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Methodological reductionism posits that the best scientific strategy is
to reduce explanations to the smallest possible entities. A geometric
incarnation of this idea involves decomposing affine subvarieties
into a union of irreducible ones. Algebraically, this concept involves
decomposing an ideal into an intersection of primary ideal (which
are related to, but not quite the same as, powers of prime ideals).

7.0 The Closure Theorem

How do we finally prove the Closure Theorem 3.2.5? Equipped with
the Nullstellensatz, we confirm our geometric interpretation for
elimination ideals.

7.0.0 Lemma. For any subset U in An, the affine subvariety V
�
I(U)

�
is the

smallest subvariety that contains U.

Proof. Suppose that X is an affine subvariety in An containing the
subset U. Applying the inclusion-reversing operators, we see that
I(X) ✓ I(U) and V

�
I(U)

�
✓ V

�
I(X)

�
= X. Thus, affine subvariety

V
�
I(U)

�
is contained in every affine subvariety that contains U.

7.0.1 Theorem (Closure). Let K be an algebraically closed field and let I
be an ideal in the ring K[x1, x2, . . . , xn, y1, y2, . . . , ym]. For the projection
p2 : An+m ! Am onto the last m components, the Zariski closure of the
image p2

�
V(I)

�
is V(I \ K[y1, y2, . . . , ym]).

Proof. Let X := V(I) and set J := I \ K[y1, y2, . . . , ym]. It is enough to
prove that V(J) = V

�
I
�
p2(X)

��
.

◆: The definitions of X and J give the inclusion p2(X) ✓ V(J). Since
Lemma 7.0.0 establishes that V

�
I
�
p2(X)

��
is the smallest variety

containing the subset p2(X), it follows that V(J) ◆ V
�
I
�
p2(X)

��
.

✓: Consider an element f in the ideal I
�
p2(X)

�
. Viewing f as a

polynomial in the larger ring K[x1, x2, . . . , xn, y1, y2, . . . , ym], we
have f (a1, a2, . . . , an+m) = 0 for any point (a1, a2, . . . , an+m) in
X. Applying the Hilbert Nullstellensatz 6.0.2, there is a positive
integer ` such that f ` 2 I. Since the variables x1, x2, . . . , xn do
not appear in f , we see that f ` 2 J. It follows that f 2

p
J and

I
�
p2(X)

�
✓

p
J. We see that V(J) = V(

p
J) ✓ V

�
I
�
p2(X)

��
.
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We also encounter sets which are not affine subvarieties when
taking the difference of two affine subvarieties.

7.0.2 Definition. For any ideals I and J in S := K[x1, x2, . . . , xn], the
colon ideal is the set (I : J) := { f 2 S | f g 2 I for all g 2 J}.

7.0.3 Example. We have (hxz, yzi :hzi) = hx, yi. ⇧

7.0.4 Proposition. For any ideals I and J in the ring S, the set (I : J) is an
ideal. Moreover, we have I ✓ (I : J).

Proof. For any two polynomials f1 and f2 in the set (I : J), it follows
that, for any polynomial g in the ideal J, we have f1 g 2 I and f2 g 2 I.
Suppose that h1 and h2 are ring elements in S. Since I is an ideal, we
have (h1 f1 + h2 f2) g = h1 f1 g + h2 f2 g 2 I for any element g in the
ideal J, which implies that h1 f1 + h2 f2 2 (I : J). Thus, the set I : J is an
ideal in the ring S.

For any f 2 I and any g 2 S, we have f g 2 I because I is an ideal.
Hence, for any f 2 I and any g 2 J, we have f g 2 I, so f 2 (I : J).

7.0.5 Lemma. For any affine subvarieties X and Y satisfying X ✓ Y, we
have Y = X [ (Y \ X).

Proof. We prove containment in both directions.
◆: Since Y \ X ✓ Y and Y is an affine subvariety, we have Y \ X ✓ Y.

As X ✓ Y, we deduce that Y ◆ X [ (Y \ X).
✓: As X ✓ Y, we see that Y = X [ (Y \ X). Since Y \ X ✓ Y \ X, we

have Y ✓ X [ (Y \ X).

