4 Elimination Theory

Elimination theory reduces a system of polynomial equations in many variables to systems in a smaller number of variables. From a geometric perspective, these methods lead to the equations for closures of the image of a rational map.

4.0 Implicitization

How is implicitization related to elimination?
4.0.0 Proposition (Polynomial implicitization). Let \mathbb{K} be an infinite field and let $X:=\mathrm{V}\left(f_{1}, f_{2}, \ldots, f_{r}\right)$ be an affine subvariety in \mathbb{A}^{n}. For any polynomial map $\rho: X \rightarrow \mathbb{A}^{m}$, consider the ideal

$$
I:=\left\langle y_{1}-\rho_{1}, y_{2}-\rho_{2}, \ldots, y_{m}-\rho_{m}, f_{1}, f_{2}, \ldots, f_{r}\right\rangle
$$

in the polynomial ring $\mathbb{K}\left[x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{m}\right]$. The Zariski closure of the image $\overline{\rho(X)}$ is $\mathrm{V}\left(I \cap \mathbb{K}\left[y_{1}, y_{2}, \ldots, y_{m}\right]\right)$.
Proof. Let $Z=\mathrm{V}(I) \subseteq \mathbb{A}^{n+m}$ and set $J:=I \cap \mathbb{K}\left[y_{1}, y_{2}, \ldots, y_{m}\right]$. Choose an algebraic closure $\overline{\mathbb{K}}$ of the field \mathbb{K}. When $\mathbb{K}=\overline{\mathbb{K}}$, the Closure Theorem 3.2.5 establishes that $\mathrm{V}(J)$ is the smallest affine subvariety containing the image $\rho(X)=\pi_{2}(Z)$ where $\pi_{2}: \mathbb{A}^{n+m} \rightarrow \mathbb{A}^{m}$ is defined by $\left(x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{m}\right) \mapsto\left(y_{1}, y_{2}, \ldots, y_{m}\right)$. When $\mathbb{K} \neq \overline{\mathbb{K}}$, we cannot apply the closure theorem directly. Since the algorithm, that returns the elimination ideal, is unaffected by the underlying field, passing to the larger field does not change the ideal J. We prove that $\mathrm{V}_{\mathbb{K}}(J)$ is the smallest affine variety in $\mathbb{A}^{m}(\mathbb{K})$ containing $\rho(X)$.

We first claim that $\rho(X)=\pi_{2}(Z) \subseteq \mathrm{V}_{\mathbb{K}}(J)$. Fix $f \in J$. For each point $a \in \pi_{2}(X)$, choose a point $b=\left(b_{1}, b_{2}, \ldots, b_{n}, a_{1}, a_{2}, \ldots, a_{m}\right) \in Z$ such that $\pi_{2}(b)=a$. We have $f(a)=\pi_{2}^{*}(f(b))=0$. This shows that the polynomial f vanishes at all points in $\pi_{2}(Z)$.

Let $Y(\mathbb{K})=\mathrm{V}_{\mathbb{K}}\left(g_{1}, g_{2}, \ldots, g_{s}\right) \subseteq \mathbb{A}^{m}(\mathbb{K})$ be any affine subvariety such that $\rho(X(\mathbb{K})) \subseteq Y(\mathbb{K})$. We must show $\mathrm{V}_{\mathbb{K}}(J) \subseteq Y(\mathbb{K})$. Observe that each g_{i} vanishes on $Y(\mathbb{K})$, so it also vanishes on the smaller set $\rho(X(\mathbb{K}))$. This shows that each $g_{i} \circ \rho$ vanishes on $\mathbb{A}^{m}(\mathbb{K})$. Since \mathbb{K} is infinite, we see that $g_{i} \circ \rho$ is the zero polynomial and vanishes on $\mathbb{A}^{m}(\overline{\mathbb{K}})$. Hence, each g_{i} vanishes on $\rho(X(\overline{\mathbb{K}}))$. We deduce that $\rho(X(\overline{\mathbb{K}})) \subseteq Y(\overline{\mathbb{K}})=\mathrm{V}_{\overline{\mathbb{K}}}\left(g_{1}, g_{2}, \ldots, g_{s}\right) \subseteq \mathbb{A}^{m}(\overline{\mathbb{K}})$. Since the theorem is true over $\overline{\mathbb{K}}$, it follows that $\mathrm{V}_{\overline{\mathbb{K}}}(J) \subseteq Y(\overline{\mathbb{K}})$. Concentrating on the points that lie in $\mathbb{A}^{m}(\mathbb{K})$, we conclude that $\mathrm{V}_{\mathbb{K}}(J) \subseteq \Upsilon(\mathbb{K})$.

