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To increase symmetry and obtain more uniform results, we change
our ambient space adding points “at infinity” and compactifying it.
For this projective geometry, we leave the realm of affine subvarieties.
Fortunately, there is an elegant approach to projective geometry
relying on homogeneous polynomials.

9.0 Projective Varieties

How do we describe projective subvarieties? As with affine subvari-
eties, these subsets arise as the vanishing sets of some polynomials.

9.0.0 Remark. A polynomial f in the ring R := K[x0, x1, . . . , xn] is
homogeneous if all its terms have the same (total) degree. When f is
homogeneous of degree d, we have

f (l x0, l x1, . . . , l xn) = ld f (x0, x1, . . . , xn)

for all l 2 K. Each polynomial f in R can be decomposed into
homogeneous pieces f = f0 + f1 + · · · + fd where each fi 2 R is
homogeneous polynomial of degree i and deg( f ) = d. An ideal I in
R is homogeneous if it admits a collection of homogeneous generators.
Equivalently, a polynomial belongs to a homogeneous ideal if and
only if each of its homogeneous pieces is also in the ideal.

9.0.1 Proposition. For any homogeneous ideal I in R, the set

V(I) :=
�
[a0 : a1 : · · · : an]

�� f (a0, a1 . . . , an) = 0 for all f 2 I
 

is a projective subvariety in Pn(K).

Proof. Suppose that f is a homogeneous polynomial of degree d in
the ideal I. On the distinguished open subset Ui for some 0 6 i 6 n,
we have xi 6= 0, so f = 0 if and only if x�d

i f = 0. Homogeneity
implies that bf := x�d

i f = f
� x0

xi
, x1

xi
, . . . , xi�1

xi
, 1, xi+1

xi
, . . . , xn

xi

�
is a well-

defined polynomial on affine open subset Ui ⇠= An(K). Hence, for
each index i, the subset Ui \ V( f ) = V( bf ) ✓ Ui ⇠= An(K) is an
affine subvariety. Intersecting the projective subvarieties V( f ), for all
homogeneous f 2 I, establishes the assertion.

9.0.2 Remark. A homogeneous polynomial in the ring R does not
define a function from Pn(K) to K because evaluation depends
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on the choice of representative for a point in Pn. However, for any
homogeneous polynomial f of degree d and any l 2 K, it follows
that f (l a0, l a1, . . . , l an) = ld f (a0, a1, . . . , an), so the vanishing of
f depends only on the equivalence class a := [a0 : a1 : · · · : an]. Thus,
the polynomial f determines a function from Pn to F2 by setting
f (a) = 0 if f (a0, a1, . . . , an) = 0 and f (a) = 1 if f (a0, a1, . . . , an) 6= 0.

9.0.3 Definition. For any index i satisfying 0 6 i 6 n, the dehomogeniza-
tion relative to xi is the K-algebra homomorphism

µi : K[x0, x1, . . . , xn]! K[y0, y1, . . . , yi�1, yi+1, . . . , yn]

defined by
xj 7!

(
yj if j 6= i
1 if j = i.

For any polynomial f in the ring K[y0, y1, . . . , yi�1, yi+1, . . . , yn], the
preimage µ�1

i ( f ) contains the set
n

xd
i f

� x0
xi

, x1
xi

, . . . , xi�1
xi

, xi+1
xi

, . . . , xn
xi

� ��� d > deg( f )
o

.

Conversely, the homogenization of f respect to xi is defined to be

ef (x0, x1, . . . , xn) := xdeg( f )
i f

� x0
xi

, x1
xi

, . . . , xi�1
xi

, xi+1
xi

, . . . , xn
xi

�
.

The homogenization of an ideal I ⇢ K[y0, . . . , yi�1, yi+1, . . . , yn] is the
ideal generated by the homogenization of each f 2 I.

