
6 Affine Dictionary
Copyright © 2023, Gregory G. Smith
Last updated: 26 February 2023

We develop the fundamental relationship between geometry and
algebra. Over an algebraically closed field, there is a remarkably
thorough correspondence between affine subvarieties and ideals in a
polynomial ring.

6.0 Nullstellensatz

‘Nullstellensatz’ is a German word that means ‘zero places theorem’.
This family of theorems resolve the following question: given an
ideal I in the polynomial ring S := K[x1, x2, . . . , xn] defining the affine
subvariety V(I), which polynomials vanish on V(I)?

What is the ideal I
�
V(I)

�
?

6.0.0 Example. Given the polynomial f = (x � 3)4(x � 2)2 in Q[x], we
have V( f ) = {2, 3} in A1(Q) and I

�
V( f )

�
= h(x � 3)(x � 2)i �h f i. ⇧

6.0.1 Theorem (Weak Nullstellensatz). Let K be an algebraically closed

field. For any ideal I in S such that V(I) = ? in An(K), we have I = h1i.
The weak Nullstellensatz is false over R:
VR(x

2 + 1) = ? but
⌦

x
2 + 1

↵
6= R[x].

Proof. We proceed by induction on the number n of variables in the
ring S. The case n = 0 is trivial because K is a field. Since the ring
K[x1] is a principal ideal domain and every non-contant polynomial
over an algebraically closed field has a root, the base case holds.

The weak Nullstellensatz generalizes
the fundamental theorem of algebra;
every system of polynomials that
generates an ideal smaller than
C[x1, x2, . . . , xn] has a zero in An(C).

Fix an ideal I = h f1, f2, . . . , fri in K[x1, x2, . . . , xn]. We may assume
that f1 62 K. Suppose that deg( f1) = `. Consider the invertible linear
change of coordinates:

x1 = ex1 x2 = ex2 + a2 ex1 · · · xn = exn + an ex1 ,

where the coefficients ai are to-be-determined elements of K. Under
this linear change of coordinates, the generator f1 has the form

f1(x1, x2, . . . , xn) = f1(ex1, ex2 + a2 ex1, . . . , exn + an ex1)

= g(a2, a3, . . . , an) x̃
`
1 + terms in which ex1 has degree less than ` .

As no algebraic closed field is finite, we may choose the coefficients
a2, a2, . . . , an so that g(a2, a3, . . . , an) 6= 0. It suffices to prove that
1 2 eI. With this coordinate change, we can apply the Extension
Theorem 5.2.1. Setting J := eI \ K[ex2, ex3, . . . , exn], a partial solution in
An�1(K) always extends: V(J) = p2

�
V(eI)

�
= ?. By the induction

hypothesis, we see that 1 2 J ✓ eI.
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Having understood the empty affine subvariety, we next examine
the functions vanishing on a nonempty affine subvariety.

David Hilbert proved this famous
theorem in a 1893 paper on invariant
theory.

6.0.2 Theorem (Hilbert Nullstellensatz). Let K be an algebraically closed

field. For any polynomials g1, g2, . . . , gr in the ring S := K[x1, x2, . . . , xn],

the polynomial f belongs to the ideal I
�

V(g1, g2, . . . , gr)
�

if and only if

there is a positive integer m such that f
m

belongs to the ideal hg1, g2, . . . , gri.

Can the Nullstellensatz be made
effective? Consider I := hg1, g2, . . . , gri.
For any f 2 I

�
V(I)

�
, we have f

m 2 I

for some m > 0. Can we bound m in
terms of, say, the degrees of the
polynomials gi? Janos Kollár shows
that, if I is generated by r homogenous
polynomials gi of degree greater than 2,
then f 2

p
I implies that f

m 2 I for
some m 6 ’r

i=1 deg(gi). If r < n, this
result is sharp (no smaller value of m

will work in general). Kollár also finds
sharp bounds for m when r > n.

Proof. Given that f vanishes at the common zeros of g1, g2, . . . , gr, we
must show that there exist a positive integer m and polynomials hi in
the ring S, for all 1 6 i 6 r, such that f

m = h1 g1 + h2 g2 + · · ·+ hr gr.
Set eI := hg1, g2, . . . , gr, 1 � y f i in K[x1, x2, . . . , xn, y] = S[y]. We claim
that V(eI) = ? in An+1. For any point (a1, a2, . . . , an+1) in An+1, there
are two possibilities:
• Suppose that (a1, a2, . . . , an) 2 V(g1, g2, . . . , gr). It follows that

f (a1, a2, . . . , an) = 0. Hence, the polynomial 1 � y f does not vanish
at the point (a1, a2, . . . , an+1).

