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In contemporary mathematics, maps between objects are at least
as important as the objects themselves. However, our dictionary
between geometry and algebra does not yet include entries related to
maps. To rectify this shortcoming, we associated a quotient ring to
each affine subvariety.

8.0 Coordinate Rings

How do we extend our algebro-geometric dictionary to maps?

8.0.0 Definition. A morphism j : An(K) ! Am(K) of affine spaces is a
polynomial map

(x1, x2, . . . , xn) 7!
�

j1(x1, x2, . . . , xn), j2(x1, x2, . . . , xn), . . . , jm(x1, x2, . . . , xn)
�

where each jj belongs to the ring S := K[x1, x2, . . . , xn].

8.0.1 Lemma. Any morphism of affine spaces is continuous in the Zariski

topology.

Proof. Let j : An(K) ! Am(K) be a morphism. For any Zariski
closed subset X in Am(K), there exists polynomials g1, g2, . . . , gr in
the ring K[y1, y2, . . . , ym] such that

X = V(g1, g2, . . . , gr) = {b 2 Am(K) | gj(b) = 0 for all 1 6 j 6 r} .

It follow that

j�1(X) = V(g1 � j, g2 � j, . . . , gr � j)

=
�

a 2 An(K)
�� (gj � j)(a) = gj

�
j(a)

�
= 0 for all 1 6 j 6 r

 
.

The inverse image of any closed set is closed, so j is continuous.

8.0.2 Definition. The pull-back of a polynomial f in K[y1, y2, . . . , ym]

along the morphism j : An(K) ! Am(K) is the polynomial

j⇤( f ) := f � j = f
�

j1(x1, . . . , xn), . . . , jm(x1, . . . , xn)
�

in K[x1, x2, . . . , xn]. This pull-back operation corresponds to the ring
homomorphism j⇤ : K[y1, y2, . . . , ym] ! K[x1, x2, . . . , xn] defined
for all 1 6 j 6 m, by yj 7! jj(x1, x2, . . . , xn). For any element c

in the field K, we have j⇤(c) = c, so the map j⇤ is a K-algebra
homomorphism.

A ring homomorphism is a map
j : R ! S between commutative rings R

and S such that, for all f , g 2 R, we
have j( f + g) = j( f ) + j(g),
j( f g) = j( f ) j(g), and j(1R) = 1S.
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8.0.3 Proposition. The pull-back operation gives a bijection between

morphisms from An(K) to Am(K) and K-algebra homomorphisms from

K[y1, y2, . . . , ym] and K[x1, x2, . . . , xn].

Proof. For any morphism of affine spaces, the pull-back operation
produces a K-algebra homomorphism. Conversely, any K-algebra
homomorphism y : K[y1, y2, . . . , ym] ! K[x1, x2, . . . , xn] is determined
by its values on the variables y1, y2, . . . , ym. For all 1 6 j 6 m, set
yj(x1, x2, . . . , xn) := y(yj). The polynomials y1, y2, . . . , ym define a
polynomial map An(K) ! Am(K) given by

(x1, x2, . . . , xn) 7!
�
y1(x1, x2, . . . , xn), y1(x1, x2, . . . , xn), . . . , ym(x1, x2, . . . , xn)

�
.

This operation and the pull-back operation are obviously mutual
inverses.

How do we extend these ideas to affine varieties? Restricting
polynomial functions on An(K) to an affine subvariety X gives

I(X) S := K[x1, x2, . . . , xn] S/ I(X)

0 {functions on X}

Since functions in the ideal I(X) restrict to zero, the polynomial
functions restricted to X can be identified with the quotient S/ I(X).

When X = V(x
2 + y

2 � 1) ✓ A2(R), the
polynomials x

2 and 1 � y
2 define the

same function on the affine subvariety
X because x

2 ⌘ 1 � y
2 mod I(X).

8.0.4 Definition. The coordinate ring of an affine subvariety X in An(K)

is the quotient ring K[X] := K[x1, x2, . . . , xn]/ I(X).
Observe that K[An] = K[x1, x2, . . . , xn].

8.0.5 Theorem. The following are equivalent.

(a) The affine subvariety X in An(K) is irreducible.

