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Reducing a system of polynomial equations in several variables to
systems in a smaller number of variables is the first step in finding
solutions. We still need to understand when a solution to the smaller
system can be extended to a solution of the larger system.

5.0 Properties of Resultants

How is the resultant of two polynomials related their roots? We seek
alternative characterizations for the resultant.

5.0.0 Problem. Find the resultant of the polynomials f := a1(x � a)

and g := b2(x � b1)(x � b2) where a1, a, b2, b1, and b2 are in K.

Solution. In terms of the monomial basis, we have f = a1x + (�a a1)

and g = b2x
2 +

�
�b2(b1 + b2)

�
x + b2 b1 b2. It follows that

Res( f , g; x) = det

2

4
a1 �a1a 0
0 a1 �a1a
b2 �b2(b1 + b2) b2b1b2

3

5

= a
2
1 b2(a � b1)(a � b2).

Before generalizing this problem, we document a simple feature.

5.0.1 Lemma (Homogeneity). Let f = a0 + a1 x + a2 x
2 + · · ·+ a` x

`
and

let g = b0 + b1 x + b2 x
2 + · · ·+ bm x

m
where a` 6= 0 6= bm. The resultant

Res( f , g; x) is a bihomogeneous polynomial having degree m in the variables

a0, a1, . . . , a` and degree ` in the variables b0, b1, . . . , bm.

Sketch of proof. The Sylvester matrix has m rows with linear entries in
Z[a0, a1, . . . , a`] and ` rows with linear entries in Z[b0, b1, . . . , bm]. The
claim follows by expanding the determinant along its rows.

The relationship between resultants and roots is beautiful.

5.0.2 Theorem. For any f = a` ’`
j=1(x�aj) and g = bm ’m

k=1(x�bk)

where a`, a1, a2, . . . , a`, bm, b1, b2, . . . , bm are in K, we have

Res( f , g; x) = a
m

` b
`
m

`

’
j=1

m

’
k=1

(aj � bk) .

Proof. Set R := a
m

` b
`
m

`

’
j=1

m

’
k=1

(aj � bk). The proof has three steps.
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• We first show that Res( f , g; x) is divisible by R. The Sylvester
matrix has m rows divisible by a` and ` rows divisible by bm, so
Res( f , g; x) is divisible by a

m

` b
`
m. If some root ai of f equals some

root b j, then f and g have a common factor and Res( f , g; x) = 0.
Hence, the difference ai � b j divides Res( f , g; x).

• Secondly, we show that the two polynomials Res( f , g; x) and R

coincide up to a constant factor. Consider the following:

R =

 
a`

`

’
i=1

(b1 � ai)

! 
a`

`

’
i=1

(b2 � ai)

!
· · ·
 

a`

`

’
i=1

(bm � ai)

!
(�1)`m

b
`
m

= f (b1) f (b2) · · · f (bm) (�1)`m
b
`
m

= a
m

`

 
bm

m

’
j=1

(a1 � b j)

! 
bm

m

’
j=1

(a2 � b j)

!
· · ·
 

bm

m

’
j=1

(a` � b j)

!

= a
m

` g(a1) g(a2) · · · g(a`) .

The first expression shows that R is homogenous of degree m in
the variables a0, a1, . . . , a` and the second shows R is homogenous
of degree ` in the variables b0, b1, . . . , bm. Since Res( f , g; x) has the
same properties and is divisible by R, we conclude that Res( f , g; x)

and R coincide up to a constant factor.
• The trace of the Sylvester matrix is a

m

` b
`
0, so this monomial has

coefficient 1 in Res( f , g; x). Since b0 = (�1)m
bm b1 b2 · · · bm, the

monomial a
m

` b
`
0 also has coefficient 1 in

R = f (b1) f (b1) · · · f (bm) (�1)`m
b
`
m .

We conclude that Res( f , g; x) = R.

5.0.3 Corollary. The polynomial Res( f , g; x) is irreducible.

Proof. Suppose that there exists non-constant polynomials h1 and
h2 in Z[a0, a1, . . . , a`, b0, b1, . . . , bm] such that Res( f , g; x) = h1 h2. The
coefficients a0, a1, . . . , a`�1 and b0, b1, . . . , bm�1 are scalar multiples
of the elementary symmetric functions in the roots a1, a2, . . . , a` and
b1, b2, . . . , bm respectively. It follows that the polynomials h1 and
h2 are symmetric functions in the ai and b j when lifted to the ring
C[a`, a1, a2, . . . , a`, bm, b1, b2, . . . , bm]. Hence, if just one ai � b j divides
h1, the product ’i ’j(ai � b j) also does. We deduce that Res( f , g; x)

divides a
p

` b
q

m h1 for some nonnegative integers p and q.
However, we claim that the variables a` and bm do not divide

Res( f , g; x) in Z[a0, a1, . . . , a`, b0, b1, . . . , bm]. If a` were to divide this
resultant, then Res( f , g; x) would vanish when a` = 0. We know that
Res( f , g; x) vanishes if and only if the polynomials f and g have a
common divisor which may fail to be the case even when a` = 0. We
conclude that Res( f , g; x) divides h1.
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The next three properties are consequences of theorem.