• Suppose that (a1, a2, . . . , an) 62 V(g1, g2, . . . , gr). There exists an
index 1 6 i 6 r such that gi(a1, a2, . . . , an) 6= 0, which implies that
p⇤

1 (gi)(a1, a2, . . . , an+1) 6= 0.
The Weak Nullstellensatz establishes that 1 2 eI. Hence, there exist
polynomials h1, h2, . . . , hr+1 2 S[y] such that

1 = h1 g1 + h2 g2 + · · ·+ hr gr + hr+1 (1 � y f ) .

Setting y = 1/ f (x1, x2, . . . , xn) gives

1 = h1(x1, x2, . . . , xn, 1/ f ) g1 + h2(x1, x2, . . . , xn, 1/ f ) g2

+ · · ·+ hr(x1, x2, . . . , xn, 1/ f ) gr

and clearing denominators yields the required relation.

6.0.3 Definition. The radical of an ideal I is the set of all elements f in
the ring S such that some power of f lies in I;

p
I :=

�
f
�� f

m 2 I for some positive integer m
 

.

By construction, we have I ✓
p

I.

For any f = a` ’`
i=1(x � ai)mi , we have

p
h f i =

D
a` ’`

i=1(x � ai)
E

, so the
radical is generated by the square-free
part of the univariate polynomial f .

6.0.4 Lemma. For any ideal I,
p

I is also an ideal and

pp
I =

p
I.

Proof. For any two elements f and g in the radical
p

I, there are
positive integers p and q such that f

p 2 I and g
q 2 I. For any r and s

in the ring S, every term in the binomial expansion of (r f + s g)p+q�1

has a factor f
i
g

j with i + j = p + q � 1. Since either i > p or j > q, it
follows that (r f + s g)p+q�1 lies in the ideal I and the element r f + s g

lies in the radical ideal
p

I. For the second assertion, we have
pp

I =
�

f
�� f

m 2
p

I for some positive integer m
 

=
�

f
�� f

m` 2 I for positive integers ` and m
 
=

p
I .
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6.0.5 Theorem (Strong Nullstellensatz). Assume that the coefficient field

K is algebraically closed. For any ideal I in S, we have I
�
V(I)

�
=

p
I.

Proof.

◆: The membership f 2
p

I implies that f
m 2 I for some positive

integer m. Hence, the power f
m vanishes on the affine subvariety

V(I), so f vanishes on V(I) and f 2 I
�
V(I)

�
.

✓: Suppose that f vanishes on V(I). By the Hilbert Nullstellensatz,
there exists a positive integer m such that f

m 2 I, so f 2
p

I.

6.0.6 Remark. Over an algebraically closed field, the inclusion-
reversing bijections

I : {affine subvarieties} ! {radical ideals}
V: {radical ideals} ! {affine subvarieties}

are mutual inverses.

6.1 Maximal and Prime Ideals

Given an ideal I in the polynomial ring S := K[x1, x2, . . . , xn], can
we find generators for its radical ideal

p
I? More modestly, we can

determine if a given polynomial belongs to a radical ideal.

Currently, there are three algorithms for
compute the radical of an ideal;
Eisenbud–Huneke–Vasconcelos,
Shimoyama–Yokoyama, and
Gianni–Trager–Zacharias. None of these
method is best and all three algorithms
are computationally expensive.

6.1.0 Proposition (Radical membership). Let K be an arbitrary field. For

any ideal I = hg1, g2, . . . , gri in S, we have f 2
p

I if and only if the ideal

hg1, g2, . . . , gr, 1 � y f i equals the ring S[y] = K[x1, x2, . . . , xn, y].

Proof. Set eI := hg1, g2, . . . , gr, 1 � y f i.
): Suppose that f 2

p
I. There exists a positive integer m such that

f
m 2 I and f

m = p⇤
1 ( f

m) 2 eI. Moreover, we have

1 = y
m

f
m + (1 � y

m
f

m)

= y
m

f
m + (1 + y f + · · ·+ y

m�1
f

m�1)(1 � y f ) 2 eI .

