. Let Ker A denote the sublattice of
Z" consisting of all vectors u such that Au™ = Au™.

4.1.7 Corollary. Let A be an integer matrix. The toric ideal 15 in the ring
K[y1,v2, ..., yn) is generated by y* —y* where u € Ker A. O

4.1.8 Corollary. Let A be an integer matrix. For any monomial order
> on the polynomial ring K[y1,y2, ..., Yn], there is a finite set of vectors
G C Ker A such that the reduced Grobner basis of the toric ideal 15 with
respect to > is equal to {y* —y* |u e G}.

Proof. By combining the Hilbert Basis Theorem and Corollary 4.1.7,
there is a finite subset of Ker A such that the associated binomials
generate the toric ideal I5. Apply the Buchberger Algorithm to these
binomials to find a Grobner basis of this ideal. The construction

of S-polynomials and the reduction steps preserve the binomial
structure. Therefore, any polynomial arising during this process lies
in the set {y*" —y* |u e KerA}. O
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4.2 Common Roots

When does a system of polynomial equations have solutions? We
need a criteria to understand how to solve the extension problem.

To introduce the concept of a resultant, we examine when two
polynomials in K[x] have a common factor.

4.2.0 Lemma. Let f and g be polynomials in K|x] of positive degrees { and
m respectively. The polynomials f and g have a common factor if and only
if there exists nonzero polynomials p and q in K[x] such that degp < m,
degg <l andpf+qg=0.

Proof. Assume that f and g have a common factor &. Hence, there
exists fand ¢ in K[x] such that degf </l f= hj?, degg < m, and
g=hg. Ttfollows that §f + (—f) g =8hf - fhg=0.

Assume that p and g have the desired properties. Suppose that f
and g have no common factor, so their greatest common divisor is 1.
Hence, there exists a and b in K[x] such that a f + b g = 1. Multiplying
this equation by g and using the relation 4 ¢ = —p f, we obtain
g=(af+bg)q=aqf—bpf = (aqg—>bp)f. Since g is nonzero,
we deduce that g has degree at least £ which contradicts the second
condition. Thus, there must be a common factor. O

4.2.1 Remark. This lemma allows one to use linear algebra to deter-
mine if f and g have a common factor. The idea is to turn polynomial
equation p f + g ¢ = 0 into a system of linear equations. Let

f=ax" +ap x4+ tag p=cma X" o™+ o
gamxm—i—bm,lxmil'f'"""bO q:dgilefl_i_dgizxéfz_i_.”_’_do

where we regard the coefficients as unknowns. Substituting into the
equation p f + g ¢ = 0 and comparing the coefficients of powers of x,
we obtain a homogeneous system of linear equations:

{+m—1

AgCm_1 +  bpdyq = 0 coefficient of x[+ )
j— T+m—

Ap_1Cp—1+acm— +  by_1dp_1+bmdy_» 0 coefficient of x

apco + bodg = 0 coefficient of x0

_ng b | _C 1' '0'

—
- ay bm (;0 — 0
ag by dé.—l O
RIS L

We know from linear algebra that there is a nonzero solution if and
only if the coefficient matrix has zero determinant.

39
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4.2.2 Definition. Given f and g in K[x] of positive degree, we write This matrices are named after James
f=ay xt + ap_q x4 agand g = by x™ + by x4 4 by Sylvester who did important work on
where a; # 0 and by, # 0. The resultant of f and g with respect to x matrix theory.

is the determinant of the following ((¢ + m) x (¢ 4 m))-matrix

ag  Ap_q Ay -+ a1 ap 0 o --- 0 1
0 ay agp_q -+ ap a ) o --- 0 2
0 0 0 o " Eig ﬂg;l ag;z ﬂg;3 e .' ap m
Syl(f/g'x) = b bmfl bm—Z cee bl bo 0 0 -+ 0 m+1
0 bm bm, . bz bl bo 0 s 0 m+2
6 0 O N .' bm bm'—l bm;Z bm.,g N " bo m .» l

Set Res(f, g; x) := detSyl(f, g, x).

4.2.3 Proposition. Given two f and g in K[x| having positive degree,

the resultant Res(f, g; x) lies in Z[ag, a1, . ..,a9,bo, b1, ..., by]. These two
polynomials f and g have a common factor if and only if Res(f, g; x) = 0.
Proof. For any (n x n)-matrix A = [a;;], the standard formula for the
determinant is det(A) = Ysee, 5g0(0) a1,0(1) A20(2) *** An,o(n), Which
is an integer polynomial in its entries proving the first assertion. The
second assertion follows from the preceding remark. O

4.2.4 Examples. We have gcd(2x? + 3x + 1,7x% + x + 3) = 1 because
1320
2 2 c) — 0132 _
Res(2x” +3x+1,7x" + x + 3;x) = det 3170 =153 #£0.
0317

Two linear polynomials have a common factor if and only if they
span the same 1-dimensional space;

Res(a1x+a0,b1x+b0;x) = det Zi Zg:| =ai bo—ll() bl-
Since
5 [ay a; ap 5
Res(ap x~ +ay x +ag,2ay x + ay;x) = det (2a, a; 0| = —ax(a] —4apaz),
L0 2a, @y

the quadratic polynomial ay x2 + a1 x + ag has a double root if and
only if we have a3 — 4apa, = 0. Similarly, the cubic polynomial
a3x3 +ay x> +a;x +aphas a multiple root if and only we have

Res(az x° 4 ay x% + a1 x + ag, 3az x* + 2a x + a1; x)

as dy a1 4dp 0
0 as dpy a1 Ao
=det |3a3 240 a7 0 O
0 3113 2{12 ay 0
0 0 3{13 2112 ai

= a3(27a3 a3 + 4ag a3 + 411% az — a2 a3 — 18agay ayaz) = 0. o