5.0.4 Corollary. For all elements l in K, the resultant

Res( f , g; x) = R(a`, a`�1, . . . , a0, bm, bm�1, . . . , b0)

enjoys the following three properties:

(symmetry)• Res( f , g; x) = (�1)`m Res(g, f ; x)

(multiplicativity)• Res( f g, h; x) = Res( f , h; x) Res(g, h; x)

(quasi-homogeneity)
• R(l0

a`, l1
a`�1, . . . , l`

a0, l0
bm, l1

bm�1, . . . , lm
b0) = l`m

R(a`, . . . , a0, bm, . . . , b0).

Sketch of Proof. Over an algebraic closed coefficient field, we have
f = ak ’k

i=1(x � ai), g = b` ’`
i=1(x � bi), and h = cm ’m

i=1(x � gi). It
follows that

Res( f , h; x) = a
m

k
c

k
m ’i,j(ai � gj)

Res(g, h; x) = b
m

` c
`
m ’i,j(bi � gj)

Res( f g, h; x) = (akb`)
m

c
k+`
m ’i,j(ai � gj)’i,j(bi � gj) .

We also have

R(l0
a`, l1

a`�1, . . . , l`
a0, l0

bm, l1
bm�1, . . . , lm

b0)

= a
m

` b
`
m ’

i

’
j

(l ai � l b j) = l`m
a

m

` b
`
m ’

i

’
j

(ai � b j) .

5.0.5 Remark. Quasi-homogeneity has a differential form:

`

Â
i=1

ai

∂R

∂ai

= mR

m

Â
j=1

bj

∂R

∂bj

= `R

`

Â
k=1

kak

∂R

∂ak

+
m

Â
j=1

jbj

∂R

∂bj

= `m R .

5.1 Preparations for Extensions

We collect a few lemmata needed to proof an extension theorem. Let

f := a0 + a1 x + a2 x
2 + · · ·+ a` x

` and g := b0 + b1 x + b2 x
2 + · · ·+ bm x

m

be polynomials in K[x] of positive degree where a` 6= 0 and bm 6= 0.
Without loss of generality, we may assume that m > `.

5.1.0 Problem. Given polynomials q and r in the ring K[x] such that
g = q f + r and 0 6= deg(r) < deg( f ) = `, demonstrate that

Res( f , g; x) = a
m�deg(r)
` Res( f , r; x) .
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Solution. Set h := g � (bm/a`) x
m�`

f . Taking the advantage of the
Euclidean Algorithm, it is enough to demonstrate that

Res( f , g; x) = a
m�deg(h)
` Res( f , h; x) .

By definition, we have

Res( f , g; x) = det

2

66666666664

a` a`�1 a`�2 . . . a1 a0 0 . . . 0
0 a` a`�1 . . . a2 a1 a0 . . . 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 . . . a` a`�1 a`�2 . . . a0
bm bm�1 bm�2 . . . b1 b0 0 . . . 0
0 bm bm�1 . . . b2 b1 b0 . . . 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 . . . bm bm�1 bm�2 . . . b0

3

77777777775

.

Multiplying each of the first m rows by a
�1
` bm and subtracting them

from the corresponding row beginning with bm yields

Res( f , g; x) = det

2

6666666664

a` a`�1 a`�2 . . . 0
0 a` a`�1 . . . 0
...

...
...

. . .
...

0 0 0 . . . a0
0 bm�1 � a`�1a

�1
` bm bm�2 � a`�2a

�1
` bm . . . 0

0 0 bm�1 � a`�1a
�1
` bm . . . 0

...
...

...
. . .

...

3

7777777775

.

By expanding along the first deg(h) columns, we see that

Res( f , g; x) = a
m�deg(h)
` Res( f , h; x) .

5.1.1 Lemma. For any f and g in K[x] of positive degree, there exists p and

q in K[x] such that p f + q g = Res( f , g; x) and the coefficients of p and q

are integer polynomials in the coefficients of f and g.