Adding to our dictionary, we have a geometric interpretation for
colon ideals.

7.0.6 Theorem. For any ideals I and J in the ring S := K[x1, x2, . . . , xn],
we have V(I) \ V(J) ✓ V(I : J). When the field K is algebraically closed and
I =

p
I, we also have V(I) \ V(J) = V(I : J).

Proof. It suffices to prove that (I : J) ✓ I
�
V(I) \ V(J)

�
. The mem-

bership f 2 (I : J) means that f g 2 I for any g 2 J. For any point
a 2 V(I) \ V(J), we see that f (a) g(a) = 0 for all g 2 J. Since a 62 V(J),
there exists g 2 J such that g(a) 6= 0, so we deduce that f (a) = 0.
Therefore, we have f 2 I

�
V(I) \ V(J)

�
and (I : J) ✓ I

�
V(I) \ V(J)

�
.

Suppose that a 2 V(I : J). It follows that, for any h 2 S such
that h g 2 I for all g 2 J, we have h(a) = 0. Consider h 2 I

�
V(I) \

V(J)
�
. For any g 2 J, the product h g vanishes on V(I) because

h vanishes on V(I) \ V(J) and g vanishes on V(J). By the Strong
Nullstellensatz 6.0.5, we see that h g 2

p
I = I for all g 2 J. We

deduce that h(a) = 0 and a 2 V
�
I
�

V(I) \ V(J)
��

, which shows that
V(I : J) ✓ V

�
I
�
V(I) \ V(J)

��
.
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7.0.7 Lemma. Let I and J be ideals in S. For the ideal z I + (1 � z) J in the
ring S[z] = K[z, x1, x2, . . . , xn], we have I \ J =

�
z I + (1 � z) J

�
\ S.

Proof. We prove containment in both directions.
✓: Consider f 2 I \ J. Since f 2 I and f 2 J, we have z f 2 z I

and (1 � z) f 2 (1 � z) J, so f = z f + (1 � z) f 2 z I + (1 � z) J.
Since both I and J are ideals in the smaller ring S, it follows that
f 2

�
z I + (1 � z) J

�
\ S and I \ J ✓

�
z I + (1 � z) J

�
\ S.

◆: Consider f 2
�
z I + (1 � z) J

�
\ S. It follows that f = g + h where

g 2 z I and h 2 (1 � z) J. Setting z = 0, we see that f 2 J and,
setting z = 1, we see that f 2 I. We conclude that f 2 I \ J and
I \ J ◆

�
z I + (1 � z) J

�
\ S.

This Lemma together with Elimination Theory yields an algorithm
for computing the intersection of two ideals.

7.0.8 Proposition. Let f be a polynomial in the ring S := K[x1, x2, . . . , xn]

and let I be an ideal in S. For any generators g1, g2, . . . , gr of the ideal
I \h f i, the polynomials g1/ f , g2/ f , . . . , gr/ f generate the ideal (I :h f i).

Proof. We prove containment in both directions.
✓: For any polynomial p in the ideal h f i, there is a polynomial

q in S such that p = q f . For any polynomial h in the ideal
hg1/ f , g2/ f , . . . , gr/ f i and any p in h f i, it follows that

p h = q f h 2hg1, g2, . . . , gri = I \h f i ✓ I ,

so h 2 (I :h f i).
◆: Suppose that h 2 (I :h f i), which means that h f 2 I. As h f 2

h f i, we have h f 2 I \h f i. Since I \h f i = hg1, g2, . . . , gri, there
exists polynomials q1, q2, . . . , qr in S such that h f = Âr

i=1 qi gi. As
gi 2 h f i, each gi/ f is a polynomial in S and we conclude that
h = Âr

i=1 qi (gi/ f ) whence f 2hg1/ f , g2/ f , . . . , g`/ f i.