We use a subscript to keep track of the field, so $\mathrm{V}_{\mathbb{K}}(J)$ is the affine subvariety in $\mathbb{A}^{m}(\mathbb{K})$ and $V_{\overline{\mathbb{K}}}(J)$ is the larger set in $\mathbb{A}^{m}(\overline{\mathbb{K}})$.
4.0.1 Example. Let m be a positive integers. The affine cone over the rational normal curve of degree m is the closure of image of the map $\rho: \mathbb{A}^{2} \rightarrow \mathbb{A}^{m+1}$ defined by $\left(x_{1}, x_{2}\right) \mapsto\left(x_{1}^{m}, x_{1}^{m-1} x_{2}, x_{1}^{m-2} x_{2}^{2}, \ldots, x_{2}^{m}\right)$. Its ideal is generated by the 2-minors of the Hankel $(2 \times m)$-matrix

$$
\begin{aligned}
& x_{1} \\
& x_{2}
\end{aligned}\left[\begin{array}{cccc}
x_{1}^{m-1} & x_{1}^{m-2} x_{2} & \cdots & x_{2}^{m-1} \\
y_{1} & y_{2} & \cdots & y_{m} \\
y_{2} & y_{3} & \cdots & y_{m+1}
\end{array}\right] .
$$

For instance, when $m=3$, the Gröbner basis with respect to the lexicographic order of $\left\langle y_{1}-x_{1}^{3}, y_{2}-x_{1}^{2} x_{2}, y_{3}-x_{1} x_{2}^{3}, y_{4}-x_{2}^{3}\right\rangle$ is

$$
\begin{array}{rcccc}
y_{3}^{2}-y_{2} y_{4}, & y_{2} y_{3}-y_{1} y_{4}, & y_{2}^{2}-y_{1} y_{3}, & x_{2} y_{3}-x_{1} y_{4}, & x_{2} y_{2}-x_{1} y_{3}, \\
x_{2} y_{1}-x_{1} y_{2}, & x_{2}^{3}-y_{4}, & x_{1} x_{2}^{2}-y_{3}, & x_{1}^{2} x_{2}-y_{2}, & x_{1}^{3}-y_{1}
\end{array}
$$

so closure of the image is cut out by the 2-minors of $\left[\begin{array}{lll}y_{1} & y_{2} & y_{3} \\ y_{2} & y_{3} & y_{4}\end{array}\right]$.
4.0.2 Remark. The cone over the rational curve of degree 3 in \mathbb{A}^{4} is $X:=\mathrm{V}\left(y_{3}^{2}-y_{2} y_{4}, y_{2} y_{3}-y_{1} y_{4}, y_{2}^{2}-y_{1} y_{3}\right)$. All three equations are needed to obtain an irreducible variety. The affine subvariety cut out by any two equations is a union:

$$
\begin{aligned}
\mathrm{V}\left(y_{2}^{2}-y_{1} y_{3}, y_{2} y_{3}-y_{1} y_{4}\right) & =X \cup \mathrm{~V}\left(y_{1}, y_{2}\right) \\
\mathrm{V}\left(y_{3}^{2}-y_{2} y_{4}, y_{2} y_{3}-y_{1} y_{4}\right) & =X \cup \mathrm{~V}\left(y_{3}, y_{4}\right) \\
\mathrm{V}\left(y_{3}^{2}-y_{2} y_{4}, y_{2}^{2}-y_{1} y_{3}\right) & =X \cup \mathrm{~V}\left(y_{2}, y_{3}\right)
\end{aligned}
$$

4.0.3 Example. For any two positive integers n and m, the Segre embedding is the map $\sigma_{n, m}: \mathbb{A}^{n} \times \mathbb{A}^{m} \rightarrow \mathbb{A}^{n m}$ defined by

This affine subvariety is a cone because it contains all lines joining the point $(0,0, \ldots, 0)$ with a point on the curve parametrized by $x_{2} \mapsto\left(1, x_{2}, \ldots, x_{2}^{m}\right)$.

