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Elimination theory reduces a system of polynomial equations in
many variables to systems in a smaller number of variables. From
a geometric perspective, these methods lead to the equations for
closures of the image of a rational map.

4.0 Implicitization

How is implicitization related to elimination?

4.0.0 Proposition (Polynomial implicitization). Let K be an infinite

field and let X := V( f1, f2, . . . , fr) be an affine subvariety in An
. For any

polynomial map r : X!Am
, consider the ideal

I := hy1 � r1, y2 � r2, . . . , ym � rm, f1, f2, . . . , fri

in the polynomial ring K[x1, x2, . . . , xn, y1, y2, . . . , ym]. The Zariski closure

of the image r(X) is V(I \ K[y1, y2, . . . , ym]).

Proof. Let Z = V(I) ✓ An+m and set J := I \ K[y1, y2, . . . , ym]. Choose
an algebraic closure K of the field K. When K = K, the Closure
Theorem 3.2.5 establishes that V(J) is the smallest affine subvariety
containing the image r(X) = p2(Z) where p2 : An+m !Am is defined
by (x1, x2, . . . , xn, y1, y2, . . . , ym) 7! (y1, y2, . . . , ym). When K 6= K, we
cannot apply the closure theorem directly. Since the algorithm, that
returns the elimination ideal, is unaffected by the underlying field,
passing to the larger field does not change the ideal J. We prove that
VK(J) is the smallest affine variety in Am(K) containing r(X).

We first claim that r(X) = p2(Z) ✓ VK(J). Fix f 2 J. For each
point a 2 p2(X), choose a point b = (b1, b2, . . . , bn, a1, a2, . . . , am) 2 Z

such that p2(b) = a. We have f (a) = p⇤
2
�

f (b)
�
= 0. This shows that

the polynomial f vanishes at all points in p2(Z).

We use a subscript to keep track of the
field, so VK(J) is the affine subvariety
in Am(K) and VK(J) is the larger set in
Am(K).

Let Y(K) = VK(g1, g2, . . . , gs) ✓ Am(K) be any affine subvariety
such that r

�
X(K)

�
✓ Y(K). We must show VK(J) ✓ Y(K). Observe

that each gi vanishes on Y(K), so it also vanishes on the smaller set
r
�
X(K)

�
. This shows that each gi � r vanishes on Am(K). Since K

is infinite, we see that gi � r is the zero polynomial and vanishes
on Am(K). Hence, each gi vanishes on r

�
X(K)

�
. We deduce that

r
�
X(K)

�
✓ Y(K) = VK(g1, g2, . . . , gs) ✓ Am(K). Since the theorem

is true over K, it follows that VK(J) ✓ Y(K). Concentrating on the
points that lie in Am(K), we conclude that VK(J) ✓ Y(K).
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4.0.1 Example. Let m be a positive integers. The affine cone over the
rational normal curve of degree m is the closure of image of the map
r : A2 !Am+1 defined by (x1, x2) 7! (x

m

1 , x
m�1
1 x2, x

m�2
1 x

2
2, . . . , x

m

2 ). Its
ideal is generated by the 2-minors of the Hankel (2 ⇥ m)-matrix

This affine subvariety is a cone because
it contains all lines joining the point
(0, 0, . . . , 0) with a point on the curve
parametrized by x2 7! (1, x2, . . . , x

m

2 ).x
m�1
1 x

m�2
1 x2 ··· x

m�1
2 �

x1 y1 y2 · · · ym

x2 y2 y3 · · · ym+1
.

For instance, when m = 3, the Gröbner basis with respect to the
lexicographic order of hy1 � x

3
1, y2 � x

2
1x2, y3 � x1x

3
2, y4 � x

3
2i is

y
2
3 � y2y4, y2y3 � y1y4, y

2
2 � y1y3, x2y3 � x1y4, x2y2 � x1y3,

x2y1 � x1y2, x
3
2 � y4, x1x

2
2 � y3, x

2
1x2 � y2, x

3
1 � y1.

so closure of the image is cut out by the 2-minors of


y1 y2 y3
y2 y3 y4

�
. ⇧

4.0.2 Remark. The cone over the rational curve of degree 3 in A4 is
X := V(y2

3 � y2y4, y2y3 � y1y4, y
2
2 � y1y3). All three equations are

needed to obtain an irreducible variety . The affine subvariety cut out
by any two equations is a union:

V(y2
2 � y1y3, y2y3 � y1y4) = X [ V(y1, y2) ,

V(y2
3 � y2y4, y2y3 � y1y4) = X [ V(y3, y4) ,

V(y2
3 � y2y4, y

2
2 � y1y3) = X [ V(y2, y3) . This map is named after Corrado Segre,

an Italian mathematician responsible for
important early work in algebraic
geometry.