(b) The ideal I(X) in S := K[x1, x2, . . . , xn] is prime.

(c) The coordinate ring K[X] := K[x1, x2, . . . , xn]/ I(X) is a domain.

8.0.6 Definition. Consider an affine subvariety X in An(K). The
morphisms j : An(K) ! Am(K) and y : An(K) ! Am(K) are
equivalent on X if the pull-back homomorphisms j⇤ : K[Am] ! K[X]

and y⇤ : K[Am] ! K[X] are equal. The resulting equivalence classes
are morphisms j : X ! Am(K).

When X = V(x
2 + y

2 � 1) ⇢ A2(R), the
morphisms j : A2(R) ! A1(R) defined
by j(x, y) = x

2 and y : A2(R) ! A1(R)
defined by y(x, y) = 1 � y

2 are
equivalent.

Equivalent morphisms are equivalent as functions.

8.0.7 Proposition. Let X in An(K) be an affine subvariety. For any

morphisms j : An(K) ! Am(K) and y : An(K) ! Am(K) that are

equivalent on X, we have j(a) = y(a) for all a 2 X.

Proof. Suppose that j(a) 6= y(a). There exists an index i such that
j⇤(yi) = j(a)i 6= y(a)i = y⇤(yi) which violates the equivalence.
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8.0.8 Definition. For affine subvarieties X ✓ An(K) and Y ✓ Am(K),
a morphism of affine varieties j : X ! Y is a morphism j : X ! Am(K)

satisfying j⇤�I(Y)
�
✓ I(X) or equivalently j(X) ✓ Y.

Verification of equivalence. Suppose that j⇤�I(Y)
�
✓ I(X). For any

a 2 X and any g 2 I(Y), the membership j⇤(g) 2 I(X) implies that
g
�

j(a)
�
=

�
j⇤(g)

�
(a) = 0 which means j(a) 2 Y. Conversely, for

any j(X) ✓ Y, the membership g 2 I(Y) implies that, for all a 2 X,
we have g

�
j(a)

�
= 0 which means j⇤(g) 2 I(X).

8.0.9 Proposition. Any morphism j : X ! Y of affine subvarieties induces

a K-algebra homomorphism j⇤ : K[Y] ! K[X].

Proof. Since the ideal I(Y) in K[Am] maps to zero in K[X], there is an
induced K-algebra homomorphism j⇤ : K[Am]/ I(Y) ! K[X].

K[Am] K[An] K[X]

I(Y) I(X) 0

j⇤

j⇤

8.1 Morphisms of Affine Subvarieties

How do morphisms of affine subvarieties encode geometry?

8.1.0 Proposition. Let X and Y be affine subvarieties. For any K-algebra

homomorphism y : K[Y] ! K[X], there exists a morphism j : X ! Y of

affine subvarieties such that j⇤ = y.

Proof. The affine subvarieties X in An and Y in Am correspond to
the ideals I(X) and I(Y) in the rings K[An] = K[x1, x2 . . . , xn] and
K[Am] = K[y1, y2, . . . , ym] respectively. It suffices to find a K-algebra
homomorphism y0 : K[Am] ! K[An] such that the diagram

K[Am] K[An]

K[Y] K[X]

y0

y

commutes. Any such homomorphism arises as the pullback (j0)⇤

of a polynomial map j0 : An(K) ! Am(K). The commutativity of
the diagram guarantees that y0�I(Y)

�
✓ I(X), so j0(X) ✓ Y and the

induced map on coordinate rings K[Y] ! K[X] is just y.
To construct y0, consider y(yj) for all 1 6 j 6 m. Choosing a

representative in each coset lifts these elements in the quotient ring
K[X] to polynomials jj 2 K[x1, x2, . . . , xn] for all 1 6 j 6 m. These
polynomials yield a K-algebra homomorphism y0 : K[Am] ! K[Am]

defined by yj 7! jj that makes the diagram commute.

8.1.1 Corollary. There is a bijection between morphisms X ! Y of affine

subvarieties and K-algebra homomorphisms K[Y] ! K[X].
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8.1.2 Remark. Corollary 8.1.1 implies that any automorphism of
an affine subvariety X corresponds to a K-algebra isomorphism
K[X] ! K[X]. For example, every automorphism of A1(Q) has the
form x 7! ax + b for some a, b 2 Q.

