7 Decompositions

Methodological reductionism posits that the best scientific strategy is to reduce explanations to the smallest possible entities. A geometric incarnation of this idea involves decomposing affine subvarieties into a union of irreducible ones. Algebraically, this concept involves decomposing an ideal into an intersection of primary ideal (which are related to, but not quite the same as, powers of prime ideals).

7.0 The Closure Theorem

How do we finally prove the Closure Theorem 3.2.5? Equipped with the Nullstellensatz, we confirm our geometric interpretation for elimination ideals.
7.0.0 Lemma. For any subset U in \mathbb{A}^{n}, the affine subvariety $\mathrm{V}(\mathrm{I}(U))$ is the smallest subvariety that contains U.

Proof. Suppose that X is an affine subvariety in \mathbb{A}^{n} containing the subset U. Applying the inclusion-reversing operators, we see that $\mathrm{I}(X) \subseteq \mathrm{I}(U)$ and $\mathrm{V}(\mathrm{I}(U)) \subseteq \mathrm{V}(\mathrm{I}(X))=X$. Thus, affine subvariety $\mathrm{V}(\mathrm{I}(U))$ is contained in every affine subvariety that contains U.
7.0.1 Theorem (Closure). Let \mathbb{K} be an algebraically closed field and let I be an ideal in the ring $\mathbb{K}\left[x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{m}\right]$. For the projection $\pi_{2}: \mathbb{A}^{n+m} \rightarrow \mathbb{A}^{m}$ onto the last m components, the Zariski closure of the image $\pi_{2}(\mathrm{~V}(I))$ is $\mathrm{V}\left(I \cap \mathbb{K}\left[y_{1}, y_{2}, \ldots, y_{m}\right]\right)$.

Proof. Let $X:=\mathrm{V}(I)$ and set $J:=I \cap \mathbb{K}\left[y_{1}, y_{2}, \ldots, y_{m}\right]$. It is enough to prove that $\mathrm{V}(J)=\mathrm{V}\left(\mathrm{I}\left(\tau_{2}(X)\right)\right)$.
\supseteq : The definitions of X and J give the inclusion $\pi_{2}(X) \subseteq \mathrm{V}(J)$. Since
Lemma 7.0.0 establishes that $\mathrm{V}\left(\mathrm{I}\left(\pi_{2}(X)\right)\right)$ is the smallest variety containing the subset $\pi_{2}(X)$, it follows that $\mathrm{V}(J) \supseteq \mathrm{V}\left(\mathrm{I}\left(\pi_{2}(X)\right)\right)$.
\subseteq : Consider an element f in the ideal $\mathrm{I}\left(\pi_{2}(X)\right)$. Viewing f as a polynomial in the larger ring $\mathbb{K}\left[x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{m}\right]$, we have $f\left(a_{1}, a_{2}, \ldots, a_{n+m}\right)=0$ for any point $\left(a_{1}, a_{2}, \ldots, a_{n+m}\right)$ in X. Applying the Hilbert Nullstellensatz 6.o.2, there is a positive integer ℓ such that $f^{\ell} \in I$. Since the variables $x_{1}, x_{2}, \ldots, x_{n}$ do not appear in f, we see that $f^{\ell} \in J$. It follows that $f \in \sqrt{J}$ and $\mathrm{I}\left(\pi_{2}(X)\right) \subseteq \sqrt{J}$. We see that $\mathrm{V}(J)=\mathrm{V}(\sqrt{J}) \subseteq \mathrm{V}\left(\mathrm{I}\left(\pi_{2}(X)\right)\right)$.

We also encounter sets which are not affine subvarieties when taking the difference of two affine subvarieties.
7.0.2 Definition. For any ideals I and J in $S:=\mathbb{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, the colon ideal is the set $(I: J):=\{f \in S \mid f g \in I$ for all $g \in J\}$.
7.0.3 Example. We have $(\langle x z, y z\rangle:\langle z\rangle)=\langle x, y\rangle$.
7.0.4 Proposition. For any ideals I and J in the ring S, the set $(I: J)$ is an ideal. Moreover, we have $I \subseteq(I: J)$.