4.0.3 Example. For any two positive integers n and m, the Segre
embedding is the map sn,m : An ⇥Am ! Anm defined by

(x1, x2, . . . , xn, y1, y2 . . . , xm) 7! (x1y1, x1y2, . . . , x1ym, x2y1, x2y2, . . . , x2ym, . . . , xny1, xny2, . . . , xnym) .

Its ideal is generated by the 2-minors of the generic (n ⇥ m)-matrix

When n = m = 2, the ideal for the
image of the Segre map generated by
quadratic polynomial z1 z4 � z2 z3.

y1 y2 ··· ym2

6664

3

7775

x1 z1 z2 · · · zm

x2 zm+1 zm+2 · · · z2m

...
...

...
...

xn z(n�1)m+1 z(n�1)m+2 · · · znm

. ⇧

This map is named after Giuseppe
Veronese, an Italian mathematician who
worked on the geometry of
multidimensional spaces.

4.0.4 Example. For any positive integer n and d, set m :=
� d+n�1

d

�
.

The Veronese (or d-uple) embedding is the map nd : An ! Am defined
by (x1, x2, . . . , xn) 7! (x

d

1, x
d�1
1 x2, . . . , x

d
n). Its ideal is generated by the

2-minors of a catalecticant
�
n ⇥

� d+n�2
d�1

��
-matrix. When (n, d) equals

(3, 2) or (3, 3), the matrices are
x1 x2 x32

4

3

5
x1 y1 y2 y3
x2 y2 y4 y5
x3 y3 y5 y6

and

x
2
1 x1x2 x1x3 x

2
2 x2x3 x

2
32

4

3

5
x1 y1 y2 y3 y4 y5 y6
x2 y2 y4 y5 y7 y8 y9
x3 y3 y5 y6 y8 y9 y10

. ⇧
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4.1 Toric Ideals

How do we solve the rational implicitization problem?

4.1.0 Theorem (Rational implicitization). Let K be an infinite field and

let r : An 99K Am
be a rational map where rj = f j/gj for all 1 6 j 6 m.

Consider the ideal

I = hg1 y1 � f1, g2 y2 � f2, . . . , gm ym � fm, g1 g2 · · · gm z � 1i

in the ring K[z, x1, x2, . . . , xn, y1, y2, . . . , ym]. The Zariski closure of the

image r(An) is V(I \ K[y1, y2, . . . , ym]).

The graph of a rational map may not be
an affine subvariety.

Proof. By setting g := g1 g2 · · · gm, we see that the rational map r is
well-defined over the open set U = {a 2 An | g(a) 6= 0}. Consider
the affine subvariety Y := V(z g � 1) ⇢ An+1 and the projection map
p : An+1!An defined by (z, x1, x2 . . . , xn) 7! (x1, x2, . . . , xn). The map
p is a birational morphism: the rational map y : An 99K Y defined by
(x1, x2, . . . , xn) 7! (1/g, x1, x2, . . . , xn) satisfies both p � y = idU and
y � p = idY. Moreover, the morphism f : Y!Am defined by

(z, x1, x2, . . . , xn) 7! ( f1 g2 · · · gm z, g1 f2 g3 · · · gm z, . . . , g1 · · · gm�1 fmz)

satisfies f = r � p. Thus, we have f(Y) = r(U) and the result follows
from the polynomial implicitization theorem.

4.1.1 Problem. Consider the rational map r : A1 99K A2 defined, for all
t 2 A1, by t 7!

⇣
1�t

2

1+t2 , 2t

1+t2

⌘
. Find the Zariski closure of its image.

Solution. The reduced Gröbner basis, with respect to >lex, for the
ideal

⌦
(1 + t

2)y1 � (1 � t
2), (1 + t

2)y2 � 2t, 1 � (1 + t
2)z

↵
in the ring

K[z, t, y1, y2] is y
2
1 + y

2
2 � 1, ty2 + y1 � 1, ty1 + t � y2, 2z � y1 � 1, so the

closure of the image is the unit circle.

4.1.2 Definition (Toric ideals). Fix an integer matrix A 2 Zd⇥n with
columns a1, a2 . . . , an 2 Zd. The affine toric variety XA associated to
the matrix A is the Zariski closure of the image of the rational map
rA : Ad 99K An where (x1, x2, . . . , xd) 7! (x

a1 , x
a2 , . . . , x

an).