(: Suppose that 1 2 eI. There exists polynomials h1, h2, . . . , hr+1 in
the ring S[y] such that 1 = h1 g1 + h2 g2 + · · ·+ hr gr + hr+1 (1� y f ).
By setting y = 1/ f , we obtain

1 = h1(x1, x2, . . . , xn, 1/ f ) g1 + · · ·+ hr(x1, x2, . . . , xn, 1/ f ) gr

and clearing denominators yields the required relationship.

6.1.1 Definition. An ideal I in S is maximal if 1 62 I and I is maximal
with respect to inclusion. Equivalently, I is maximal if and only if the
quotient S/I is a field; the only ideals in a field are 0 and h1i = S.
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6.1.2 Proposition. For any point (a1, a2, . . . , an) in An(K), the corre-

sponding ideal I := hx1 � a1, x2 � a2, . . . , xn � ani in the ring S is maximal.

When the field K is algebraically closed, every maximal ideal in the ring S

corresponds to some point (a1, a2, . . . , an) in An(K).

There is a bijection between points of
the affine space An(K) and maximal
ideals in the ring K[x1, . . . , xn].

Proof. Suppose that the ideal J properly contains I. There exists an
element f 2 J such that f 62 I. Using the division algorithm, there
exists q1, q2, . . . , qn in S and r in K such that

f = q1(x1 � a1) + q2(x2 � a2) + · · ·+ qn(xn � an) + r .

Since f 62 I, we have r 6= 0. However, the memberships f 2 J and
q1(x1 � a1) + · · ·+ qn(xn � an) 2 I ⇢ J imply that r 2 J, so J = S.

Assume that K is algebraically closed. Let I be a maximal ideal.
Since 1 62 I, the Weak Nullstellensatz shows that V(I) 6= ?. There
is a point (a1, a2, . . . , an) 2 V(I), so I

�
V(I)

�
✓ I

�
{(a1, a2, . . . , an)}

�
.

Clearly, we have hx1 � a1, x2 � a2, . . . , xn � ani ✓ I
��

(a1, a2, . . . , an)
 �

.
For any f 2 I

��
(a1, a2, . . . , an)

 �
, the division algorithm proves that

there arepolynomials q1, q2, . . . , qr in the ring S and a constant r in the
field K such that f = q1(x1 � a1) + q2(x2 � a2) + · · ·+ qn(xn � an) + r.
Evaluating at the point (a1, a2, . . . , an) in V(I), we see that r = 0. It
follows that I

��
(a1, a2, . . . , an)

 �
= hx1 � a1, x2 � a2, . . . , xn � ani. The

maximality of the ideal I yields the required equality.

6.1.3 Definition. An ideal I is prime if I 6= h1i and, for any two
elements f and g in the ring S, the membership f g 2 I implies that
f 2 I or g 2 I. Equivalently, the ideal I is prime if and only if the
quotient ring S/I is a domain (no zerodivisors). It follows that every
prime ideal is a radical ideal.

6.1.4 Examples. A principal ideal h f i in S is prime if and only if f is
an irreducible polynomial. Any maximal ideal I is prime because the
field S/I has no zerodivisors. ⇧

6.1.5 Proposition. An affine subvariety X in An
is irreducible if and only if

its ideal I(X) is prime.

There is a bijection between the
irreducible affine subvarieties in An(K)
and the prime ideals in the ring
K[x1, x2, . . . , xn].

Proof. Suppose that the affine subvariety X is irreducible. For any
two polynomials f and g in the ring S such that f g 2 I(X), we have
X ✓ V( f g) = V( f ) [ V(g) and X =

�
X \ V( f )

�
[
�
X \ V(g)

�
. Since

X is irreducible, we have either X = X \ V( f ) or X = X \ V(g), so
X ✓ V( f ) or X ✓ V(g). Thus, either f 2 I(X) or g 2 I(X).

Conversely, let I be a prime ideal and suppose V(I) = X [ Y with
V(I) 6= X and V(I) 6= Y. It follows that I = I(X) \ I(Y) where
I 6= I(X) and I 6= I(Y). Hence, there exists f 2 I(X) and g 2 I(Y)
such that f 62 I and g 62 I. However, we have f g 2 I(X) \ I(Y) = I

which is a contradiction.
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6.1.6 Example. A hypersurface V( f ) in An is irreducible if and only if
f is an irreducible polynomial. ⇧

6.1.7 Proposition. Let K be an infinite field. For any rational map

r : An(K) 99K Am(K), the affine subvariety X = r(An) is irreducible.