Proof. The lemma is trivial when Res( f , g; x) = 0 because we may
choose p = q = 0. Thus, we may assume Res( f , g; x) 6= 0. Since f and
g have no common factor, there exists polynomials bp and bq in K[x]

such that bp f + bq g = 1. Set

f = a` x
` + a`�1 x

`�1 + · · ·+ a0 g = bm x
m + bm�1 x

m�1 + · · ·+ b0

bp = cm�1 x
m�1 + cm�2 x

m�2 + · · ·+ c0 bq = d`�1 x
`�1 + d`�2 x

`�2 + · · ·+ d0 .

Substituting these formula into bp f + bq g = 1 and comparing coeffi-
cients, we obtain the matrix equation

2

66666664

a` bm...
. . .

...
. . .

... a`
... bm

a0
... b0

...
. . .

...
. . .

...
a0 b0

3

77777775

2

66666664

cm�1...
c0

d`�1...
d0

3

77777775

=

2

6666664

0
...
0
0
...
1

3

7777775
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Cramer’s rule gives a formula for the unique solution:

cm�1 =
1

Res( f , g; x)
det

2

666666664

0 bm

0 a`
...

. . .
...

...
. . .

... bm

0 a0 a` b0
...

...
. . .

...
. . .

...
1 a0 b0

3

777777775

The coefficient cm�1 is polynomial in Z[a0, a1, . . . , a`, b0, b1, . . . , bm]

divided by Res( f , g; x). It follows that

bp =
p

Res( f , g; x)
bq =

q

Res( f , g; x)

for some polynomial p and q in K[x]. Multiplying through by
Res( f , g; x), we obtain the equation p f + q g = Res( f , g; x).

5.1.2 Proposition. Let f and g be polynomials in K[x1, x2, . . . , xn] having

positive degree in the variable x1. The resultant Res( f , g; x1) lies in the

ideal h f , gi \ K[x2, x3, . . . , xn]. Moreover, we have Res( f , g; x1) = 0 if and

only if the polynomials f and g have a common factor in K[x1, x2, . . . , xn]

which has positive degree in x1.

Gröbner bases describe elimination
ideals but do not preclude the
possibility that they are zero. In
contrast, resultants create an element in
the elimination ideal.

Proof. Expressing both f and g as polynomials in the variable x1
whose the coefficients are polynomials in K[x2, x3, . . . , xn], it follows
that Res( f , g; x1) lies in K[x2, x3, . . . , xn]. The lemma implies that
there exists polynomials p and q in the ring (K[x2, . . . , xn])[x1] such
that p f + q g = Res( f , g; x1). Thus, we have

Res( f , g; x1) 2h f , gi \ K[x2, x3, . . . , xn] .

We know Res( f , g; x1) = 0 if and only if the polynomials f and g

have a common factor in K(x2, x3, . . . , xn)[x1] of positive degree in x1.
However, the Gauss Lemma shows that this is equivalent to having a
common factor in K[x1, x2, . . . , xn] of positive degree in x1.

5.2 The Extension Theorem

We now use the theory of resultants to prove an extension theorem.

5.2.0 Lemma. Let f and g be polynomials in K[x1, x2, . . . , xn] having

positive degrees ` and m respectively. For any point c = (c2, c3, . . . , cn) in

An�1(K) such that f (x1, c) 2 K[x1] has degree ` and g(x1, c) 2 K[x1]

has degree k 6 m, the polynomial h := Res( f , g; x1) in K[x2, x3, . . . , xn]

satisfies

h(c) = a`(c)m�k Res
�

f (x1, c), g(x1, c); x1
�

where a` 2 K[x2, x3, . . . , xn] is the leading coefficient of the polynomial f in

(K[x2, x3, . . . , xn])[x1].
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Proof. Substituting c = (c2, c3, . . . , cn) for the variables x2, x3, . . . , xn in
the formula for h = Res( f , g; x1) yields

h(c) = det

2

666666664

a`(c) bm(c)
...

. . .
...

. . .
... a`(c)

... bm(c)
a0(c)

... b0(c)
...

. . .
...

. . .
...

a0(c) b0(c)

3

777777775

.

First, suppose that g(x1, c) had degree k = m. It follows that

f (x1, c) = a`(c) x
`
1 + a`�1(c) x

`�1
1 + · · ·+ a0(c)

g(x1, c) = bm(c)x
m

1 + bm�1(c)x
m�1
1 + · · ·+ b0(c)

where a`(c) 6= 0 6= bm(c). Hence, the determinant is the resultant
of f (x1, c) and g(x1, c), so that h(c) = Res

�
f (x1, c), g(x1, c); x1

�
. This

proves the proposition when k = m. When k < m, the determinant is
no longer the resultant of f (x1, c) and g(x1, c); it has the wrong size.
In this case, we obtain the desired resultant by repeatedly expanding
by minors along the first row.