This map is named after Corrado Segre, an Italian mathematician responsible for important early work in algebraic geometry.
$\left(x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2} \ldots, x_{m}\right) \mapsto\left(x_{1} y_{1}, x_{1} y_{2}, \ldots, x_{1} y_{m}, x_{2} y_{1}, x_{2} y_{2}, \ldots, x_{2} y_{m}, \ldots, x_{n} y_{1}, x_{n} y_{2}, \ldots, x_{n} y_{m}\right)$.
Its ideal is generated by the 2-minors of the generic $(n \times m)$-matrix

$$
\begin{gathered}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{gathered}\left[\begin{array}{cccc}
y_{1} & y_{2} & \cdots & y_{m} \\
z_{1} & z_{2} & \cdots & z_{m} \\
z_{m+1} & z_{m+2} & \cdots & z_{2 m} \\
\vdots & \vdots & & \vdots \\
z_{(n-1) m+1} & z_{(n-1) m+2} & \cdots & z_{n m}
\end{array}\right] . \quad \begin{aligned}
& \text { When } n=m=2, \text { the ideal for the }
\end{aligned}
$$

4.0.4 Example. For any positive integer n and d, set $m:=\binom{d+n-1}{d}$. The Veronese (or d-uple) embedding is the map $v_{d}: \mathbb{A}^{n} \rightarrow \mathbb{A}^{m}$ defined by $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mapsto\left(x_{1}^{d}, x_{1}^{d-1} x_{2}, \ldots, x_{n}^{d}\right)$. Its ideal is generated by the 2-minors of a catalecticant $\left(n \times\binom{ d+n-2}{d-1}\right)$-matrix. When (n, d) equals $(3,2)$ or $(3,3)$, the matrices are

This map is named after Giuseppe Veronese, an Italian mathematician who worked on the geometry of multidimensional spaces.

$$
\begin{aligned}
& x_{1} \\
& x_{2} \\
& x_{3}
\end{aligned}\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3} \\
y_{2} & y_{4} & y_{5} \\
y_{3} & y_{5} & y_{6}
\end{array}\right] \text { and } \begin{gathered}
x_{1} \\
x_{2} \\
x_{3}
\end{gathered}\left[\begin{array}{cccccc}
x_{1}^{2} & x_{1} x_{2} & x_{1} x_{3} & x_{2}^{2} & x_{2} x_{3} & x_{3}^{2} \\
y_{1} & y_{2} & y_{3} & y_{4} & y_{5} & y_{6} \\
y_{2} & y_{4} & y_{5} & y_{7} & y_{8} & y_{9} \\
y_{3} & y_{5} & y_{6} & y_{8} & y_{9} & y_{10}
\end{array}\right] .
$$

4.1 Toric Ideals

How do we solve the rational implicitization problem?
4.1.0 Theorem (Rational implicitization). Let \mathbb{K} be an infinite field and let $\rho: \mathbb{A}^{n} \rightarrow \mathbb{A}^{m}$ be a rational map where $\rho_{j}=f_{j} / g_{j}$ for all $1 \leqslant j \leqslant m$. Consider the ideal

$$
I=\left\langle g_{1} y_{1}-f_{1}, g_{2} y_{2}-f_{2}, \ldots, g_{m} y_{m}-f_{m}, g_{1} g_{2} \cdots g_{m} z-1\right\rangle
$$

The graph of a rational map may not be an affine subvariety.
in the ring $\mathbb{K}\left[z, x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{m}\right]$. The Zariski closure of the image $\rho\left(\mathbb{A}^{n}\right)$ is $\mathrm{V}\left(I \cap \mathbb{K}\left[y_{1}, y_{2}, \ldots, y_{m}\right]\right)$.

Proof. By setting $g:=g_{1} g_{2} \cdots g_{m}$, we see that the rational map ρ is well-defined over the open set $U=\left\{a \in \mathbb{A}^{n} \mid g(a) \neq 0\right\}$. Consider the affine subvariety $Y:=\mathrm{V}(z g-1) \subset \mathbb{A}^{n+1}$ and the projection map $\pi: \mathbb{A}^{n+1} \rightarrow \mathbb{A}^{n}$ defined by $\left(z, x_{1}, x_{2} \ldots, x_{n}\right) \mapsto\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. The map π is a birational morphism: the rational map $\psi: \mathbb{A}^{n} \rightarrow Y$ defined by $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mapsto\left(1 / g, x_{1}, x_{2}, \ldots, x_{n}\right)$ satisfies both $\pi \circ \psi=\operatorname{id}_{U}$ and $\psi \circ \pi=\operatorname{id}_{Y}$. Moreover, the morphism $\phi: Y \rightarrow \mathbb{A}^{m}$ defined by