9.0.4 Remark. The homogenization of an ideal may not be gen-
erated by the homogenization of its generators. The homogeniza-
tion the generators of the ideal I :=

⌦
y2 � y2

1, y3 � y1 y2
↵

in the ring
K[y1, y2, y3] relative to x0 gives J :=

⌦
x0 x2 � x2

1, x3 x0 � x1 x2
↵
. Since

it is not a K-linear combination of the generators, the polynomial
x2

2 � x1 x3 does not belong to J. However, this polynomial does belong
to the homogenization of I, because

y2
2 � y1 y3 = y2 (y2 � y2

1)� y1 (y3 � y1 y2) .

Hence, the ideal J is a proper subset of the homogenization of J.

9.0.5 Definition. A monomial order on the ring K[y1, y2, . . . , yn] is
graded if it is compatible with the partial order induced by degree; the
relation yu = yu1

1 yu2
2 · · · yun

n > yv1
1 yv2

2 · · · yvn
n = yv holds whenever we

have |u| = u0 + u1 + · · ·+ un > v0 + v1 + · · ·+ vn = |v|.

9.0.6 Proposition. Let I be an ideal in the ring S := K[x1, x2, . . . , xn]

and let J be its homogenization in the ring R := K[x0, x1, . . . , xn] relative
to x0. For any Gröbner basis g1, g2, . . . , gr of the ideal I with respect to
some graded monomial order >S, the homogenizations eg1, eg1, . . . , egr of the
polynomials g1, g2, . . . , gr relative to x0 generate the ideal J.
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Sketch of Proof. Consider the monomial order >R on R defined by

xu0
0 xu1

1 · · · xun
n > xv0

0 xv1
1 · · · xvn

n ,
(

if yu1
1 yu2

2 · · · yun
n >S yv1

1 yv2
2 · · · yvn

n

or yu1
1 yu2

2 · · · yun
n = yv1

1 yv2
2 · · · yvn

n and u0 > v0.

It suffices to show that eg1, eg1, . . . , egr is a Gröbner basis with respect
to >R of the ideal J. For any homogeneous polynomial f̃ 2 R such
that f := µ0( f̃ ) and LT( f ) = c yu1

1 yu2
2 · · · yun

n for some c 2 K and

some u 2 Nn, observe that LT( f̃ ) = c xdeg( f̃ )�deg( f )
0 xu1

1 xu2
2 · · · xun

n , so
LT( f ) = µ0

�
LT( f̃ )

�
. We also have µ0(J) ✓ I.

Suppose that eh is a homogeneous polynomial in J. It suffices to
prove that LT(eh) is divisible by LT(egj) for some 1 6 j 6 r. We have
h := µ0(eh) 2 I. Since g1, g2, . . . , gr are a Gröbner basis for I, we see
that LT(h) is divisible by some LT(gj). Applying the first observation
twice, we conclude that LT(eh) is divisible by LT(egj).

9.1 Projective Closure

How are homogeneous ideals related to projective varieties? We seek
a dictionary between homogeneous ideals and projective subvarieties.

9.1.0 Definition. For any subset W ✓ Pn(K), the homogeneous ideal
vanishing on W is defined to be

I(W) :=
⌦

f 2 R := K[x0, x1, . . . , xn]
�� f is homogeneous and f (a) = 0 for all a 2W

↵
.

As in the affine dictionary, this homogeneous ideal has a geometric
interpretation.

9.1.1 Proposition. For any subset W in Pn(K), the smallest projective
subvariety W containing W, also known as its projective closure, is
defined by the homogeneous ideal vanishing on W, so W = V

�
I(W)

�
.