5.2.1 Theorem (Extension). Let K be an algebraically closed field. For any

ideal I = h f1, f2 . . . , fri in K[x, y1 . . . , yn], set J := I \ K[y1, y2, . . . , yn].

For each index j satisfying 1 6 j 6 r, write fj in the form

fj = gj x
Nj + (terms in which x has degree less than Nj) ,

where Nj > 0 and gj 2 K[y1, y2, . . . , yn] is nonzero.

(Algebraic form) Consider a point (c1, c2, . . . , cn) in V(J) ✓ An(K) to be

a partial solution. When (c1, c2 . . . , cn) 62 V(g1, g2, . . . , gr), there exists

an element c0 2 K such that (c0, c1, c2, . . . , cn) 2 V(I).

(Geometric form) Let p2 : An+1(K) ! An(K) be the projection onto the

last n coordinates. For the affine subvariety X = V(I) in An+1(K), we

have V(J) = p2(X) [
�
V(g1, g2 . . . , gr) \ V(J)

�
.

Proof of the algebraic form. Consider a point c := (c1, c2, . . . , cn) in
An(K) and the K-algebra homomorphism K[x, y1, y2, . . . , yn] ! K[x]

defined by f (x, y1, y2, . . . , yn) 7! f (x, c). The image of I under this
homomorphism is an ideal in K[x]. Since K[x] is a principal ideal
domain, the image of I is generated by one polynomial p. When
p has positive degree, there exists an element c0 2 K such that
p(c0) = 0 because the field K is algebraically closed. It follows that
f (c0, c) = 0 for all f 2 I, so the point (c0, c) = (c0, c1, c2, . . . , cn) lies
in the affine subvariety V(I). Observe that this argument also works
when p is the zero polynomial.
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What would happen when p is a nonzero constant? By con-
struction, there would exist a polynomial f in the ideal I such
that f (x, c) = p is in K⇥. We claim that this cannot occur. Our
partial solution satisfies c 62 V(g1, g2, . . . , gr), so we would have
gj(c) 6= 0 for some j. Consider h := Res( f j, f ; x) in K[y1, y2, . . . , yn].
Lemma 5.2.0 demonstrates that h(c) = gi(c)deg( f ) Res

�
f j(x, c), p; x

�

because f (x, c) = p. We would also have Res
�

fi(x, c), p; x
�
= p

Nj so
h(c) = gj(c)deg( f )

p
Nj 6= 0. However, the relations f j 2 I and f 2 I

imply that h 2 J, so h(c) = 0 because c 2 V(J).

Proof of the geometric form. We have V(g1, g2, . . . , gr)\V(J) ✓ V(J) and
we always have p2(X) ✓ V(J). On the other hand, the algebraic form
shows that c 62 V(g1, g2, . . . , gr) implies that c 2 p2(X).

The extension theorem tells us that
p2(X) fills up the affine subvariety V(J)
except possibly for the part that lies in
V(g1, g2, . . . , gr). In other words, the
extension step can fail only when the
leading coefficients vanish
simultaneously.

5.2.2 Corollary. Assume that K is algebraically closed and consider the

affine subvariety X = V( f1, f2, . . . , fr) in An+1(K). Suppose that, for some

index j, the polynomial fj has the form

fj = c x
N + terms in which x has degree less than N

where 0 6= c 2 K and N > 0. We have p2(X) = V(I \ K[y1, y2, . . . , yn])

where p2 is the projection on the last n components.

5.2.3 Remark. The variety V(g1, g2, . . . , gr) can be unnaturally large.
We claim that

V
�
(y � z)x

2 + x y � 1, (y � z)x
2 + x z � 1

�
= V(x y � 1, x z � 1) .

Indeed, we have

(y � z)x
2 + x y � 1 = (x + 1)(x y � 1)� x(x z � 1) ,

(y � z)x
2 + x z � 1 = x(x y � 1) + (1 � x)(x z � 1) ,

and
xy � 1 = (x

2
y � x

2
z + x z � x)

�
(y � z)x

2 + xy � 1
�

+ (�x
2
y + x

2
z � x y + x + 1)

�
(y � z)x

2 + x z � 1
�

xz � 1 = (�x)
�
(y � z)x

2 + x y � 1
�
+ (x + 1)

�
(y � z)x

2 + x z � 1
�

.

However, the lex Gröbner basis is simply hy � z, x z � 1i.