Proof. For any two polynomials f_{1} and f_{2} in the set $(I: J)$, it follows that, for any polynomial g in the ideal J, we have $f_{1} g \in I$ and $f_{2} g \in I$. Suppose that h_{1} and h_{2} are ring elements in S. Since I is an ideal, we have $\left(h_{1} f_{1}+h_{2} f_{2}\right) g=h_{1} f_{1} g+h_{2} f_{2} g \in I$ for any element g in the ideal J, which implies that $h_{1} f_{1}+h_{2} f_{2} \in(I: J)$. Thus, the set $I: J$ is an ideal in the ring S.

For any $f \in I$ and any $g \in S$, we have $f g \in I$ because I is an ideal. Hence, for any $f \in I$ and any $g \in J$, we have $f g \in I$, so $f \in(I: J)$.
7.0.5 Lemma. For any affine subvarieties X and Y satisfying $X \subseteq Y$, we have $Y=X \cup(\overline{Y \backslash X})$.

Proof. We prove containment in both directions.
\supseteq : Since $Y \backslash X \subseteq Y$ and Y is an affine subvariety, we have $\overline{Y \backslash X} \subseteq Y$.
As $X \subseteq Y$, we deduce that $Y \supseteq X \cup(\overline{Y \backslash X})$.
$\subseteq:$ As $X \subseteq Y$, we see that $Y=X \cup(Y \backslash X)$. Since $Y \backslash X \subseteq \overline{Y \backslash X}$, we have $Y \subseteq X \cup(\overline{Y \backslash X})$.

Adding to our dictionary, we have a geometric interpretation for colon ideals.
7.0.6 Theorem. For any ideals I and J in the ring $S:=\mathbb{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, we have $\overline{\mathrm{V}(I) \backslash \mathrm{V}(J)} \subseteq \mathrm{V}(I: J)$. When the field \mathbb{K} is algebraically closed and $I=\sqrt{I}$, we also have $\overline{\mathrm{V}(I) \backslash \mathrm{V}(J)}=\mathrm{V}(I: J)$.

Proof. It suffices to prove that $(I: J) \subseteq \mathrm{I}(\mathrm{V}(I) \backslash \mathrm{V}(J))$. The membership $f \in(I: J)$ means that $f g \in I$ for any $g \in J$. For any point $a \in \mathrm{~V}(I) \backslash \mathrm{V}(J)$, we see that $f(a) g(a)=0$ for all $g \in J$. Since $a \notin \mathrm{~V}(J)$, there exists $g \in J$ such that $g(a) \neq 0$, so we deduce that $f(a)=0$. Therefore, we have $f \in \mathrm{I}(\mathrm{V}(I) \backslash \mathrm{V}(J))$ and $(I: J) \subseteq \mathrm{I}(\mathrm{V}(I) \backslash \mathrm{V}(J))$.

Suppose that $a \in \mathrm{~V}(I: J)$. It follows that, for any $h \in S$ such that $h g \in I$ for all $g \in J$, we have $h(a)=0$. Consider $h \in \mathrm{I}(\mathrm{V}(I) \backslash$ $\mathrm{V}(J))$. For any $g \in J$, the product $h g$ vanishes on $\mathrm{V}(I)$ because h vanishes on $\mathrm{V}(I) \backslash \mathrm{V}(J)$ and g vanishes on $\mathrm{V}(J)$. By the Strong Nullstellensatz 6.0.5, we see that $h g \in \sqrt{I}=I$ for all $g \in J$. We deduce that $h(a)=0$ and $a \in \mathrm{~V}(\mathrm{I}(\mathrm{V}(I) \backslash \mathrm{V}(J)))$, which shows that $\mathrm{V}(I: J) \subseteq \mathrm{V}(\mathrm{I}(\mathrm{V}(I) \backslash \mathrm{V}(J)))$.
7.0.7 Lemma. Let I and J be ideals in S. For the ideal $z I+(1-z) J$ in the $\operatorname{ring} S[z]=\mathbb{K}\left[z, x_{1}, x_{2}, \ldots, x_{n}\right]$, we have $I \cap J=(z I+(1-z) J) \cap S$.