Proof. Since W lies in the projective subvariety V
�
I(W)

�
, it follows

that W ✓ V
�
I(W)

�
. Consider a point a 62 W. There is an open subset

Ui in Pn(K) such that a 2 Ui and xi(a) = ai 6= 0. Since Ui \W is
closed, there exists a polynomial f 2 I(Ui \W) that does not vanish
at a. Let ef be the homogenization of f ; we still have ef (a) 6= 0. The
polynomial ef vanishes at all the points of W \Ui and xi vanishes at
each point of W not contained in Ui. It follows that xi ef 2 I(W) and
(xi ef )(a) 6= 0, so a 62 V

�
I(W)

�
.

Given a projective subvariety, we want to find a homogeneous
ideal that vanishes on it.

9.1.2 Lemma. For any affine subvariety X in An ⇠= U0 ⇢ Pn given by the
ideal I in K[y1, y2, . . . , yn], the homogeneous ideal I(X) vanishing on X is
the homogenization J of the ideal I in K[x0, x1, . . . , xn] and the projective
closure of X is X = V(J).
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Proof. Provided I(X) = J, Proposition 9.1.1 shows that V(J) = X.
◆: For each homogeneous f 2 J, set bf := µ0( f ) 2 I. It follows that

f vanishes on the point [1 : a1 : · · · : an] 2 Pn whenever we have
(a1, a2, . . . , an) 2 X, so we deduce that f 2 I(X).

✓: Given a homogeneous f 2 I(X), we have f (1, b1, b2, . . . , bn) = 0
for all (b1, b2, . . . , bn) 2 X. Setting bf := µ0( f ), we have bf 2 I. Since

f = xdeg( bf )
0 f

� x1
x0

, x2
x0

, . . . , xn
x0

�
= xdeg( bf )�deg( f )

0
bf h where bf h is the

homogenization of bf , we conclude that f 2 J.

9.1.3 Proposition. Let X ✓ Pn be a projective variety. For all 0 6 i 6 n,
consider the ideal Ii := I(Ui \ X) in K[y0, y1, . . . , yi�1, yi+1, . . . , yn] and let
Ji denote the homogenization of Ii relative to xi. The homogeneous ideal I(X)

in K[x0, x1, . . . , xn] vanishing on X equals J0 \ J1 \ · · · \ Jn.

Proof. We prove containment in both directions.
✓: For all 0 6 i 6 n, we have X ◆ Ui \ X so I(X) ✓ I(Ui \ X) = Ji by

Lemma 9.1.2.
◆: As each a 2 X is contained in an open set Ui for some 0 6 i 6 n,

we have X ✓ S
i(X \Ui) and I(X) ◆ T

i I(X \Ui) =
T

i Ji.

9.1.4 Corollary. For any projective subvariety X ✓ Pn, there exists a
homogeneous ideal J in K[x0, x1, . . . , xn] such that X = V(J).

As in affine algebraic geometry, a version of the Nullstellensatz
is needed to identify all the homogeneous ideals that vanish on a
projective subvariety.

9.1.5 Theorem (Projective Weak Nullstellensatz). Assume that K is an
algebraically closed field. For any homogeneous ideal I in the polynomial
ring R := K[x0, x1, . . . , xn], the following are equivalent.
(a) The affine subvariety V(I) in An+1 is a finite set.
(b) For each 0 6 i 6 n, we have xmi

i 2 I for some nonnegative integer mi.
(c) For each 0 6 i 6 n, there exists a polynomial g in the reduced Gröbner

basis of the ideal I such that LT(g) is a nonnegative power of xi.
(d) The projective subvariety V(I) in Pn is empty.
(e) The radical of ideal I is either hx0, x1, . . . , xni or h1i.
(f) There exists a positive integer d such that every polynomial of degree

greater than d is contained in the ideal I.

Proof.
(a)) (b): When V(I) = ? in An, the Weak Nullstellensatz 6.0.1

establishes that 1 belongs to I, so mi = 0 for all i suffices. Assume
that V(I) 6= ? in An. For any 0 6 i 6 n, let a1, a2, . . . , a` 2 K be i-th
coordinates of the points in V(I). It follows that the polynomial
fi := ’`

j=1(xi� aj) vanishes on V(I) and fi 2 I
�
V(I)

�
. By the Hilbert

Nullstellensatz 6.0.2, there is a positive integer mi such that f mi
i 2 I.
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The homogeneous piece of f mi
i having degree `mi, namely the

monomial x`mi
i , belongs to the homogeneous ideal I.