$$
\left(z, x_{1}, x_{2}, \ldots, x_{n}\right) \mapsto\left(f_{1} g_{2} \cdots g_{m} z, g_{1} f_{2} g_{3} \cdots g_{m} z, \ldots, g_{1} \cdots g_{m-1} f_{m} z\right)
$$

satisfies $\phi=\rho \circ \pi$. Thus, we have $\phi(Y)=\rho(U)$ and the result follows from the polynomial implicitization theorem.
4.1.1 Problem. Consider the rational map $\rho: \mathbb{A}^{1} \rightarrow \mathbb{A}^{2}$ defined, for all $t \in \mathbb{A}^{1}$, by $t \mapsto\left(\frac{1-t^{2}}{1+t^{2}}, \frac{2 t}{1+t^{2}}\right)$. Find the Zariski closure of its image.
Solution. The reduced Gröbner basis, with respect to $>_{\text {lex }}$, for the ideal $\left\langle\left(1+t^{2}\right) y_{1}-\left(1-t^{2}\right),\left(1+t^{2}\right) y_{2}-2 t, 1-\left(1+t^{2}\right) z\right\rangle$ in the ring $\mathbb{K}\left[z, t, y_{1}, y_{2}\right]$ is $y_{1}^{2}+y_{2}^{2}-1, t y_{2}+y_{1}-1, t y_{1}+t-y_{2}, 2 z-y_{1}-1$, so the closure of the image is the unit circle.
4.1.2 Definition (Toric ideals). Fix an integer matrix $\mathbf{A} \in \mathbb{Z}^{d \times n}$ with columns $\mathbf{a}_{1}, \mathbf{a}_{2} \ldots, \mathbf{a}_{n} \in \mathbb{Z}^{d}$. The affine toric variety $X_{\mathbf{A}}$ associated to the matrix \mathbf{A} is the Zariski closure of the image of the rational map $\rho_{\mathrm{A}}: \mathbb{A}^{d} \rightarrow \mathbb{A}^{n}$ where $\left(x_{1}, x_{2}, \ldots, x_{d}\right) \mapsto\left(x^{\mathbf{a}_{1}}, x^{\mathbf{a}_{2}}, \ldots, x^{\mathbf{a}_{n}}\right)$.
4.1.3 Examples. The cone over the rational normal curve of degree m, the Veronese embedding $v_{2}: \mathbb{A}^{3} \rightarrow \mathbb{A}^{6}$, and the Segre embedding $\sigma_{2,2}: \mathbb{A}^{2} \times \mathbb{A}^{2} \rightarrow \mathbb{A}^{4}$ correspond to the matrices

$$
\left[\begin{array}{cccccc}
m & m-1 & m-2 & \cdots & 1 & 0 \\
0 & 1 & 2 & \cdots & m-1 & m
\end{array}\right],\left[\begin{array}{llllll}
2 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 2
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

respectively.
4.1.4 Remark. The rational map $\rho_{\mathbf{A}}: \mathbb{A}^{d} \rightarrow \mathbb{A}^{n}$ corresponds to the ring $\operatorname{map} \varphi_{\mathbf{A}}: \mathbb{K}\left[y_{1}, y_{2}, \ldots, y_{n}\right] \rightarrow \mathbb{K}\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, \ldots, x_{d}^{ \pm 1}\right]$ defined, for all $1 \leqslant i \leqslant n$, by $y_{i} \mapsto x^{a_{i}}$. The toric ideal $I_{\mathbf{A}}$ in the ring $\mathbb{K}\left[y_{1}, y_{2}, \ldots, y_{n}\right]$ associated to the matrix \mathbf{A} is $\operatorname{Ker} \varphi_{\mathbf{A}}$. The rational implicitization theorem implies that $X_{\mathbf{A}}=\mathrm{V}\left(\operatorname{Ker} \varphi_{\mathbf{A}}\right)$.
4.1.5 Lemma. Let \mathbf{A} be an integer $(d \times n)$-matrix. The toric ideal $I_{\mathbf{A}}$ in the ring $\mathbb{K}\left[y_{1}, y_{2}, \ldots, y_{n}\right]$ is spanned as a \mathbb{K}-vector space by the set of binomials $\left\{y^{\mathbf{u}}-y^{\mathbf{v}} \mid\right.$ for all $u, v \in \mathbb{N}^{n}$ satisfying $\left.\mathbf{A} \mathbf{u}=\mathbf{A} \mathbf{v}\right\}$.