Proof. We prove containment in both directions.
\subseteq : Consider $f \in I \cap J$. Since $f \in I$ and $f \in J$, we have $z f \in z I$ and $(1-z) f \in(1-z) J$, so $f=z f+(1-z) f \in z I+(1-z) J$. Since both I and J are ideals in the smaller ring S, it follows that $f \in(z I+(1-z) J) \cap S$ and $I \cap J \subseteq(z I+(1-z) J) \cap S$.
\supseteq : Consider $f \in(z I+(1-z) J) \cap S$. It follows that $f=g+h$ where $g \in z I$ and $h \in(1-z) J$. Setting $z=0$, we see that $f \in J$ and, setting $z=1$, we see that $f \in I$. We conclude that $f \in I \cap J$ and $I \cap J \supseteq(z I+(1-z) J) \cap S$.

This Lemma together with Elimination Theory yields an algorithm for computing the intersection of two ideals.
7.0.8 Proposition. Let f be a polynomial in the ring $S:=\mathbb{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and let I be an ideal in S. For any generators $g_{1}, g_{2}, \ldots, g_{r}$ of the ideal $I \cap\langle f\rangle$, the polynomials $g_{1} / f, g_{2} / f, \ldots, g_{r} / f$ generate the ideal $(I:\langle f\rangle)$.

Proof. We prove containment in both directions.
\subseteq : For any polynomial p in the ideal $\langle f\rangle$, there is a polynomial q in S such that $p=q f$. For any polynomial h in the ideal $\left\langle g_{1} / f, g_{2} / f, \ldots, g_{r} / f\right\rangle$ and any p in $\langle f\rangle$, it follows that

$$
p h=q f h \in\left\langle g_{1}, g_{2}, \ldots, g_{r}\right\rangle=I \cap\langle f\rangle \subseteq I
$$

so $h \in(I:\langle f\rangle)$.
〇: Suppose that $h \in(I:\langle f\rangle)$, which means that $h f \in I$. As $h f \in$ $\langle f\rangle$, we have $h f \in I \cap\langle f\rangle$. Since $I \cap\langle f\rangle=\left\langle g_{1}, g_{2}, \ldots, g_{r}\right\rangle$, there exists polynomials $q_{1}, q_{2}, \ldots, q_{r}$ in S such that $h f=\sum_{i=1}^{r} q_{i} g_{i}$. As $g_{i} \in\langle f\rangle$, each g_{i} / f is a polynomial in S and we conclude that $h=\sum_{i=1}^{r} q_{i}\left(g_{i} / f\right)$ whence $f \in\left\langle g_{1} / f, g_{2} / f, \ldots, g_{\ell} / f\right\rangle$.

7.1 Decomposition of Varieties

How do we break an affine subvariety into irreducible pieces?
7.1.0 Lemma. Every decreasing chain of affine subvarieties is eventually stationary. Equivalently, any nonempty set of affine subvarieties contains a minimal element (with respect to inclusion).

Proof. The Hilbert Basis Theorem 2.0.0 demonstrates that every ascending chain of ideals in the ring $S:=\mathbb{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is eventually stationary, so the dictionary between ideals and affine subvarieties yields the assertion.

This leads to an algorithm for computing a Gröbner basis of a colon ideal. Given $I=\left\langle f_{1}, \ldots, f_{\ell}\right\rangle$ and $J=\left\langle g_{1}, \ldots, g_{r}\right\rangle$ to compute a Gröbner basis of $(I: J)$, we first compute a Gröbner basis of $\left\langle f_{1}, f_{2}, \ldots, f_{\ell}\right\rangle \cap\left\langle g_{i}\right\rangle$. We can do this by finding a Gröbner basis of $\left\langle t f_{1}, \ldots, t f_{\ell},(1-t) g_{i}\right\rangle$ with respect to an eliminate order for t. We divide each of these elements by g_{i} to get a basis for ($I:\left\langle g_{i}\right\rangle$). Finally, we compute a basis for $(I: J)$ by applying an intersection algorithm $r-1$ times, computing