4.1.3 Examples. The cone over the rational normal curve of degree
m, the Veronese embedding n2 : A3 !A6, and the Segre embedding
s2,2 : A2 ⇥A2!A4 correspond to the matrices


m m � 1 m � 2 · · · 1 0
0 1 2 · · · m � 1 m

�
,

2

4
2 1 1 0 0 0
0 1 0 2 1 0
0 0 1 0 1 2

3

5 ,

2

664

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

3

775

respectively. ⇧
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4.1.4 Remark. The rational map rA : Ad 99K An corresponds to the
ring map jA : K[y1, y2, . . . , yn]!K[x±1

1 , x
±1
2 , . . . , x

±1
d

] defined, for all
1 6 i 6 n, by yi 7! x

ai . The toric ideal IA in the ring K[y1, y2, . . . , yn]

associated to the matrix A is Ker jA. The rational implicitization
theorem implies that XA = V(Ker jA).

4.1.5 Lemma. Let A be an integer (d ⇥ n)-matrix. The toric ideal IA in the

ring K[y1, y2, . . . , yn] is spanned as a K-vector space by the set of binomials

{y
u � y

v | for all u, v 2 Nn
satisfying A u = A v}.

Proof. A binomial y
u � y

v lies in the ideal IA if and only if we have
A u = A v. Thus, it suffices to show that each polynomial in IA is
a K-linear combination of these binomials. Fix a monomial order
on the polynomial ring K[y1, y2, . . . , yn]. Suppose f 2 IA cannot be
written as a K-linear combination of the binomials. Choose f with
this property such that LT( f ) = y

u is minimal with respect to the
monomial order. When expanding f � jA = f (x

a1 , x
a2 , . . . , x

an),
we obtain the zero polynomial. The term x

A u in f must cancel out.
Hence, there is some other monomial x

v < x
u appearing in f such

that A u = A v. The polynomial f
0 = f � x

u + x
v cannot be written as

a K-linear combination of binomials in IA. Since LT( f
0) < LT( f ), we

have a contradiction.

4.1.6 Remark. Any vector u 2 Zn can be expressed uniquely in the
form u = u+ � u� where the vectors u+ and u� are nonnegative and
have disjoint support. More precisely, the i-th coordinate in u+ equals
ui if ui > 0 and equals 0 otherwise. Let Ker A denote the sublattice of
Zn consisting of all vectors u such that A u+ = A u�.

4.1.7 Corollary. Let A be an integer matrix. The toric ideal IA in the ring

K[y1, y2, . . . , yn] is generated by y
u+ � y

u�
where u 2 Ker A.

4.1.8 Corollary. Let A be an integer matrix. For any monomial order

> on the polynomial ring K[y1, y2, . . . , yn], there is a finite set of vectors

G ⇢ Ker A such that the reduced Gröbner basis of the toric ideal IA with

respect to > is equal to {y
u+ � y

u� | u 2 G}.

Proof. By combining the Hilbert Basis Theorem and Corollary 4.1.7,
there is a finite subset of Ker A such that the associated binomials
generate the toric ideal IA. Apply the Buchberger Algorithm to these
binomials to find a Gröbner basis of this ideal. The construction
of S-polynomials and the reduction steps preserve the binomial
structure. Therefore, any polynomial arising during this process lies
in the set {y

u+ � y
u� | u 2 Ker A}.
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4.2 Common Roots

When does a system of polynomial equations have solutions? We
need a criteria to understand how to solve the extension problem.

To introduce the concept of a resultant, we examine when two
polynomials in K[x] have a common factor.

4.2.0 Lemma. Let f and g be polynomials in K[x] of positive degrees ` and

m respectively. The polynomials f and g have a common factor if and only

if there exists nonzero polynomials p and q in K[x] such that deg p < m,

deg q < `, and p f + q g = 0.

Proof. Assume that f and g have a common factor h. Hence, there
exists bf and bg in K[x] such that deg bf < `, f = h bf , deg bg < m, and
g = h bg. It follows that bg f + (� bf ) g = bg h bf � bf h bg = 0.

Assume that p and q have the desired properties. Suppose that f

and g have no common factor, so their greatest common divisor is 1.
Hence, there exists a and b in K[x] such that a f + b g = 1. Multiplying
this equation by q and using the relation q g = �p f , we obtain
q = (a f + b g) q = a q f � b p f = (a q � b p) f . Since q is nonzero,
we deduce that q has degree at least ` which contradicts the second
condition. Thus, there must be a common factor.