Proof. A binomial $y^{\mathbf{u}}-y^{\mathbf{v}}$ lies in the ideal $I_{\mathbf{A}}$ if and only if we have $\mathbf{A u}=\mathbf{A v}$. Thus, it suffices to show that each polynomial in $I_{\mathbf{A}}$ is a K-linear combination of these binomials. Fix a monomial order on the polynomial ring $\mathbb{K}\left[y_{1}, y_{2}, \ldots, y_{n}\right]$. Suppose $f \in I_{\mathbf{A}}$ cannot be written as a \mathbb{K}-linear combination of the binomials. Choose f with this property such that $\operatorname{LT}(f)=y^{\mathbf{u}}$ is minimal with respect to the monomial order. When expanding $f \circ \varphi_{\mathbf{A}}=f\left(x^{\mathbf{a}_{1}}, x^{\mathbf{a}_{2}}, \ldots, x^{\mathbf{a}_{n}}\right)$, we obtain the zero polynomial. The term $x^{\mathbf{A} \mathbf{u}}$ in f must cancel out. Hence, there is some other monomial $x^{\mathbf{v}}<x^{\mathbf{u}}$ appearing in f such that $\mathbf{A} \mathbf{u}=\mathbf{A} \mathbf{v}$. The polynomial $f^{\prime}=f-x^{\mathbf{u}}+x^{\mathbf{v}}$ cannot be written as a \mathbb{K}-linear combination of binomials in $I_{\mathbf{A}}$. Since $\operatorname{LT}\left(f^{\prime}\right)<\operatorname{LT}(f)$, we have a contradiction.
4.1.6 Remark. Any vector $\mathbf{u} \in \mathbb{Z}^{n}$ can be expressed uniquely in the form $\mathbf{u}=\mathbf{u}^{+}-\mathbf{u}^{-}$where the vectors \mathbf{u}^{+}and \mathbf{u}^{-}are nonnegative and have disjoint support. More precisely, the i-th coordinate in \mathbf{u}^{+}equals u_{i} if $u_{i}>0$ and equals 0 otherwise. Let Ker A denote the sublattice of \mathbb{Z}^{n} consisting of all vectors \mathbf{u} such that $\mathbf{A} \mathbf{u}^{+}=\mathbf{A} \mathbf{u}^{-}$.
4.1.7 Corollary. Let \mathbf{A} be an integer matrix. The toric ideal $I_{\mathbf{A}}$ in the ring $\mathbb{K}\left[y_{1}, y_{2}, \ldots, y_{n}\right]$ is generated by $y^{\mathbf{u}^{+}}-y^{\mathbf{u}^{-}}$where $\mathbf{u} \in \operatorname{Ker} \mathbf{A}$.
4.1.8 Corollary. Let \mathbf{A} be an integer matrix. For any monomial order $>$ on the polynomial ring $\mathbb{K}\left[y_{1}, y_{2}, \ldots, y_{n}\right]$, there is a finite set of vectors $\mathcal{G} \subset \operatorname{Ker} \mathbf{A}$ such that the reduced Gröbner basis of the toric ideal $I_{\mathbf{A}}$ with respect to $>$ is equal to $\left\{y^{\mathbf{u}^{+}}-y^{\mathbf{u}^{-}} \mid \mathbf{u} \in \mathcal{G}\right\}$.

Proof. By combining the Hilbert Basis Theorem and Corollary 4.1.7, there is a finite subset of Ker A such that the associated binomials generate the toric ideal $I_{\mathbf{A}}$. Apply the Buchberger Algorithm to these binomials to find a Gröbner basis of this ideal. The construction of S-polynomials and the reduction steps preserve the binomial structure. Therefore, any polynomial arising during this process lies in the set $\left\{y^{\mathbf{u}^{+}}-y^{\mathbf{u}^{-}} \mid \mathbf{u} \in \operatorname{Ker} \mathbf{A}\right\}$.