Proof. Let rj = f j/gj for all 1 6 j 6 m and set W := V(g1 g2 · · · gm).
Since the affine subvariety X is the Zariski closure of the image
r(An \ W), the ideal I(X) is the set of h 2 K[y1, y2, . . . , ym] such that
the function h � r is zero for any point (a1, a2, . . . , an) 2 An \ W. The
product g1 g2 · · · gm does not vanish at any (a1, a2, . . . , an) 2 An \ W,
so the function (g1 g2 · · · gm)N (h � r) is equal to zero at the values
of (x1, x2, . . . , xn) 2 An \ W for which h � r is equal to zero. Setting
` to be the total degree of h, the product (g1 g2 · · · gm)` (h � r) is a
polynomial in K[x1, x2, . . . , xn]. We deduce that h 2 I(X) if and only
if (g1 g2 · · · gm)` (h � r) is zero for all (a1, a2, . . . , an) 2 An \ W which
means that (g1 g2 · · · gm)` (h � r) is the zero polynomial. We conclude
that h 2 I(X) if and only if (g1 g2 · · · gm)` (h � r) = 0.

Suppose that polynomials f and g in the ring K[y1, y2, . . . , ym]

satisfy f g 2 I(X). Let ` and m denote the total degree of f and
g respectively. The total degree of the product f g in ` + m, so
(g1 g2 · · · gm)`+m ( f g � r) = 0. Because we have

(g1 g2 · · · gm)
`+m ( f g � r) = (g1 g2 · · · gm)

` ( f � r)(g1 g2 · · · gm)
m(g � r) ,

we see that f 2 I(X) or g 2 I(X), so the ideal I(X) is prime.

6.1.8 Example. Every toric ideal is prime. ⇧

6.2 Operations on Ideals

For sums, intersections, and products of ideals, how do we find their
generators? What is the geometric interpretation for these binary
operations on ideals?

6.2.0 Definition. For any two ideals I and J in S := K[x1, x2, . . . , xn],
their sum is the set I + J :=

�
f + g

�� f 2 I and g 2 J
 

.

6.2.1 Lemma. For any ideals I and J in the ring S, the sum I + J is the

smallest ideal containing I and J. Moreover, when I = h f1, f2, . . . , fri and

J = hg1, g2, . . . , gsi, we have I + J = h f1, f2, . . . , fr, g1, g2, . . . , gsi.

For any f1, f2, . . . , fr 2 S, we have
h f1, f2, . . . , fri = h f1i+h f2i+ · · ·+h fri.

Proof. Given two elements h1 and h2 in the sum I + J, there exists
f1, f2 2 I and g1, g2 2 J such that hi = fi + gi for all 1 6 i 6 2. For any
p1, p2 2 S, we have p1 f1 + p2 f2 2 I and p1 g1 + p2 g2 2 J, so

p1 h1 + p2 h2 = (p1 f1 + p2 f2) + (p1 g1 + p2 g2) 2 I + J .
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We deduce that I + J is an ideal.
Suppose that K is an ideal that contains I and J. It follows that K

must contain all elements f 2 I and g 2 J. Since K is an ideal, K must
contain all f + g where f 2 I and g 2 J. In particular, I + J ✓ K and
we see that I + J is the smallest ideal containing I and J.

Finally, the ideal h f1, f2, . . . , fr, g1, g2, . . . , gsi contains both I and J,
so I + J ✓ h f1, f2, . . . , fr, g1, g2, . . . , gsi. Since the reverse inclusion is
tautological, we have I + J = h f1, f2, . . . , fr, g1, g2, . . . , gsi.

6.2.2 Proposition. For any two ideals I and J in the ring S, we have

V(I + J) = V(I) \ V(J) .

Proof. To demonstrate the equality of affine subvarieties, we prove
containment in both directions.
✓: For any point a in the subvariety V(I + J), we have a 2 V(I)

because I ✓ I + J. By symmetry, we also have a 2 V(J). It follows
that a 2 V(I) \ V(J), so V(I + J) ✓ V(I) \ V(J).

◆: Suppose that the point a belongs to the intersection V(I) \ V(J).
Given a polynomial h in the sum I + J, there exists f 2 I and g 2 J

such that h = f + g. We deduce that f (a) = 0 and g(a) = 0 because
a 2 V(I) and a 2 V(J). It follows that h(a) = 0. We conclude that
a 2 V(I + J) and V(I + J) ◆ V(I) \ V(J).