(b)) (c): For all 0 6 i 6 n, suppose that xmi
i 2 I. Since xmi

i 2 LT(I),
there exists a polynomial g in the reduced Gröbner basis of the
ideal I such that LT(g) divides xmi

i .
(c)) (a): For all 0 6 i 6 n, suppose that xmi

i 2 LT(I). When we have
ui > mi for all 0 6 i 6 n, the monomial xu0

0 xu1
1 · · · xun

n lies in the
ideal LT(I). Hence, the number of monomials not in LT(I) is at
most m0 m1 · · ·mn. The monomials not in LT(I) form a K-vector
space basis for the quotient R/I. It suffices to show that, for any
0 6 i 6 n, there can be only finitely many distinct i-th coordinates
for points in V(I). Since K-vector space R/I is finite-dimensional,
there exists a nonnegative integer m and c0, c1, . . . , cm 2 K, not
all zero, such that cm [xm

i ] + cm�1 [x
m�1
i ] + · · · + c0 [x

0
i ] = 0. It

follows that cm xm
i + cm�1 xm�1

i + · · ·+ c0 x0
i 2 I. Since a nonzero

polynomial in one variable can have only finitely many zeros, the
points of V(I) have only finitely many different i-th coordinates.

(a)) (d): Suppose that [a0 : a1 : · · · : an] 2 V(I) ✓ Pn. The line passing
through the origin and the point (a0, a1, . . . , an) lies in V(I) ✓An+1.
Since K is infinite, this is an infinite set.

(d)) (e): Suppose that V(I) = ? in Pn. It follows that V(I) in An is
contained in {(0, 0, . . . , 0)}. Since hx0, x1, . . . , xni ✓ I

�
V(I)

�
and the

Strong Nullstellensatz 6.0.5 yields I
�
V(I)

�
=
p

I, the radical idealp
I is either hx0, x1, . . . , xni or h1i.

(e)) (f) and (f)) (b): Both implications are tautological.

9.2 Projective Dictionary

Which ideals corresponds to projective subvarieties?

9.2.0 Definition. The monomial ideal m = hx0, x1, . . . , xni in the ring
R := K[x0, x1, . . . , xn] is the irrelevant ideal because V(m) = ? in Pn.

9.2.1 Definition. The saturation of an ideal I in R with respect to the
irrelevant ideal m is the set

(I : m•) :=
�

f 2 R
�� for all g 2 m there exists a nonnegative integer m such that f gm 2 I

 
.

An ideal I is saturated if I = (I : m•).

9.2.2 Lemma. For any ideal I in the polynomial ring R, the saturation
(I : m•) is an ideal. We also have the inclusions I ✓ (I : m) ✓ (I : m•),
the equality (I : m`) = (I : m•) for all sufficiently large integers `, and the
equality

p
I : m• = (

p
I : m).

Sketch of Proof. The first parts are essentially the same as the special
case on the problem set. We establish that

p
I : m• =

p
I : m.
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• Suppose that f 2
p

I : m•. There exists some positive integer m
such that f m 2 (I : m•). Given g 2 m, we see that f m g` 2 I
for some positive integer `. It follow that ( f g)max(m,`) 2 I, so we
have f g 2

p
I. Since this holds for all g 2 m, we deduce that

f 2 (
p

I : m).
• Suppose that f 2 (

p
I : m). For all 0 6 i 6 n, we have f xi 2

p
I.

Thus, there exists a positive integer m such that ( f xi)
m 2 I. It

follows that f m m(n+1)m ✓ I, so f m 2 (I : m(n+1)m) ✓ (I : m•). We
conclude that f 2

p
I : m•.