8.1.3 Remark. Let j : An(C) ! An(C) be a morphism such that the
determinant of matrix [ ∂ji/∂xj ] is nonzero. Jacobian conjecture claims
that the morphism j has an inverse. This open problem is notorious
for the large number of attempted proofs that turned out to contain
subtle errors.

8.1.4 Definition. A morphism j : X ! Y is dominant if the image
j(X) is not contained in a proper subvariety of Y or equivalently the
Zariski closure of the image is Y.

Any surjective morphism is dominant.

8.1.5 Lemma. A morphism j : X ! Y is dominant if and only if the

K-algebra homomorphism j⇤ : K[Y] ! K[X] is injective.

Proof. The image j(X) is contained in an affine subvariety Z ⇢ Y

if and only if j⇤�I(Z)
�
✓ I(X). Suppose that j(X) is contained in

a proper subvariety Z ⇢ Y. Hence, there exists a nonzero element
f 2 I(Z) ✓ K[Y] that vanishes on the image j(X). It follows that
j⇤( f ) = 0 2 K[X]. Conversely, suppose that there exists a nonzero
element f 2 K[Y] such that j⇤( f ) = 0. Hence, we deduce that
j(X) ⇢ Y \ {b 2 Y | f (b) = 0} ⇢ Y.

8.1.6 Example. Consider the projection

p : X :=
�
(x, y)

�� xy = 1
 
! A1(k)

defined by (x, y) 7! x. Its image is the subset A1(k) \ {0} which is not
contained in a proper closed subset of A1(k). ⇧

8.1.7 Proposition. Let X be an irreducible affine subvariety. For any

dominant morphism j : X ! Y, the affine subvariety Y is also irreducible.

Proof. Since X is irreducible, the coordinate ring K[X] has no zero-
divisors. The dominance assumption implies that K-algebra homo-
morphism j⇤ : K[Y] ! K[X] has no kernel. Since any zero divisor
in K[Y] would yield a zero divisor in K[X], we conclude that K[Y] is
also a domain.

8.1.8 Definition. An affine subvariety X is irreducible if and only
if its coordinate ring K[X] is a domain. Under this assumption, the
fraction field K(X) of K[X] is defined to be

K(X) :=
�

f /g
�� f , g 2 K[X], g 6= 0

 
.

The field K(X) is called the function field of X.

The function field of affine space An is
the field of rational functions:
K(An) = K(x1, x2, . . . , xn).
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8.1.9 Definition. Two affine subvarieties X and Y are birational (over
the field K) if their associated function fields K(X) and K(Y) are
isomorphic (as K-algebras).

8.1.10 Remark. One can show that two irreducible varieties X and Y

are birational if and only if there are rational maps r : X 99K Y and
x : Y 99K X which are mutual inverses. One has to correctly define
rational maps between varieties and interpret their composition.

8.1.11 Remark. An affine subvariety X is rational if and only if it is
birational to affine space An(K) for some nonnegative integer n.

8.1.12 Remark. Is there a unique simplest variety in each birational
equivalence class? The minimal model program aims to construct a
birational model of any variety which is as simple as possible. At
least three Fields medalist are connected to this program: David
Mumford (1974), Shigefumi Mori (1990), and Caucher Birkar (2018).

8.2 Projective Space

What is better as an ambient space than affine space? Projective space
has several different useful interpretations.

8.2.0 Definition. Projective space Pn(K) is the set of 1-dimensional
linear subspaces of the K-vector space Kn+1.

Equivalently, Pn(K) is the set of all lines through the origin in
An+1(K). Each such line has the form l (a0, a1 . . . , an) for some
l 2 K where (a0, a1, . . . , an) 2 Kn+1 is nonzero. The points
(a0, a1, . . . , an) and (a

0
0, a

0
1, . . . , a

0
n) in the K-vector space Kn+1 span

the same line if and only if there is a nonzero scalar l 2 K⇤ such that
(a

0
0, a

0
1, . . . , a

0
n) = l(a0, a1, . . . , an). Hence, points in projective space

are identified with equivalence classes Pn =
�
An+1 \ {0}

�
/⇠ where

the equivalent relation (a
0
0, a

0
1, . . . , a

0
n)⇠ (a0, a1, . . . , an) means that, for

some l 2 K⇤, we have (a
0
0, a

0
1, . . . , a

0
n) = l(a0, a1, . . . , an). The notation

[a0 : a1 : · · · : an] represents one of these equivalence classes.