4.2 Common Roots

When does a system of polynomial equations have solutions? We need a criteria to understand how to solve the extension problem.

To introduce the concept of a resultant, we examine when two polynomials in $\mathbb{K}[x]$ have a common factor.
4.2.0 Lemma. Let f and g be polynomials in $\mathbb{K}[x]$ of positive degrees ℓ and m respectively. The polynomials f and g have a common factor if and only if there exists nonzero polynomials p and q in $\mathbb{K}[x]$ such that $\operatorname{deg} p<m$, $\operatorname{deg} q<\ell$, and $p f+q g=0$.
Proof. Assume that f and g have a common factor h. Hence, there exists \widehat{f} and \widehat{g} in $\mathbb{K}[x]$ such that $\operatorname{deg} \widehat{f}<\ell, f=h \widehat{f}, \operatorname{deg} \widehat{g}<m$, and $g=h \widehat{g}$. It follows that $\widehat{g} f+(-\widehat{f}) g=\widehat{g} h \widehat{f}-\widehat{f} h \widehat{g}=0$.

Assume that p and q have the desired properties. Suppose that f and g have no common factor, so their greatest common divisor is 1 . Hence, there exists a and b in $\mathbb{K}[x]$ such that $a f+b g=1$. Multiplying this equation by q and using the relation $q g=-p f$, we obtain $q=(a f+b g) q=a q f-b p f=(a q-b p) f$. Since q is nonzero, we deduce that q has degree at least ℓ which contradicts the second condition. Thus, there must be a common factor.
4.2.1 Remark. This lemma allows one to use linear algebra to determine if f and g have a common factor. The idea is to turn polynomial equation $p f+q g=0$ into a system of linear equations. Let

$$
\begin{array}{ll}
f=a_{\ell} x^{\ell}+a_{\ell-1} x^{\ell-1}+\cdots+a_{0} & p=c_{m-1} x^{m-1}+c_{m-2} x^{m-2}+\cdots+c_{0} \\
g=b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{0} & q=d_{\ell-1} x^{\ell-1}+d_{\ell-2} x^{\ell-2}+\cdots+d_{0}
\end{array}
$$

where we regard the coefficients as unknowns. Substituting into the equation $p f+q g=0$ and comparing the coefficients of powers of x, we obtain a homogeneous system of linear equations:

$$
\begin{aligned}
& a_{\ell} c_{m-1}+b_{m} d_{\ell-1} \quad=0 \text { coefficient of } x^{\ell+m-1} \\
& a_{\ell-1} c_{m-1}+a_{\ell} c_{m-2}+b_{m-1} d_{\ell-1}+b_{m} d_{\ell-2} \quad=0 \text { coefficient of } x^{\ell+m-2} \\
& \begin{array}{llllll}
\ddots & & \ddots & & & \\
& a_{0} c_{0} & + & b_{0} d_{0} & = & 0
\end{array} \quad \text { coefficient of } x^{0} \\
& \Rightarrow\left[\begin{array}{cccccc}
a_{\ell} & & & b_{m} & & \\
\vdots & \ddots & & \vdots & \ddots & \\
\vdots & & & & & \\
& & & & b_{m} \\
a_{0} & & \vdots & b_{0} & & \\
& \ddots & \vdots & & \ddots & \vdots \\
& & a_{0} & & & b_{0}
\end{array}\right]\left[\begin{array}{c}
c_{m-1} \\
\vdots \\
c_{0} \\
d_{\ell-1} \\
\vdots \\
d_{0}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]
\end{aligned}
$$