9.2.3 Lemma. For any ideal I in the ring R, we have the inclusion of affine
subvarieties V(I) \ V(m) ✓ V(I : m•) in An+1. When K is an algebraically
closed field, we also have V(I) \ V(m) = V(I : m•) in An+1.

Proof. For any two ideal I and J in R, Theorem 7.0.6 establishes the
inclusion of affine subvarieties V(I) \ V(J) ✓ V(I : J) in An+1, where
equality holds when K is algebraically closed. Lemma 9.2.2 shows
that (I : m`) = (I : m•), for all sufficiently large integers `.

9.2.4 Proposition. Assume that the field K is algebraically closed. For any
homogeneous ideal I in R, the projective subvariety V(I) in Pn is empty if
and only if (I : m•) = R.

Proof. The affine subvariety V(I) in An is contained in {0} if and only
if ? = V(I) \ V(m) = V(I : m•). By the weak nullstellensatz, these
equivalent conditions are the same as I : m• = R.

9.2.5 Lemma. The radical of any homogeneous ideal is homogeneous.

Proof. Consider the polynomial f = f0 + f1 + · · ·+ fd 2
p

I where fi
is a homogeneous polynomial of degree i and deg( f ) = d. We must
show that each homogeneous piece fi belongs to

p
I. We proceed

by induction on the number of pieces. The assertion is trivial when
this number is 0 or 1. If one proves that fd 2

p
I, then the induction

hypothesis applied to f � fd will establish the claim. Since we have
f 2
p

I, there exists a positive integer m such that f m 2 I. Expanding
( f0 + f1 + · · ·+ fd)

m, we see that the top degree piece is f m
d . As I is a

homogeneous ideal, f m
d 2 I and fd 2

p
I.

9.2.6 Theorem (Projective Strong Nullstellensatz). Assume that K is
an algebraically closed field. For any homogeneous ideal I in the polynomial
ring R such that (I : m•) 6= h1i = R, the homogenous ideal vanishing on the
nonempty projective variety V(I) is I

�
V(I)

�
=
p

I.

Proof. Let C be the affine subvariety in An+1 defined by the ideal I
and let X be the projective subvariety in Pn defined by the same ideal
I. We first claim that ideal I(C) in R vanishing on C is equal to the
homogeneous ideal I(X) in R vanishing on X.
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✓: Suppose that the homogeneous polynomial f belongs to I(C).
Given a point [a0 : a1 : · · · : an] 2 X, the entire line through the origin
and the point (a0, a1, . . . , an) 2An+1 lies in the affine subvariety C.
Since f vanishes at all points on this line, it follows that f 2 I(X)

and I(C) ✓ I(X).
◆: Suppose that the polynomial f belongs to I(X). Since any

nonzero points in C gives the homogeneous coordinates for a
point in X, it follows that f vanishes on C \ {0}. It remains to
show that f vanishes at the origin. Since the ideal I(X) is homo-
geneous, we know that the homogeneous pieces fi of f , where
f = f0 + f1 + · · ·+ fd and deg( f ) = d, vanish on X. Hence, the
constant term f0 vanishes on X. Since X 6= ?, we have f0 = 0 and
f vanishes at the origin.

The Strong Nullstellensatz 6.0.5 implies that
p

I = I(C) = I(X).

9.2.7 Theorem. For any algebraically closed field K, we have
(

projective subvarieties
in Pn(K)

)
I�!
(

saturated radical
homogeneous ideals in R

)

(
projective subvarieties

in Pn(K)

)
V �

(
saturated radical

homogeneous ideals in R

)

are inclusion-reversing bijections. Furthermore, the irreducible projective
subvarieties correspond to homogeneous prime ideals.

Sketch of Proof. Combine Proposition 9.2.4, the Projective Strong
Nullstellensatz, and the affine case.


