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What are the benefits of projective geometry? We highlight two: the
image of projective subvariety under a morphism is always closed,
and the number of common zeros equals the product of the degrees
of the polynomials.

10.0 Projective Elimination

What distinguishes projective subvarieties from affine subvarieties?
The extra points in the ambient projective space make imagines easier
to understand.

10.0.0 Example. The image of a morphism of affine subvarieties is
not necessarily an affine subvariety. Consider the affine subvariety
X := V(xy � 1) ⇢ A2. Under the projection map p2 : A2 ! A1

defined by (a, b) 7! b, we see that p2(X) =
�

b 2 A1 �� b 6= 0
 

. To
take advantage of projective geometry, regard X ✓ A1 ⇥ A1 as a
subset in P1 ⇥A1 by identifying the first affine line with an affine
open subset in the projective line. The Zariski closure X ✓ P1 ⇥A1

is X =
�
([a0 : a1], b)

�� a1 b = a0
 

. We still have the projection map
p2 : P1 ⇥A1 ! A1 given by ([a0 : a1], b) ! y, but now p2(X) = A1.
The new point ([0 : 1], 0) is mapped to the origin. ⇧

10.0.1 Remark (Families of projective subvarieties). A polynomial f
in K[x0, x1, . . . , xn, y1, y2, . . . , ym] = (K[y1, y2, . . . , ym])[x0, x1, . . . , xn]

is homogeneous of degree d in the variables x0, x1, . . . , xn if there
are hu 2 K[y1, y2, . . . , ym] such that f = Â|u|=d xu hu. For each such
polynomial f , the hypersurface

V( f ) =
��

[a0 : a1 : · · · : an], (b1, b2, . . . , bm)
�
2 Pn ⇥Am �� f (a0, a1, . . . , an, b1, b2, . . . , bm) = 0

 

is well-defined. By intersecting hypersurfaces, we see that any ideal
I in the ring K[x0, x1, . . . , xn, y1, y2, . . . , ym] with generators that are
homogeneous in the variables x0, x1, . . . , xn determines a subvariety
V(I) ✓ Pn ⇥Am.

Do all closed subsets come from homogeneous ideals? When
m = 0, we already know that each projective subvariety X ✓ Pn

corresponds to a homogeneous ideal. A similar argument produces
the following mild generalization.
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10.0.2 Proposition. For any subvariety X ✓ Pn ⇥Am, the ideal I(X) in
the ring K[x0, x1, . . . , xn, y1, y2, . . . , ym] that is homogeneous the variables
x0, x1, . . . , xn and vanishes on X, is the intersection of the homogenizations
of Ii = I(Ui \ X) where Ui ⇢ Pn ⇥Am is the distinguished open subset
defined by xi 6= 0 for all 0 6 i 6 n,. ⌅
10.0.3 Definition. The projective elimination ideal for an ideal I in
K[x0, x1, . . . , xn, y1, y2, . . . , ym], that is homogeneous in the variables
x0, x1, . . . , xn, is the ideal bI := (I : m•) \ K[y1, y2, . . . , yn].

10.0.4 Theorem (Projective elimination). Let p2 : Pn ⇥Am ! Am be the
projection defined by

�
[a0 : a1 : · · · : an], (b1, b2, . . . , bm)

�
7! (b1, b2, . . . , bm).

For any ideal I in K[x0, x1, . . . , xn, y1, y2, . . . , ym] that is homogeneous in
the variables x0, x1, . . . , xn, we have p2

�
V(I)

�
✓ V(bI ). When the field K is

algebraically closed, we also have p2
�
V(I)

�
= V(bI ).

Proof. Suppose that the point (b1, b2, . . . , bm) 2 p2
�
V(I)

�
is the

image of a point
�
[a0 : a1 : · · · : an], (b1, b2, . . . , bm)

�
2 V(I). For each

polynomial f 2 I that is homogeneous in the variables x0, x1, . . . , xn,
we have f (a0, a1, . . . , an, b1, b2, . . . , bm) = 0. There exists 0 6 i 6 n such
that ai 6= 0. For any h 2 bI, it follows that xk

i h 2 I for some k � 0, so
we have ak

i h(b1, b2, . . . , bm) = 0. We deduce that h(b1, b2, . . . , bm) = 0
and (b1, b2, . . . , bm) 2 V(bI).

It remains to prove the inclusion V(bI) ✓ p2
�
V(I)

�
. Suppose that

there is a point c := (c1, c2, . . . , cm) 2 V(bI) such that c 62 p2
�
V(I)

�
. Let

f1, f2, . . . , fr be generators for the ideal I that are homogeneous in the
variables x0, x1, . . . , xn. Since the homogeneous polynomials

f1(x0, x1, . . . , xn, c1, c2, . . . , cm), f2(x0, x1, . . . , xn, c1, c2, . . . , cm), . . . , fr(x0, x1, . . . , xn, c1, c2, . . . , cm)

in K[x0, x1, . . . , xn] define the empty subvariety in Pn, the projective
weak nullstellensatz implies that mk ✓ h f1(x, c), f2(x, c), . . . , fr(x, c)i
for some k � 0. Hence, for each xu with |u| = k, there exists an
expression xu = Âr

i=1 fi(x, c) pi,u(x), where pi,u 2 K[x0, x1, . . . , xn]

are homogeneous. For all 1 6 j 6 (
k+n

k ), there exists 1 6 ij 6 r
and vj 2 Nn+1 such that gj := xvj fij and the polynomials gj(x, c)
form a K-vector space basis for the homogeneous polynomials in
K[x0, x1, . . . , xn] having degree k. Setting gj = Â|u|=k xu qj,u, we see

that Q := [qj,u] is an
�
(

k+n
k )⇥ (

k+n
k )

�
-matrix of polynomials in the ring

K[y1, y2, . . . , ym]. Hence, we have D := det(Q) 2 K[y1, y2, . . . , ym] and
D(c1, c2, . . . , cm) 6= 0. By Cramer’s rule, we obtain

D xu =
(k+n

k )

Â
j=1

`j,u gj

for a suitable matrix L = [`j,u] with entries in K[y1, y2, . . . , ym]. It
follows that D xu 2 h f1, f2, . . . , fri = I and D 2 bI. However, this
contradicts our assumption that c 2 V(bI).
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10.0.5 Definition. An algebraic variety X is complete if for all varieties
Y, the projection morphism p2 : X ⇥ Y ! Y is a closed map (sends
subvarieties to subvarieties).

The analogous property for topological
spaces characterizes compact spaces X.

10.0.6 Theorem. For any algebraically closed field K and any nonnegative
integer n, the variety Pn is complete.

This theorem is true over any field;
Grothendieck gives a prove via
Nakayama’s Lemma and Chevalley
gives a valuation-theoretic prove.
Nagata exhibited the first example of a
nonprojective complete variety. Chow
showed that every complete variety is
dominated by a projective variety with
the same function field.

Sketch of Proof. We must demonstrate that, for all varieties Y, the map
p2 : Pn ⇥ Y ! Y is closed. The problem is “local” on Y so we may
assume that Y is affine. Since the projective elimination theorem
shows that p2 : Pn ⇥Am ! Am, the claim follows.

10.1 Hilbert Functions

How do we obtain numerical invariants of projective subvarieties?
Working with homogeneous rings and ideals provides new mecha-
nisms for associating integers to projective subvarieties.

10.1.0 Definition. A graded K-algebra R is a ring with a direct-sum
decomposition R =

L
j2Z Rj as K-vector spaces that is compatible

with multiplication: for all integer j and k, we have Rj · Rk ✓ Rj+k.

The adjective “direct-sum” means that
every element f in R can be expressed
uniquely as f = Âi fi where fi 2 Ri .

10.1.1 Examples. The polynomial ring S := K[x0, x1, . . . , xn] is graded
where Sj is K-vector space spanned of all monomials of degree j.

When I is a homogeneous ideal in S, the quotient ring S/I is
graded; the K-vector space (S/I)j is spanned by the image of the
monomials of degree j under the canonical map S ! S/J. ⇧

10.1.2 Definition. For any graded K-algebra R, the Hilbert function
hR : Z ! N is defined, for all integers j, by hR(j) := dimK Rj.

10.1.3 Examples. Counting the monomials of degree j in S via stars-
and-bars, it follows that hS(j) =

� j+n
n
�
.

When f is a homogenous polynomial of degree m and I := h f i, we
have hS/I(j) =

� j+n
n
�
�
� j�m+n

n
�

because the elements in the ideal I of
degree j are of the form f g where g is a homogeneous polynomial of
degree j � m. ⇧

Gröbner bases reduce the computation of Hilbert functions to
monomial ideals.

10.1.4 Proposition (Macaulay). For any homogeneous ideal I is S, we have
hS/I(j) = hS/ LT(I)(j) for all integers j.

Proof. It suffices to show that the set B of all monomials not in the
leading term ideal LT(I) forms a K-vector space basis for S/I. We
first establish that B is linearly independent. If there were a relation
g = c1 xu1 + c2 xu2 + · · ·+ c` xu` 2 I with xuj 2 B and 0 6= cj 2 K, then
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we would have LT(g) 2 LT(I). Since LT(g) is cj xuj for some 1 6 j 6 `

which are not in B, this is a contradiction.
Suppose that B does not span the quotient S/I. Among the set of

elements of S that are not in the span of I and B, we may take f to be
one with minimal leading term. If LT( f ) were in B, we could subtract
it, getting an element with still smaller leading term. It follows that
LT( f ) 2 LT(I). Subtracting an element of I with the same leading
term as f results in a similar contradiction.

10.1.5 Example. Consider the ring S := Q[w, x, y, z] equipped with a
graded reverse lexicographic monomial order. The generators of the
ideal I := hy2 + xz, xy � wz, x2 � wyi are a Gröbner basis. It follows
that the monomials in
(

1, w, z, w2, w z, z2, w3, w2 z, w z2, z3, . . .
x, w x, x z, w2 x, w x z, x z2, . . .
y, w y, y z, w2 y, w y z, y z2, . . .

)
= Q[w, z] t Q[w, z] x t Q[w, z] y

are a Q-vector space basis for the quotient S/I. Thus, we have
hS/J(0, 1, 2, 3, . . . ) = (1, 4, 7, 10, . . . ) or hS/J(J) = 3j+1 for all j 2 N. ⇧

10.1.6 Theorem. For any homogeneous ideal I in S, there exists a unique
pS/I(t) 2 Q[t], called Hilbert polynomial of the quotient S/I, such that
hS/I(j) = pS/I(j) for all i � 0.

Sketch of Proof. We proceed by induction on n. When n = �1, we
have S = K and hS/J(j) = 0 for all positive integers j. Assume that
n > 0 and each monomial ideal in S0 := K[x0, x1, . . . , xn�1] has a
Hilbert polynomial. Since dimK Ij =

� j+n
j
�
� hS/I(j), it suffices to

show that the function j 7! dimK Ij agrees with a polynomial for all
sufficiently large j.

For any nonnegative integers k, consider the auxiliary ideal

I[k] :=
�

f 2 S0 �� f xk
n 2 I

 
.

It follows that chain I[0] ✓ I[1] ✓ I[2] ✓ · · · of ideals is eventually
stationary: I[m] = I[m + 1] = · · · for some nonnegative integer m. The
monomials in I of degree j are the disjoint union of the monomials in
I[k]j�k xk

n for all 0 6 k 6 j. Hence, we have

dimK Ij =
j

Â
k=0

dimK

�
I[k]j�k xk

n
�
=

j

Â
k=0

dimK I[k]j�k =
j

Â
k=m

dimK I[m]j�k +
m�1

Â
k=0

dimK I[k]j�k .

The first part is a finite sum of polynomials and the second part is
constant.

One verifies that the Hilbert polynomial
of X is independent of choice of
homogeneous ideal satisfying
X = V(I).

10.1.7 Definition. For a projective subvariety X in Pn, the Hilbert
polynomial pX is defined to be pS/I 2 Q[t] where I is a homogeneous
ideal in S such that X = V(I). The dimension of X is the degree of
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its Hilbert polynomial, the degree of X is (dim X)! times the leading
coefficient of its Hilbert polynomial, and the arithmetic genus of X is
(�1)dim X�pX(0)� 1

�
.

10.1.8 Example (Hypersurfaces). A hypersurface in Pn is determined
by a homogeneous polynomial f in S of degree m. Since

hS/h f i(j) =
✓

j + n
n

◆
�
✓

j � m + n
n

◆
=

m
(n � 1)!

jn�1 + · · · ,

this projective subvariety has dimension n � 1, degree m, and arith-
metic genus 0. ⇧

10.1.9 Example (Rational normal curves). For a positive integer m, the
Veronese map nm : P1 ! Pm is defined by

[x0 : x1] 7! [xm
0 : xm�1

0 x1 : · · · : xm
1 ] .

It follows that hnm(P1)(j) = mj + 1, so the projective variety nm(P1) is
1-dimensional, degree m, and arithmetic genus 0. ⇧

10.1.10 Example (Veronese embedding). For the map nm : Pn ! PN

where N =
� n+m

m
�

given by

[x0 : x1 : · · · : xn] 7! [xm
0 : xm�1

0 x1 : · · · : xm
n ]

we have hnm(An)(t) =
�mt+n

n
�
. ⇧

10.2 Intersection Multiplicities

How do we count the number of points where two varieties meet?
We want a method of counting that is well-defined even as varieties
vary in families—it should satisfy a continuity principle.

10.2.0 Example. Set K[A2] = K[x, y]. Consider the plane curves
Ct := V(y + x2 � t) ✓ A2 and D := V(y) ✓ A2. The intersection
Ct \ D = {(±

p
t, 0)} is two distinct points for t 6= 0 and one point for

t = 0. The curve Ct is tangent to D if and only if t = 0. ⇧

10.2.1 Example. Consider the plane curves Ct := V(y � x3 � tx) ✓ A2

and D := V(y) ✓ A2. The intersection Ct \ D = {(0, 0), (±
p

t, 0)}
which is three distinct points for t 6= 0 and one point for t = 0. ⇧

10.2.2 Remark. Let a := (a1, a2, . . . , an) be a point in An and let

Ma = hx1 � a1, x2 � a2, . . . , xn � ani

be the associated maximal ideal in the ring K[x1, x2, . . . , xn]. Recall
that any Ma-primary ideal Q satisfies Mk

a ✓ Q ✓ Ma for some k � 0.
The induced quotient map

K[x1, x2, . . . , xn]

Mk
a

! K[x1, x2, . . . , xn]
Q
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is surjective and dimK

�
K[x1, x2, . . . , xn]/Mk

a
�
=
� n+k�1

n
�
. Hence, the

quotient K[x1, x2, . . . , xn]/Q is a finite-dimensional K-vector space.

10.2.3 Definition. Let I be an ideal in K[x1, x2, . . . , xn]. Assume that
Ma is a minimal associated prime of I, so that the corresponding
primary ideal Q is uniquely determined. Assuming that the field K

is algebraically closed, the ideal Ma is a minimal associated prime of
I if and only if the point a is an irreducible component of the affine
subvariety V(I). The multiplicity of ideal I at the point a is

mult(I, a) = dimK

✓
K[x1, x2, . . . , xn]

Q

◆
.

When Ma 6◆ I, we have mult(I, a) = 0.

10.2.4 Example. Consider

hy, y � t + x2i = hy, x2 � ti =
(
hy, x �

p
ti \hy, x +

p
ti t 6= 0,⌦

y, x2↵ t = 0.

When t 6= 0, each primary component has multiplicity 1 because
{1} is a K-vector space basis for the quotient. When t = 0, there is
just one primary component with multiplicity 2 because {1, x} is a
K-vector space basis for the quotient. ⇧

10.2.5 Example. Consider

hy, y � x3 + t xi = hy, x3 � t xi =
(
hy, xi \ hy, x �

p
ti \ hy, x +

p
ti t 6= 0,

hy, x3i t = 0.

When t 6= 0, each primary component has multiplicity 1 because {1}
is a K-vector space basis for the quotient. When t = 0, there is just
one primary component with multiplicity 3 because {1, x, x2} is a
K-vector space basis for the quotient. ⇧

10.2.6 Example. Consider I =
⌦
yx, (x � 2)2x

↵
= hxi \

⌦
y, (x � 2)2↵.

The second component is associated to Ma where a = (2, 0) and
mult(I, a) = 2. The multiplicity at (1, 3) is zero and the multiplicity at
(0, 0) is not defined. ⇧

10.2.7 Example. Consider the ideal I =
⌦
y, y � x2 + x3↵ in A2. It

follows that V(I) = {(0, 0), (1, 0)}. We can compute mult
�

I, (0, 0)
�

using colon ideals. Since
�

I : (I :hx, yi•)
�
= hy, x2i and the monomials

1, x are not in this ideal, we deduce that mult
�

I, (0, 0)
�
= 2. Similarly,�

I : (I :hx � 1, yi•)
�
= hy, x � 1i and the monomial 1 are not in this

ideal, we deduce that mult
�

I, (1, 0)
�
= 1. ⇧

10.2.8 Proposition. For any ideal I in the ring K[x1, x2, . . . , xn] whose
associated primes are all of the form Ma for some point a 2 An, we have

dimK
K[x1, x2, . . . , xn]

I
= Â

a2V(I)
mult(I, a) .
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Sketch of Proof. Choose an irredundant primary decomposition of the
ideal I = Q1 \ Q2 \ · · · \ Qr such that

p
Qi = Mai for all 1 6 i 6 r.

There is a linear map j : K[x1, x2, . . . , xn] !
Lr

j=1 K[x1, x2, . . . , xn]/Qj
defined by f 7! ( f + Q1, f + Q2, . . . , f + Qr). Since Ker(j) = I, it
suffices to show that j is surjective.

For all 1 6 i 6 r and any sufficiently large integer k, we have
Qi ◆ Mk

ai
, so the quotients

K[x1, x2, . . . , xn]

Mk
aj

! K[x1, x2, . . . , xn]
Qj

are surjective. Hence, the map j is surjective provided that the map
y : K[x1, x2, . . . , xn] !

Lr
j=1 K[x1, x2 . . . , xn]/Mk

aj
is surjective.

Surjectivity of y means that there exists
a polynomial with prescribed Taylor
series of order k at the points
a1, a2, . . . , ar .

We proceed by induction on r. The case r = 1 is straightforward,
because we may assume that a1 is the origin. For the inductive step,
consider the polynomials mapping to zero in K[x1, x2, . . . , xn]/Mk

aj

for all 1 6 j < r which form an ideal I0. It is enough to show that the
induced map yr : I0 ! K[x1, x2, . . . , xn]/Mk

ar is surjective. The image
of yr is an ideal, so it suffices to check it contains a unit—an element
that does not vanish at ar. For all 1 6 i < r, let Li be a linear form
with Li(ai) = 0 but Li(ar) 6= 0. The polynomial f = ’r�1

i=1 Lk
i 2 I0 but

f (ar) 6= 0.

10.3 The Bézout Theorem

What happens when two plane curves intersect? Using intersection
multiplicities, we obtain a beautiful uniform result.

10.3.0 Lemma. For any homogeneous ideal I in S := K[x0, x1, . . . , xn]

whose Hilbert polynomial pS/I has degree zero, the projective subvariety
V(I) in Pn is a finite set of points.

Sketch of Proof. Suppose V(I) is contains infinity many points. One of
the distinguished affine open sets Ui ✓ Pn contains infinitely many
points of V(I). Without loss of generality, we may assume that i = 0.
Let J be the dehomogenization of I with respect to the variable x0. It
follows that there are surjections

R :=
K[x0, x1, . . . , xn]

I
µ0��! K[y1, y2, . . . , yn]

J
�! K[U0 \ V(J)] .

For any j 2 N, set Wj := im
�

Rj ! K[U0 \ V(J)]
�
; this is the set of

functions on U0 \ V(J) that can be realized as polynomials of degree
at most j. We have dimK Wj 6 dimK Rj. Since U0 \ V(J) contains
infinitely many points, we deduce that dimK K[U0 \ V(J)] = • and
Wj is unbounded for j � 0. On the other hand, dimK Rj is bounded
because pR is constant which is a contradiction.
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10.3.1 Lemma. Assume that the field K is algebraically closed. For any
saturated homogeneous ideal I in S := K[x0, x1, . . . , xn] whose Hilbert
polynomial pS/I is a nonzero constant, the associated primes of I are the
ideals ha1 x0 � a0 x1, a2 x0 � a0 x2, . . . , an xn�1 � an�1 xni for some point
a 2 V(I) ✓ Pn(K).

Sketch of Proof. Since pS/I is nonzero, the projective Nullstellensatz
establishes that V(I) is nonempty. The associated primes of any
homogeneous ideal are also homogeneous. The only possible em-
bedded prime is m = hx0, x1, . . . , xni which would correspond to an
irrelevant primary component. In the saturated case, these do not
appear.

10.3.2 Proposition. Assume that the field K is algebraically closed. For
any homogeneous ideal I in the ring S := K[x0, x1, . . . , xn] whose Hilbert
polynomial pS/I is a nonzero constant, we have

Â
a2V(I)

mult(I, a) = pS/I .
⌅

10.3.3 Theorem (Bézout 1779). Assume that the field K is algebraically
closed. For any two projective curves C and D in Pn having no common
components, we have Âa2C\D mult

�
I(C \ D), a

�
= deg(C) deg(D). ⌅

10.3.4 Examples. Two quadric curves intersect in four points, some
of which may coincide. To properly account for all intersections, we
may need to consider complex coordinates or points at infinity.
• Since the intersection of the homogeneous ideals hx2 + y2 � z2i and

hx2 + 3y2 � 2z2i is

hx � y,
p

2 y � zi \hx � y,
p

2 y + zi \hx + y,
p

2 y � zi \hx + y,
p

2 y + zi ,

two quadrics can intersect in four distinct points. In this case, the
intersection multiplicity at each point is 1.

• Since the intersection of the homogeneous ideals hx2 + y2 � z2i and⌦
(x � z)2 + y2↵ is hx � i y, zi \hx + i y, zi \

⌦
x � z, y2↵, two quadrics

can intersect in three distinct points (two at infinity). In this case,
the intersection multiplicity at the point [1 : 0 : 1] is 2.

• Since the intersection of the homogeneous ideals
⌦

x2 + y2 � z2↵

and
⌦
(x � z)2 + 4y2 � 4z2↵ is

hx + z, y2i \h3x � z, 3y � 2
p

2 zi \h3x � z, 3y + 2
p

2 zi ,

two quadrics can intersect in three distinct points. In this case, the
intersection multiplicity at the point [�1 : 0 : 1] is 2.

• Since
⌦

x2 + y2 � z2, x2 + 4y2 � z2↵ =
⌦

x � z, y2↵ \
⌦

x + z, y2↵, two
quadrics can intersect in two distinct points. The intersection
multiplicity at both of the points [±1 : 0 : 1] is 2.
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• Since the intersection of the homogeneous ideals
⌦

x2 + y2 � z2↵

and
⌦
5x2 + 6xy + 5y2 + 6yz � 5z2↵ is

hx � z, yi \hy2 � 2z(x + z), y(x + z), (x + z)2i ,

two quadrics can intersect in two distinct points. In this case, the
intersection multiplicity at the point [�1 : 0 : 1] is 3.

• Since

hx2 + y2 � z2, 4x2 + y2 + 6xz + 2z2i = hy2 � 2x(x + z), (x + z)2i ,

two quadrics can intersect at a unique point. In this case, the
intersection multiplicity at the point [�1 : 0 : 1] is 4. ⇧

Extending this result to higher-dimensional varieties is an impor-
tant problem in algebraic geometry. What is the “right” notion of
multiplicity?

10.3.5 Example. Consider the subvarieties X := V(x1, x2) [ V(x3, x4)

and Y := V(x1 � x3, x2 � x4) in P4. Since

K[x0, x1, . . . , x4]
I + J

⇠=
K[x0, x3, x4]⌦
x2

4, x3x4, x2
3
↵ = SpanK(1)�

M

i>1
SpanK(xi

0, xi�1
0 x3, xi�1

0 x4) ,

we see that pX\Y = 3. However, we also have pX = t2 + 3t + 1 and
pY = 1

2 t2 + 3
2 t + 1, so deg(X) deg(Y) = 2 · 1 = 2 < 3. ⇧

Fixing these problems leads to intersection theory:
• geometric approach: Fulton
• algebraic approach: Vogel
• intersection homology, standard homological conjectures.