$$
\begin{aligned}
\left(I:\left\langle g_{1}, g_{2}\right\rangle\right. & =\left(I:\left\langle g_{1}\right\rangle\right) \cap\left(I:\left\langle g_{2}\right\rangle\right), \\
\left(I:\left\langle g_{1}, g_{2}, g_{3}\right\rangle\right) & =\left(I:\left\langle g_{1}, g_{2}\right\rangle\right) \cap\left(I:\left\langle g_{3}\right\rangle\right),
\end{aligned}
$$

7.1.1 Proposition. Any nonempty affine subvariety X in \mathbb{A}^{n} is a finite union $X=X_{1} \cup X_{2} \cup \cdots \cup X_{r}$ of irreducible affine subvarieties. Requiring that $X_{i} \nsubseteq X_{j}$ for all $i \neq j$, the subvarieties X_{i} are uniquely determined. These subvarieties are called the irreducible components of X.
Proof. We first show the existence of such a representation for X. Let \mathcal{S} be the set of nonempty closed subsets of \mathbb{A}^{n} which cannot be written as a finite union of irreducible closed subsets. Suppose that \mathcal{S} is nonempty. Hence, the set \mathcal{S} contains a minimal element Y. The definition of \mathcal{S} implies that Y is not irreducible. Hence, we can write $Y=Y^{\prime} \cup Y^{\prime \prime}$ where Y^{\prime} and $Y^{\prime \prime}$ are proper closed subsets of Y. By the minimality of Y, each of Y^{\prime} and $Y^{\prime \prime}$ can be expressed as a finite union of closed irreducible subsets, whence Y also can which is a contradiction. We conclude that every closed set X can be written as a union $X=X_{1} \cup X_{2} \cup \cdots \cup X_{r}$ of irreducible subsets. By throwing away a few if necessary, we may assume $X_{j} \nsubseteq X_{i}$ for all $i \neq j$.

Suppose $X=X_{1}^{\prime} \cup X_{2}^{\prime} \cup \cdots \cup X_{\ell}^{\prime}$ is another representation. Since $X_{1}^{\prime} \subseteq X$, we have $X_{1}^{\prime}=\bigcup_{i=1}^{r}\left(X_{1}^{\prime} \cap X_{i}\right)$. Because X_{1}^{\prime} is irreducible, there exists an index i such that $X_{1}^{\prime} \subseteq X_{i}$; say $i=1$. By symmetry, we also have $X_{1} \subseteq X_{j}^{\prime}$ for some j. It follows that $X_{1}^{\prime} \subseteq X_{j}^{\prime}$, so we deduce that $j=1$ and $X_{1}=X_{1}^{\prime}$. Setting $Z:=\overline{\left(X \backslash X_{1}\right)}$, we obtain then $Z=X_{2} \cup X_{3} \cup \cdots \cup X_{r}$ and $Z=X_{2}^{\prime} \cup X_{3}^{\prime} \cup \cdots \cup X_{\ell}^{\prime}$. Proceeding by induction on r, we obtain uniqueness of the X_{i}.

7.1.2 Examples.

(i) $\mathrm{V}(x y, x z)=\mathrm{V}(x) \cup \mathrm{V}(y, z)$.
(ii) $\mathrm{V}\left(x z-y^{2}, x^{3}-y z\right)=\mathrm{V}(x, y) \cup \mathrm{V}\left(x z-y^{2}, x^{3}-y z, z^{2}-x^{2} y\right) \diamond$
7.1.3 Corollary. Let \mathbb{K} be an algebraically closed field. Every radical ideal I in $S:=\mathbb{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is uniquely expressed as a finite intersection of prime ideals; $I=P_{1} \cap P_{2} \cap \cdots \cap P_{r}$ where $P_{i} \nsubseteq P_{j}$ for all $i \neq j$.