This leads to an algorithm for
computing a Gröbner basis of a colon
ideal. Given I = h f1, . . . , f`i and
J = hg1, . . . , gri to compute a Gröbner
basis of (I : J), we first compute a
Gröbner basis of h f1, f2, . . . , f`i \hgii. We
can do this by finding a Gröbner basis
of ht f1, . . . , t f`, (1 � t)gii with respect to
an eliminate order for t. We divide each
of these elements by gi to get a basis for
(I :hgii). Finally, we compute a basis for
(I : J) by applying an intersection
algorithm r � 1 times, computing

(I :hg1, g2i = (I :hg1i) \ (I :hg2i) ,
(I :hg1, g2, g3i) = (I :hg1, g2i) \ (I :hg3i) ,

...

7.1 Decomposition of Varieties

How do we break an affine subvariety into irreducible pieces?

7.1.0 Lemma. Every decreasing chain of affine subvarieties is eventually
stationary. Equivalently, any nonempty set of affine subvarieties contains a
minimal element (with respect to inclusion).

Proof. The Hilbert Basis Theorem 2.0.0 demonstrates that every as-
cending chain of ideals in the ring S := K[x1, x2, . . . , xn] is eventually
stationary, so the dictionary between ideals and affine subvarieties
yields the assertion.
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7.1.1 Proposition. Any nonempty affine subvariety X in An is a finite
union X = X1 [ X2 [ · · · [ Xr of irreducible affine subvarieties. Requiring
that Xi 6✓ Xj for all i 6= j, the subvarieties Xi are uniquely determined.
These subvarieties are called the irreducible components of X.

Proof. We first show the existence of such a representation for X.
Let S be the set of nonempty closed subsets of An which cannot be
written as a finite union of irreducible closed subsets. Suppose that
S is nonempty. Hence, the set S contains a minimal element Y. The
definition of S implies that Y is not irreducible. Hence, we can write
Y = Y0 [ Y00 where Y0 and Y00 are proper closed subsets of Y. By
the minimality of Y, each of Y0 and Y00 can be expressed as a finite
union of closed irreducible subsets, whence Y also can which is a
contradiction. We conclude that every closed set X can be written as
a union X = X1 [ X2 [ · · · [ Xr of irreducible subsets. By throwing
away a few if necessary, we may assume Xj 6✓ Xi for all i 6= j.

Suppose X = X0
1 [ X0

2 [ · · · [ X0
` is another representation. Since

X0
1 ✓ X, we have X0

1 =
Sr

i=1(X0
1 \ Xi). Because X0

1 is irreducible,
there exists an index i such that X0

1 ✓ Xi; say i = 1. By symmetry,
we also have X1 ✓ X0

j for some j. It follows that X0
1 ✓ X0

j, so we

deduce that j = 1 and X1 = X0
1. Setting Z := (X \ X1), we obtain then

Z = X2 [ X3 [ · · · [ Xr and Z = X0
2 [ X0

3 [ · · · [ X0
`. Proceeding by

induction on r, we obtain uniqueness of the Xi.

7.1.2 Examples.

(i) V(xy, xz) = V(x) [ V(y, z).
(ii) V(xz � y2, x3 � yz) = V(x, y) [ V(xz � y2, x3 � yz, z2 � x2y) ⇧

7.1.3 Corollary. Let K be an algebraically closed field. Every radical ideal
I in S := K[x1, x2, . . . , xn] is uniquely expressed as a finite intersection of
prime ideals; I = P1 \ P2 \ · · · \ Pr where Pi 6✓ Pj for all i 6= j.

Proof. Follows immediately from the proposition and the dictionary
between affine subvarieties in An and ideals in S.

How do we extend this to all ideals?

7.1.4 Definition. An ideal I in S is primary if I 6= h1i and the relation
f g 2 I implies that either f 2 I or gm 2 I for some positive integer m.
Equivalently, the ideal I is primary if and only if the quotient S/I is
nonzero and every zerodivisor is nilpotent.

7.1.5 Lemma. For any primary ideal I in S, its radical
p

I is prime and it is
the smallest prime ideal containing I.

For a prime ideal P and a primary ideal
I satisfying

p
I = P, we say that the

ideal I is P-primary.