6.2.3 Definition. For any two ideals I and J in S, their product is the set
I J :=

�
f1 g1 + f2 g2 + · · ·+ frgr

�� f1, f2, . . . , fr 2 I, g1, g2, . . . , gr 2 J
 

.

6.2.4 Proposition. Given I = h f1, f2, . . . , fri and J = hg1, g2, . . . , gsi, we

have I J =
⌦

fi gj

�� 1 6 i 6 r, 1 6 j 6 s
↵
.

Proof. We again establish both containments.
✓: Any polynomial in the product I J is a sum of polynomials of

the form f g wheres f 2 I and g 2 J. Writing f and g in terms of
the ideal generators, we have f = a1 f1 + a2 f2 + · · · + ar fr and
g = b1 g1 + b2 g2 + · · · + bs gs for some a1, a2, . . . , ar, b1, b2, . . . , bs

in S. Hence, the product f g can be written as a sum Âi,j ci,j fi gj

where ci,j 2 S.
◆: Obvious.

6.2.5 Proposition. For any ideals I and J, we have V(I J) = V(I) [ V(J).

Proof. To demonstrate the equality of affine subvarieties, we prove
containment in both directions.
✓: Given a point a in the affine subvariety V(I J), we see that

f (a) g(a) = 0 for all f 2 I and all g 2 J. When f (a) = 0 for
all f 2 I, it follows that a 2 V(I). If f (a) 6= 0 for some f 2 I, then
we must have g(a) = 0 for all g 2 J. In either case, we see that
a 2 V(I) [ V(J) and V(I J) ✓ V(I) [ V(J).
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◆: Suppose that the point a lies in the union V(I) [ V(J). Either
f (a) = 0 for all f 2 I or g(a) = 0 for all g 2 J. It follows that
f (a) g(a) = 0 for all f 2 I and all g 2 J. Thus, we have h(a) = 0 for
all h 2 I J, so V(I J) ◆ V(I) [ V(J).

6.2.6 Definition. The intersection I \ J of two ideal I and J in the ring S

is the set of polynomials which belong to both I and J.

6.2.7 Proposition. For any two ideals I and J in the ring S, the intersection

I \ J is an ideal. Moreover, we have V(I \ J) = V(I) [ V(J).

Proof. For any two polynomials f and g in the intersection I \ J and
any two polynomials r and s in the ring S, we have r f + s g 2 I

because I is an ideal and f , g 2 I. We also have r f + s g 2 J because J

is an ideal and f , g 2 J. We deduce that r f + s g 2 I \ J which shows
that the intersection is an ideal.

For the second part, we prove containment in both directions.
✓: Since I J ✓ I \ J, we have V(I \ J) ✓ V(I J) = V(I) [ V(J).
◆: For any point a in the union V(I) [ V(J), we have a 2 V(I) or

a 2 V(J), so either f (a) = 0 for all f 2 I or f (a) = 0 for all f 2 J.
Since f (a) = 0 for all f 2 I \ J, we see that a 2 V(I \ J) and
V(I \ J) ◆ V(I) [ V(J).

6.2.8 Corollary. For any ideals I and J, we have
p

I \ J =
p

I \
p

J. The intersection of two ideals
corresponds to the same subvariety as
the product. Although the intersection
is harder to compute than the product,
it behaves better with respect to taking
radicals.

Proof. We prove containment in both directions.
✓: Suppose that f 2

p
I \ J. By definition, there exists a positive

integer m such that f
m 2 I \ J. Since f

m 2 I, we have f 2
p

I. By
symmetry, we also have f 2

p
J. It follows that

p
I \ J ✓

p
I [

p
J.

◆: Suppose that f 2
p

I \
p

J. There exists positive integers ` and m

such that f
` 2

p
I and f

m 2 J. It follows that f
`+m = f

`
f

m 2 I \ J,
so f 2

p
I \ J and

p
I \ J ◆

p
I [

p
J.

Algebra Geometry

radical ideals affine subvarieties
I V(I)

I(X) X

prime ideals irreducible subvarieties
maximal ideals points

I + J V(I) \ V(J)p
I(X) + I(Y) X \ Y

I J V(I) [ V(J)p
I(X) I(Y) X [ Y

I \ J V(I) [ V(J)

I(X) \ I(Y) X [ Y

Table 6.1: Algebro-geometric
dictionary when the coefficient
field K is algebraically closed