4.2.1 Remark. This lemma allows one to use linear algebra to deter-
mine if f and g have a common factor. The idea is to turn polynomial
equation p f + q g = 0 into a system of linear equations. Let

f = a` x
` + a`�1 x

`�1 + · · ·+ a0 p = cm�1 x
m�1 + cm�2 x

m�2 + · · ·+ c0

g = bm x
m + bm�1 x

m�1 + · · ·+ b0 q = d`�1 x
`�1 + d`�2 x

`�2 + · · ·+ d0

where we regard the coefficients as unknowns. Substituting into the
equation p f + q g = 0 and comparing the coefficients of powers of x,
we obtain a homogeneous system of linear equations:

a`cm�1 + bmd`�1 = 0 coefficient of x
`+m�1

a`�1cm�1 + a`cm�2 + bm�1d`�1 + bmd`�2 = 0 coefficient of x
`+m�2

. . . . . .
...

a0c0 + b0d0 = 0 coefficient of x
0

)

2

66666666664

a` bm

...
. . .

...
. . .

... a`
... bm

a0
... b0

...
. . .

...
. . .

...
a0 b0

3

77777777775

2

666666664

cm�1
...

c0
d`�1

...
d0

3

777777775

=

2

666666664

0
...
0
0
...
0

3

777777775

We know from linear algebra that there is a nonzero solution if and
only if the coefficient matrix has zero determinant.
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This matrices are named after James
Sylvester who did important work on
matrix theory.

4.2.2 Definition. Given f and g in K[x] of positive degree, we write
f = a` x

` + a`�1 x
`�1 + · · ·+ a0 and g = bm x

m + bm�1 x
m�1 + · · ·+ b0

where a` 6= 0 and bm 6= 0. The resultant of f and g with respect to x

is the determinant of the following
�
(`+ m)⇥ (`+ m)

�
-matrix

Syl( f , g; x) :=

2

6666666666664

3

7777777777775

a` a`�1 a`�2 · · · a1 a0 0 0 · · · 0 1

0 a` a`�1 · · · a2 a1 a0 0 · · · 0 2
...

...
...

. . .
...

...
...

...
. . .

...
...

0 0 0 · · · a` a`�1 a`�2 a`�3 · · · a0 m

bm bm�1 bm�2 · · · b1 b0 0 0 · · · 0 m+1

0 bm bm�1 · · · b2 b1 b0 0 · · · 0 m+2
...

...
...

. . .
...

...
...

...
. . .

...
...

0 0 0 · · · bm bm�1 bm�2 bm�3 · · · b0 m+`

Set Res( f , g; x) := det Syl( f , g, x).

4.2.3 Proposition. Given two f and g in K[x] having positive degree,

the resultant Res( f , g; x) lies in Z[a0, a1, . . . , a`, b0, b1, . . . , bm]. These two

polynomials f and g have a common factor if and only if Res( f , g; x) = 0.

Proof. For any (n ⇥ n)-matrix A = [aj,k], the standard formula for the
determinant is det(A) = Âs2Sn

sgn(s) a1,s(1) a2,s(2) · · · an,s(n), which
is an integer polynomial in its entries proving the first assertion. The
second assertion follows from the preceding remark.

4.2.4 Examples. We have gcd(2x
2 + 3x + 1, 7x

2 + x + 3) = 1 because

Res(2x
2 + 3x + 1, 7x

2 + x + 3; x) = det

2

64
1 3 2 0
0 1 3 2
3 1 7 0
0 3 1 7

3

75 = 153 6= 0 .

Two linear polynomials have a common factor if and only if they
span the same 1-dimensional space;

Res(a1 x + a0, b1 x + b0; x) = det


a1 a0
b1 b0

�
= a1 b0 � a0 b1 .

Since

Res(a2 x
2 + a1 x + a0, 2a2 x + a1; x) = det

"
a2 a1 a0

2a2 a1 0
0 2a2 a1

#
= �a2(a

2
1 � 4 a0 a2) ,

the quadratic polynomial a2 x
2 + a1 x + a0 has a double root if and

only if we have a
2
1 � 4 a0 a2 = 0. Similarly, the cubic polynomial

a3 x
3 + a2 x

2 + a1 x + a0 has a multiple root if and only we have

Res(a3 x
3 + a2 x

2 + a1 x + a0, 3a3 x
2 + 2a2 x + a1; x)

= det

2

6664

a3 a2 a1 a0 0
0 a3 a2 a1 a0

3a3 2a2 a1 0 0
0 3a3 2a2 a1 0
0 0 3a3 2a2 a1

3

7775

= a3(27a
2
0 a

2
3 + 4a0 a

3
2 + 4a

3
1 a3 � a

2
1 a

2
2 � 18a0 a1 a2 a3) = 0 . ⇧