Proof. Follows immediately from the proposition and the dictionary between affine subvarieties in \mathbb{A}^{n} and ideals in S.

How do we extend this to all ideals?
7.1.4 Definition. An ideal I in S is primary if $I \neq\langle 1\rangle$ and the relation $f g \in I$ implies that either $f \in I$ or $g^{m} \in I$ for some positive integer m. Equivalently, the ideal I is primary if and only if the quotient S / I is nonzero and every zerodivisor is nilpotent.
7.1.5 Lemma. For any primary ideal I in S, its radical \sqrt{I} is prime and it is the smallest prime ideal containing I.
Proof. As $I \subseteq \sqrt{I}$, it suffices to show \sqrt{I} is prime. Given $f g \in \sqrt{I}$, there exists a positive integer m such that $(f g)^{m} \in I$. Since I is primary, either $f^{m} \in I$ or $g^{m \ell} \in I$ for some positive integer ℓ, so we deduce that either $f \in \sqrt{I}$ or $g \in \sqrt{I}$.

For a prime ideal P and a primary ideal I satisfying $\sqrt{I}=P$, we say that the ideal I is P-primary.
7.1.6 Example. The primary ideals in the ring \mathbb{Z} are $\langle 0\rangle$ and $\left\langle p^{m}\right\rangle$ where p is prime integer and m is a positive integer.
7.1.7 Example. Consider the ring $\mathbb{K}[x, y]$. For the monomial ideal $I:=\left\langle x, y^{2}\right\rangle$, the quotient is $S / I \cong \mathbb{K}[y] /\left\langle y^{2}\right\rangle$. The zero divisors are all multiplies of y which are nilpotent. Hence, the ideal I is primary and its radical is $P=\langle x, y\rangle$. We have $\left\langle x^{2}, x y, y^{2}\right\rangle=P^{2} \subset I \subset P$ so that this primary ideal is not a power of a prime ideal.
7.1.8 Definition. An ideal I in S is irreducible if the relation $I=I_{1} \cap I_{2}$ implies that $I=I_{1}$ or $I=I_{2}$.
7.1.9 Lemma. Any ideal I in S is a finite intersection of irreducible ideals.

Proof. Suppose otherwise: the set of ideals in S that are not a finite intersection of irreducible ideals is not empty. Hence, this set has a maximal element I. Since I is reducible, we have $I=I_{1} \cap I_{2}$ where $I \subset I_{j}$. Maximality implies that each I_{j} is a finite intersection of irreducible ideals. It follows that the same holds for I which is a contradiction.
7.1.10 Lemma. Every irreducible ideal I in S is primary.

Proof. Suppose that I is an irreducible ideal and $f g \in I$ where $f \notin I$. Consider the chain of ideals $(I:\langle g\rangle) \subseteq\left(I:\left\langle g^{2}\right\rangle\right) \subseteq \cdots \subseteq\left(I:\left\langle g^{j}\right\rangle\right) \subseteq \cdots$. Since S is noetherian, there exists a positive integer N such that $\left(I:\left\langle g^{N}\right\rangle\right)=\left(I:\left\langle g^{N+1}\right\rangle\right)$.

We claim that $\left(I+\left\langle g^{N}\right\rangle\right) \cap(I+\langle f\rangle)=I$. Every element in this intersection can be written as $p+a g^{N}=q+b f$ where $p, q \in I$ and $a, b \in S$. Multiplying by g implies that $p g+a g^{N+1}=q g+b g f$. It follows that $a \in\left(I:\left\langle g^{N+1}\right\rangle\right)=\left(I:\left\langle g^{N}\right\rangle\right)$ and $p+a g^{N} \in I$.

Since I is irreducible, we deduce that $I=I+\left\langle g^{N}\right\rangle$ or $I=I+\langle f\rangle$. The latter cannot occur because $f \notin I$, so $g^{N} \in I$.
7.1.11 Theorem. Every ideal I in the ring $S:=\mathbb{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ can be written as a finite intersection of primary ideals.

Proof. Combine the above lemmata.