Proof. As I ✓
p

I, it suffices to show
p

I is prime. Given f g 2
p

I,
there exists a positive integer m such that ( f g)m 2 I. Since I is
primary, either f m 2 I or gm` 2 I for some positive integer `, so we
deduce that either f 2

p
I or g 2

p
I.
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7.1.6 Example. The primary ideals in the ring Z are h0i and hpmi
where p is prime integer and m is a positive integer. ⇧

7.1.7 Example. Consider the ring K[x, y]. For the monomial ideal
I := hx, y2i, the quotient is S/I ⇠= K[y]/hy2i. The zero divisors are all
multiplies of y which are nilpotent. Hence, the ideal I is primary and
its radical is P = hx, yi. We have hx2, xy, y2i = P2 ⇢ I ⇢ P so that this
primary ideal is not a power of a prime ideal. ⇧

A prime power Pn is not necessarily
primary, although its radical is the
prime ideal P. Consider the quotient
R = K[x, y, z]/

⌦
xy � z2↵. Let x, y, z

denote the images of x, y and z in the
ring R. The ideal P = hx, zi in R is
prime because the quotient ring
R/P = K[x, y, z]/

⌦
x, y, xy � z2↵ ⇠= K[y]

is a domain. However, the relations
x y = z2 2 P, x 62 P2, and y 62

p
P2 = P

show that P is not primary.
7.1.8 Definition. An ideal I in S is irreducible if the relation I = I1 \ I2

implies that I = I1 or I = I2.

7.1.9 Lemma. Any ideal I in S is a finite intersection of irreducible ideals.

Proof. Suppose otherwise: the set of ideals in S that are not a finite
intersection of irreducible ideals is not empty. Hence, this set has a
maximal element I. Since I is reducible, we have I = I1 \ I2 where
I ⇢ Ij. Maximality implies that each Ij is a finite intersection of
irreducible ideals. It follows that the same holds for I which is a
contradiction.

7.1.10 Lemma. Every irreducible ideal I in S is primary.

Proof. Suppose that I is an irreducible ideal and f g 2 I where f 62 I.
Consider the chain of ideals (I :hgi) ✓ (I :hg2i) ✓ · · · ✓ (I :hgji) ✓ · · · .
Since S is noetherian, there exists a positive integer N such that
(I :hgNi) = (I :hgN+1i).

We claim that
�

I +hgNi
�
\
�

I +h f i
�
= I. Every element in this

intersection can be written as p + a gN = q + b f where p, q 2 I and
a, b 2 S. Multiplying by g implies that p g + a gN+1 = q g + b g f . It
follows that a 2 (I :hgN+1i) = (I :hgNi) and p + a gN 2 I.

Since I is irreducible, we deduce that I = I +
⌦

gN↵ or I = I +h f i.
The latter cannot occur because f 62 I, so gN 2 I.

7.1.11 Theorem. Every ideal I in the ring S := K[x1, x2, . . . , xn] can be
written as a finite intersection of primary ideals.

Proof. Combine the above lemmata.

7.2 Primary Decomposition

How do we “factor” an ideal in S := K[x1, x2, . . . , xn]?

7.2.0 Definition. A primary decomposition of an ideal I in the ring S
expresses I as a finite intersection of primary ideals: I =

T
i Qi. It is

irredundant if the prime ideals
p

Qi are all distinct and
T

j 6=i Qj * Qi.

7.2.1 Lemma. Let P be a prime ideal in S. For any P-primary ideals
Q1, Q2, . . . , Qm, the intersection Q =

Tm
i=1 Qi is also P-primary.
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Proof. Corollary 6.2.8 shows that
p

Q =
Tm

i=1
p

Qi =
Tm

i=1 P = P.
Given f g 2 Q where g 62 Q, there exists an index j such that f g 2 Qj
and g 62 Qj. It follows that f 2 P because Qj is a P-primary ideal.