We know from linear algebra that there is a nonzero solution if and only if the coefficient matrix has zero determinant.
4.2.2 Definition. Given f and g in $\mathbb{K}[x]$ of positive degree, we write $f=a_{\ell} x^{\ell}+a_{\ell-1} x^{\ell-1}+\cdots+a_{0}$ and $g=b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{0}$ where $a_{\ell} \neq 0$ and $b_{m} \neq 0$. The resultant of f and g with respect to x is the determinant of the following $((\ell+m) \times(\ell+m))$-matrix
$\operatorname{Syl}(f, g ; x):=\left[\begin{array}{cccccccccc}a_{\ell} & a_{\ell-1} & a_{\ell-2} & \cdots & a_{1} & a_{0} & 0 & 0 & \cdots & 0 \\ 0 & a_{\ell} & a_{\ell-1} & \cdots & a_{2} & a_{1} & a_{0} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{\ell} & a_{\ell-1} & a_{\ell-2} & a_{\ell-3} & \cdots & a_{0} \\ b_{m} & b_{m-1} & b_{m-2} & \cdots & b_{1} & b_{0} & 0 & 0 & \cdots & 0 \\ 0 & b_{m} & b_{m-1} & \cdots & b_{2} & b_{1} & b_{0} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & b_{m} & b_{m-1} & b_{m-2} & b_{m-3} & \cdots & b_{0}\end{array}\right] \begin{gathered}1 \\ m+\ell \\ \\ 0\end{gathered}$
$\operatorname{Set} \operatorname{Res}(f, g ; x):=\operatorname{det} \operatorname{Syl}(f, g, x)$.
4.2.3 Proposition. Given two f and g in $\mathbb{K}[x]$ having positive degree, the resultant $\operatorname{Res}(f, g ; x)$ lies in $\mathbb{Z}\left[a_{0}, a_{1}, \ldots, a_{\ell}, b_{0}, b_{1}, \ldots, b_{m}\right]$. These two polynomials f and g have a common factor if and only if $\operatorname{Res}(f, g ; x)=0$.
Proof. For any $(n \times n)$-matrix $\mathbf{A}=\left[a_{j, k}\right]$, the standard formula for the determinant is $\operatorname{det}(A)=\sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sgn}(\sigma) a_{1, \sigma(1)} a_{2, \sigma(2)} \cdots a_{n, \sigma(n)}$, which is an integer polynomial in its entries proving the first assertion. The second assertion follows from the preceding remark.
4.2.4 Examples. We have $\operatorname{gcd}\left(2 x^{2}+3 x+1,7 x^{2}+x+3\right)=1$ because

$$
\operatorname{Res}\left(2 x^{2}+3 x+1,7 x^{2}+x+3 ; x\right)=\operatorname{det}\left[\begin{array}{cccc}
1 & 3 & 2 & 0 \\
0 & 1 & 3 & 2 \\
3 & 1 & 7 & 0 \\
0 & 3 & 1 & 7
\end{array}\right]=153 \neq 0
$$

Two linear polynomials have a common factor if and only if they span the same 1-dimensional space;

$$
\operatorname{Res}\left(a_{1} x+a_{0}, b_{1} x+b_{0} ; x\right)=\operatorname{det}\left[\begin{array}{ll}
a_{1} & a_{0} \\
b_{1} & b_{0}
\end{array}\right]=a_{1} b_{0}-a_{0} b_{1}
$$

Since
$\operatorname{Res}\left(a_{2} x^{2}+a_{1} x+a_{0}, 2 a_{2} x+a_{1} ; x\right)=\operatorname{det}\left[\begin{array}{ccc}a_{2} & a_{1} & a_{0} \\ 2 a_{2} & a_{1} & 0 \\ 0 & 2 a_{2} & a_{1}\end{array}\right]=-a_{2}\left(a_{1}^{2}-4 a_{0} a_{2}\right)$,
the quadratic polynomial $a_{2} x^{2}+a_{1} x+a_{0}$ has a double root if and only if we have $a_{1}^{2}-4 a_{0} a_{2}=0$. Similarly, the cubic polynomial $a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ has a multiple root if and only we have

$$
\begin{aligned}
& \operatorname{Res}\left(a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}, 3 a_{3} x^{2}+2 a_{2} x+a_{1} ; x\right) \\
= & \operatorname{det}\left[\begin{array}{ccccc}
a_{3} & a_{2} & a_{1} & a_{0} & 0 \\
0 & a_{3} & a_{2} & a_{1} & a_{0} \\
3 a_{3} & 2 a_{2} & a_{1} & 0 & 0 \\
0 & 3 a_{3} & 2 a_{2} & a_{1} & 0 \\
0 & 0 & 3 a_{3} & 2 a_{2} & a_{1}
\end{array}\right] \\
= & a_{3}\left(27 a_{0}^{2} a_{3}^{2}+4 a_{0} a_{2}^{3}+4 a_{1}^{3} a_{3}-a_{1}^{2} a_{2}^{2}-18 a_{0} a_{1} a_{2} a_{3}\right)=0 .
\end{aligned}
$$