7.2 Primary Decomposition

How do we "factor" an ideal in $S:=\mathbb{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$?
7.2.0 Definition. A primary decomposition of an ideal I in the ring S expresses I as a finite intersection of primary ideals: $I=\bigcap_{i} Q_{i}$. It is irredundant if the prime ideals $\sqrt{Q_{i}}$ are all distinct and $\bigcap_{j \neq i} Q_{j} \nsubseteq Q_{i}$.
7.2.1 Lemma. Let P be a prime ideal in S. For any P-primary ideals
$Q_{1}, Q_{2}, \ldots, Q_{m}$, the intersection $Q=\bigcap_{i=1}^{m} Q_{i}$ is also P-primary.

A prime power P^{n} is not necessarily primary, although its radical is the prime ideal P. Consider the quotient $R=\mathbb{K}[x, y, z] /\left\langle x y-z^{2}\right\rangle$. Let $\bar{x}, \bar{y}, \bar{z}$ denote the images of x, y and z in the ring R. The ideal $P=\langle\bar{x}, \bar{z}\rangle$ in R is prime because the quotient ring $R / P=\mathbb{K}[x, y, z] /\left\langle x, y, x y-z^{2}\right\rangle \cong \mathbb{K}[y]$ is a domain. However, the relations $\bar{x} \bar{y}=\bar{z}^{2} \in P, \bar{x} \notin P^{2}$, and $\bar{y} \notin \sqrt{P^{2}}=P$ show that P is not primary.

Proof. Corollary 6.2.8 shows that $\sqrt{Q}=\bigcap_{i=1}^{m} \sqrt{Q_{i}}=\bigcap_{i=1}^{m} P=P$. Given $f g \in Q$ where $g \notin Q$, there exists an index j such that $f g \in Q_{j}$ and $g \notin Q_{j}$. It follows that $f \in P$ because Q_{j} is a P-primary ideal.
7.2.2 Corollary. Every ideal I in the ring S has an irredundant primary decomposition.

Proof. Theorem 7.1.11 demonstrates that the ideal I has a primary decomposition: $I=\bigcap_{i=1}^{m} Q_{i}$. If there are two the primary ideals Q_{i} and Q_{j} having the same radical, then Lemma 7.2.1 shows that we may replace them with their intersection $Q_{i} \cap Q_{j}$. Iterating this process, we obtain a decomposition with distinct radicals. If we have $\bigcap_{j \neq i} Q_{j} \subseteq Q_{i}$ for some i, then we may omit Q_{i}.
7.2.3 Lemma. Let P be a prime ideal and let Q be a P-primary ideal.
(i) For any $f \in Q$, we have $(Q:\langle f\rangle)=\langle 1\rangle$.
(ii) For any $f \notin Q$, the ideal $(Q:\langle f\rangle)$ is P-primary, so $(\sqrt{Q:\langle f\rangle})=P$.
(iii) For any $f \notin P$, we have $(Q:\langle f\rangle)=Q$.

Proof. Parts (i) and (iii) follow directly from the definitions of a colon ideal and primary ideal. For part (ii), consider $g \in(Q:\langle f\rangle)$, so $f g \in Q$. As $f \notin Q$ and Q is a primary ideal, there exists a positive integer m such that $g^{m} \in Q$. We see that $Q^{m} \subseteq(Q:\langle f\rangle) \subseteq P$. Taking radicals, we obtain $\sqrt{Q:\langle f\rangle}=P$. For primarity, suppose that $g h \in(Q:\langle f\rangle)$ where $g \notin P$. It follows that $f g h \in Q$, so we have $f h \in Q$ and $h \in(Q:\langle f\rangle)$.
7.2.4 Lemma. Let $I_{1}, I_{2}, \ldots, I_{m}$ be ideals in S and let P be a prime ideal in S. When P contains the intersection $\bigcap_{i=1}^{m} I_{i}$, there exists an index j such that $P \supseteq I_{j}$. When $P=\bigcap_{i=1}^{m} I_{i}$, there exists an index j such that $P=I_{j}$.