7.2.2 Corollary. Every ideal I in the ring S has an irredundant primary
decomposition.

Proof. Theorem 7.1.11 demonstrates that the ideal I has a primary
decomposition: I =

Tm
i=1 Qi. If there are two the primary ideals

Qi and Qj having the same radical, then Lemma 7.2.1 shows that
we may replace them with their intersection Qi \ Qj. Iterating this
process, we obtain a decomposition with distinct radicals. If we have
T

j 6=i Qj ✓ Qi for some i, then we may omit Qi.

7.2.3 Lemma. Let P be a prime ideal and let Q be a P-primary ideal.
(i) For any f 2 Q, we have (Q :h f i) = h1i.

(ii) For any f 62 Q, the ideal (Q :h f i) is P-primary, so (
p

Q :h f i) = P.
(iii) For any f 62 P, we have (Q :h f i) = Q.

Proof. Parts (i) and (iii) follow directly from the definitions of a colon
ideal and primary ideal. For part (ii), consider g 2 (Q :h f i), so f g 2 Q.
As f 62 Q and Q is a primary ideal, there exists a positive integer m
such that gm 2 Q. We see that Qm ✓ (Q :h f i) ✓ P. Taking radicals,
we obtain

p
Q :h f i = P. For primarity, suppose that g h 2 (Q :h f i)

where g 62 P. It follows that f g h 2 Q, so we have f h 2 Q and
h 2 (Q :h f i).

7.2.4 Lemma. Let I1, I2, . . . , Im be ideals in S and let P be a prime ideal in S.
When P contains the intersection

Tm
i=1 Ii, there exists an index j such that

P ◆ Ij. When P =
Tm

i=1 Ii, there exists an index j such that P = Ij.

Proof. Suppose that P 6◆ Ii for all 1 6 i 6 m. For each 1 6 i 6 m,
there exists fi 2 Ii such that fi 62 P. It follows that the product
f1 f2 · · · fm is contained in ’m

i=1 Ii ✓
Tm

i=1 Ii but is not contained in P.
Thus, we deduce that P 6◆ Tm

i=1 Ii. Assuming that P =
Tm

i=1 Ii, there
exists an index j such that P ◆ Ij ◆ P, whence P = Ij.

7.2.5 Theorem (Lasker–Noether). Let I =
Tm

i=1 Qi be an irredundant
primary decomposition. The ideals Pi :=

p
Qi, for all 1 6 i 6 m, are

precisely the prime ideals appearing in the set
�p

I :h f i
�� f 2 S

 
.

Sketch of Proof. For all f 2 S, we have

(I :h f i) = (
Tm

i=1 Qi) :h f i = Tm
i=1 (Qi : f ) .

which gives
p

I :h f i =
Tm

i=1
p

Qi :h f i =
T

f 62Qi
Pi. Suppose thatp

I :h f i is a prime ideal. Hence, there exists an index j such thatp
I :h f i = Pj and every prime ideal of the form

p
I :h f i is one of
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the Pj. Conversely, for each index i, there exists fi 62 Qi such that
fi 2

T
i 6=j Qj because the decomposition is irredundant. It follows thatp

I :h fii = Pi.

7.2.6 Remark. The prime ideals in this theorem are the associated
primes of I. An ideal I is primary if and only if it has a unique asso-
ciated prime ideal. The minimal elements of the set {P1, P2, . . . , Pm}
are called minimal associated primes. The others are called embedded
primes. The minimal primes correspond to the irreducible compo-
nents of V(I). The embedded primes correspond to subvarieties
of the irreducible components. The minimal primes are uniquely
determined by the ideal, but the embedded primes are not.

Algebro-Geometric Dictionary

Assume that the coefficient field K is algebraically closed.

Algebra Geometry

radical ideals affine subvarieties
I V(I)

I(X) X

prime ideals irreducible subvarieties
maximal ideals points

ascending chain condition descending chain condition

I + J V(I) \ V(J)p
I(X) + I(Y) X \ Y

I J V(I) [ V(J)p
I(X) I(Y) X [ Y

I \ J V(I) [ V(J)
I(X) \ I(Y) X [ Y

I : J V(I) \ V(J)
I(X) : I(Y) X \ Y

p
I \ K[y1, y2, . . . , ym] p2

�
V(I)

�


