Problems 1

Due: Friday, 20 January 2023 before 17:00 EST

Students registered in MATH 413 should submit solutions to any three problems, whereas students in MATH 813 should submit solutions to all five.

- **P1.1.** Let *p* be a prime integer and let \mathbb{F}_p be a finite field with *p* elements. Demonstrate that $x^p x$ is a nonzero polynomial in $\mathbb{F}_p[x]$ that vanishes at every point in $\mathbb{A}^1(\mathbb{F}_p)$.
- **P1.2.** Consider the map $\sigma : \mathbb{A}^3(\mathbb{Q}) \to \mathbb{A}^6(\mathbb{Q})$ defined by $\sigma(x_1, x_2, x_3) := (x_1^2, x_1x_2, x_1x_3, x_2^2, x_2x_3, x_3^2)$. Let z_1, z_2, \ldots, z_6 denote the corresponding coordinates on $\mathbb{A}^6(\mathbb{Q})$.
 - (i) Show that the image of the map σ satisfies the equations given by the 2-minors of the symmetric matrix

$$\Omega := \begin{bmatrix} z_1 & z_2 & z_3 \\ z_2 & z_4 & z_5 \\ z_3 & z_5 & z_6 \end{bmatrix}.$$

- (ii) Compute the dimension of the rational vector space *V* in $S := \mathbb{Q}[z_1, z_2, ..., z_6]$ spanned by these 2-minors.
- (iii) Show that every homogeneous polynomial of degree 2 in the polynomial ring *S* vanishing on the image of σ is contained in *V*.
- **P1.3.** Consider the curve, called a *strophoid*, with the trigonometric parametrization given by $x = a \sin(\theta)$ and $y = a \tan(\theta) (1 + \sin(\theta))$ where *a* is a constant and θ is a real parameter.
 - (i) Find the implicit polynomial equation in *x* and *y* that describes the strophoid.
 - (ii) Find a rational parametrization of the strophoid.
- **P1.4.** Prove that any nonempty open subset of an irreducible topological space is dense and irreducible (in the induced topology).
- **P1.5.** Let *d* be a nonnegative integer.
 - (i) Show that the polynomial $\binom{x}{d} := \frac{1}{d!}x(x-1)\cdots(x-d+1)$ in $\mathbb{Q}[x]$ takes integer values when evaluated at any integer.
 - (ii) Show that every integer-valued polynomial in $\mathbb{Q}[x]$ of degree at most *d* can be written as a unique *integer* linear combination of the polynomials $\binom{x}{d}, \binom{x}{d-1}, \ldots, \binom{x}{0}$.