Proof. Suppose that $P \nsupseteq I_{i}$ for all $1 \leqslant i \leqslant m$. For each $1 \leqslant i \leqslant m$, there exists $f_{i} \in I_{i}$ such that $f_{i} \notin P$. It follows that the product $f_{1} f_{2} \cdots f_{m}$ is contained in $\prod_{i=1}^{m} I_{i} \subseteq \bigcap_{i=1}^{m} I_{i}$ but is not contained in P. Thus, we deduce that $P \nsupseteq \bigcap_{i=1}^{m} I_{i}$. Assuming that $P=\bigcap_{i=1}^{m} I_{i}$, there exists an index j such that $P \supseteq I_{j} \supseteq P$, whence $P=I_{j}$.
7.2.5 Theorem (Lasker-Noether). Let $I=\bigcap_{i=1}^{m} Q_{i}$ be an irredundant primary decomposition. The ideals $P_{i}:=\sqrt{Q_{i}}$, for all $1 \leqslant i \leqslant m$, are precisely the prime ideals appearing in the set $\{\sqrt{I:\langle f\rangle} \mid f \in S\}$.

Sketch of Proof. For all $f \in S$, we have

$$
(I:\langle f\rangle)=\left(\bigcap_{i=1}^{m} Q_{i}\right):\langle f\rangle=\bigcap_{i=1}^{m}\left(Q_{i}: f\right) .
$$

which gives $\sqrt{I:\langle f\rangle}=\bigcap_{i=1}^{m} \sqrt{Q_{i}:\langle f\rangle}=\bigcap_{f \notin Q_{i}} P_{i}$. Suppose that $\sqrt{I:\langle f\rangle}$ is a prime ideal. Hence, there exists an index j such that $\sqrt{I:\langle f\rangle}=P_{j}$ and every prime ideal of the form $\sqrt{I:\langle f\rangle}$ is one of
the P_{j}. Conversely, for each index i, there exists $f_{i} \notin Q_{i}$ such that $f_{i} \in \bigcap_{i \neq j} Q_{j}$ because the decomposition is irredundant. It follows that $\sqrt{I:\left\langle f_{i}\right\rangle}=P_{i}$.
7.2.6 Remark. The prime ideals in this theorem are the associated primes of I. An ideal I is primary if and only if it has a unique associated prime ideal. The minimal elements of the set $\left\{P_{1}, P_{2}, \ldots, P_{m}\right\}$ are called minimal associated primes. The others are called embedded primes. The minimal primes correspond to the irreducible components of $\mathrm{V}(I)$. The embedded primes correspond to subvarieties of the irreducible components. The minimal primes are uniquely determined by the ideal, but the embedded primes are not.

Algebro-Geometric Dictionary

Assume that the coefficient field \mathbb{K} is algebraically closed.

Algebra	Geometry
radical ideals	affine subvarieties
I	$\mathrm{~V}(I)$
$\mathrm{I}(X)$	X
prime ideals	irreducible subvarieties
maximal ideals	points
ascending chain condition	descending chain condition
$I+J$	$\mathrm{~V}(I) \cap \mathrm{V}(J)$
$\sqrt{\mathrm{I}(X)+\mathrm{I}(Y)}$	$X \cap Y$
$I J$	$\mathrm{~V}(I) \cup \mathrm{V}(J)$
$\sqrt{\mathrm{I}(X) \mathrm{I}(Y)}$	$X \cup Y$
$I \cap J$	$\mathrm{~V}(I) \cup \mathrm{V}(J)$
$\mathrm{I}(X) \cap \mathrm{I}(Y)$	$X \cup Y$
$I: J$	$\overline{\mathrm{~V}(I) \backslash \mathrm{V}(J)}$
$\mathrm{I}(X): \mathrm{I}(Y)$	$\overline{X \backslash Y}$
$\sqrt{I \cap \mathbb{K}\left[y_{1}, y_{2}, \ldots, y_{m}\right]}$	$\overline{\pi_{2}(\mathrm{~V}(I))}$

