Problems 1

Due: Friday, 20 January 2023 before 17:00 EST

Students registered in MATH 413 should submit solutions to any three problems, whereas students in MATH 813 should submit solutions to all five.

P1.1. Let p be a prime integer and let \mathbb{F}_{p} be a finite field with p elements. Demonstrate that $x^{p}-x$ is a nonzero polynomial in $\mathbb{F}_{p}[x]$ that vanishes at every point in $\mathbb{A}^{1}\left(\mathbb{F}_{p}\right)$.

P1.2. Consider the map $\sigma: \mathbb{A}^{3}(\mathbb{Q}) \rightarrow \mathbb{A}^{6}(\mathbb{Q})$ defined by $\sigma\left(x_{1}, x_{2}, x_{3}\right):=\left(x_{1}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{2}^{2}, x_{2} x_{3}, x_{3}^{2}\right)$. Let $z_{1}, z_{2}, \ldots, z_{6}$ denote the corresponding coordinates on $\mathbb{A}^{6}(\mathbb{Q})$.
(i) Show that the image of the map σ satisfies the equations given by the 2-minors of the symmetric matrix

$$
\Omega:=\left[\begin{array}{lll}
z_{1} & z_{2} & z_{3} \\
z_{2} & z_{4} & z_{5} \\
z_{3} & z_{5} & z_{6}
\end{array}\right]
$$

(ii) Compute the dimension of the rational vector space V in $S:=\mathbb{Q}\left[z_{1}, z_{2}, \ldots, z_{6}\right]$ spanned by these 2-minors.
(iii) Show that every homogeneous polynomial of degree 2 in the polynomial ring S vanishing on the image of σ is contained in V.

P1.3. Consider the curve, called a strophoid, with the trigonometric parametrization given by $x=a \sin (\theta)$ and $y=a \tan (\theta)(1+\sin (\theta))$ where a is a constant and θ is a real parameter.
(i) Find the implicit polynomial equation in x and y that describes the strophoid.
(ii) Find a rational parametrization of the strophoid.

P1.4. Prove that any nonempty open subset of an irreducible topological space is dense and irreducible (in the induced topology).

P1.5. Let d be a nonnegative integer.
(i) Show that the polynomial $\binom{x}{d}:=\frac{1}{d!} x(x-1) \cdots(x-d+1)$ in $\mathbb{Q}[x]$ takes integer values when evaluated at any integer.
(ii) Show that every integer-valued polynomial in $\mathbb{Q}[x]$ of degree at most d can be written as a unique integer linear combination of the polynomials $\binom{x}{d},\left(\begin{array}{c}x \\ d\end{array}-1\right), \ldots,\binom{x}{0}$.