8.2.1 Example. Consider P1(C). Fixing a reference line in A2(C) (an
affine line not passing through the origin) produces representatives
for points in P1. Namely, the unique point where the reference line
meets the line through the origin. Only one point in P1 fails to have
such a representative: the point in projective space corresponding to
the line parallel to our reference line. We call this point the “point at
infinity”.

P1(C) = A1(C) [ {•} [a0 : a1] 7!

8
<

:

a1
a0 for a0 6= 0;

• for a0 = 0.
⇧
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How do we endow Pn with the structure of an algebraic variety?
We introduce a covering by affine open subsets. For all 0 6 i 6 n,
consider the subset Ui :=

�
[a0 : a1 : · · · : an] 2 Pn

�� ai 6= 0
 

; the set Ui

is well-defined because (a0, a1, . . . , an)⇠ (a
0
0, a

0
1, . . . , a

0
n) implies that

ai = 0 if and only if a
0
i
= 0. We see that Pn(K) = U0 [ U1 [ · · · [ Un.

Each class [a0 : a1 : · · · : an] 2 Ui has a distinguish representative⇥
a0
ai

: a1
ai

: · · · : ai�1
ai

: 1 : ai+1
ai

: · · · : an
ai

⇤
. Thus, we obtain the bijections

yi : Ui ! An y�1
i

: An ! Ui

[a0 : a1 : · · · : an] 7!
�

a0
ai

, · · · , ai�1
ai

, ai+1
ai

, · · · , an
ai

�
(b1, b2, . . . , bn) 7! [b0 : · · · : bi�1 : 1 : bi : · · · : bn]

We declare yi to be a homeomorphism of Ui to An with its Zariski
topology, giving Ui with the structure of an affine subvariety.

How do the subsets Ui fit together or overlap? We claim that the
identifications yi : Ui ! An(K) transform the set Pn into an algebraic
variety. It suffices to show that, on the intersection Ui \ Uj where
i < j, the induced structures are compatible. We have two maps
yi|Ui\Uj

: Ui \ Uj ! An and yj|Ui\Uj
: Ui \ Uj ! An inducing the

composition

(b1, b2, . . . , bn)
y�1

i��! [b1 : b2 : · · · : bi�1 : 1 : bi : · · · : bn]
yj�!

⇣
b0
bj

, b1
bj

, . . . , bi�1
bj

, 1
bj

, bi+1
bj

, . . . , bj�1
bj

, bj+1
bj

, . . . , bn

bj

⌘
.

One verifies that this is an isomorphism of affine varieties

yi(Ui \ Uj) yj(Ui \ Uj)

An \ V(bj) An \ V(bi)

yj�y�1
i

and note that (yi � y�1
j

) � (yj � y�1
k

) = yi � y�1
k

.

The open cover {Ui} of Pn(C) defines
an altas making projective space into a
complex n-dimensional manifold. The
change of coordinates yj � y�1

i
are

holomorphic maps.

8.2.2 Definition. A projective subvariety X in Pn(K) is a subset such
that, for each distinguished Ui

⇠= An(K), the intersection Ui \ X ✓ Ui

is an affine subvariety. A subset X ✓ Pn(K) is Zariski closed if X \ Ui

is closed in each Ui. For any subset X ✓ Pn(K), the projective closure

X ✓ Pn(K) is the smallest closed subset containing X.

8.2.3 Lemma. The union of two projective subvarieties is itself a projective

subvariety. The intersection of any family of projective subvarieties is

also a projective subvariety. The empty set and whole space are projective

subvarieties.

The Zariski topology on projective space
Pn is defined by taking the open sets to
be complements of projective
subvarieties.

8.2.4 Remark. Since there are no non-constant analytic functions
on Pn(C), we cannot hope to define a projective subvariety as the
common zeros of a collection of functions.


