Problems 2

Due: Friday, 3 February 2023 before 17:00 EST
Students registered in MATH 413 should submit solutions to any three problems, whereas students in MATH 813 should submit solutions to all five.

P2.1. Let $J:=\left\langle x^{v_{1}}, x^{v_{2}}, \ldots, x^{v_{m}}\right\rangle$ and $I:=\left\langle x^{u_{1}}, x^{u_{2}}, \ldots, x^{u_{l}}\right\rangle$ be two monomial ideals in the polynomial ring $S:=\mathbb{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
(i) For any monomial x^{w} in S, prove that the ideal $\left(J: x^{w}\right):=\left\{f \in S \mid f x^{w} \in J\right\}$ is generated by the monomials of $x^{v_{j}} / \operatorname{gcd}\left(x^{v_{j}}, x^{w}\right)$ for all $1 \leqslant j \leqslant m$.
(ii) Prove that intersection $J \cap I$ is generated by monomials $\operatorname{lcm}\left(x^{v_{j}}, x^{u_{i}}\right)$ for all $1 \leqslant j \leqslant m$ and all $1 \leqslant i \leqslant l$.
P2.2. Demonstrate that the following properties characterize the monomial orders $>_{\text {lex }}$ and $>_{\text {grevlex }}$ among all monomial orders $>$ on the polynomial ring $S:=\mathbb{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ satisfying $x_{1}>x_{2}>\cdots>x_{n}$.
(i) For any polynomial $f \in S$ such that $\operatorname{LT}_{\text {lex }}(f) \in \mathbb{K}\left[x_{i}, x_{i+1}, \ldots, x_{n}\right]$ for some $1 \leqslant i \leqslant n$, we have $f \in \mathbb{K}\left[x_{i}, x_{i+1}, \ldots, x_{n}\right]$.
(ii) The monomial order $>_{\text {grevlex }}$ refines the partial order given by total degree and, for any homogeneous $f \in S$ such that $\operatorname{LT}_{\text {grevlex }}(f) \in\left\langle x_{i}, x_{i+1}, \ldots, x_{n}\right\rangle$ for some $1 \leqslant i \leqslant n$, we have $f \in\left\langle x_{i}, x_{i+1}, \ldots, x_{n}\right\rangle$.
P2.3. Let \mathbf{M} be an $(m \times n)$-matrix with nonnegative real entries and let $r_{1}, r_{2}, \ldots, r_{m}$ denote the rows of \mathbf{M}. Assume that $\operatorname{ker}(\mathbf{M}) \cap \mathbb{Z}^{n}=\{0\}$. Define a binary relation $>_{M}$ on the monomials in the polynomial ring $S:=\mathbb{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ as follows:
$x^{u}>_{\mathbf{M}} x^{v}$ if there is an positive integer i (at most m) such that $u \cdot r_{j}=v \cdot r_{j}$ for all $1 \leqslant j \leqslant i-1$ and $u \cdot r_{i}>v \cdot r_{i}$.
(i) Show that $>_{M}$ is a monomial order on the polynomial ring S.
(ii) When $\mathbf{M}:=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$, show that $>_{\mathbf{M}}$ equals $>_{\text {grevlex }}$ on $\mathbb{K}[x, y, z]$.
(iii) For the $(n \times n)$-identity matrix \mathbf{I}, show that $>_{\text {lex }}$ equals $>_{\mathbf{I}}$.

P2.4. Let \mathbb{F}_{2} be a finite field with 2 elements and let I be the ideal in $\mathbb{F}_{2}[x, y, z]$ consisting of polynomials that vanish at every point in $\mathbb{A}^{3}\left(\mathbb{F}_{2}\right)$.
(i) Show that $\left\langle x^{2}-x, y^{2}-y, z^{2}-z\right\rangle \subseteq I$.
(ii) For any $a_{0}, a_{1}, \ldots, a_{7} \in \mathbb{F}_{2}$, show that the polynomial

$$
f:=a_{0} x y z+a_{1} x y+a_{2} x z+a_{3} y z+a_{4} x+a_{5} y+a_{6} z+a_{7}
$$

belongs to the ideal I if and only if we have $a_{0}=a_{1}=\cdots=a_{7}=0$.
(iii) Show that $I=\left\langle x^{2}-x, y^{2}-y, z^{2}-z\right\rangle$.

P2.5. A ring R satisfies the artinian if any descending sequence of ideals in R stabilizes. In other words, for any descending sequence $I_{0} \supseteq I_{1} \supseteq I_{2} \supseteq \cdots$ of ideals in R, there exists a nonnegative integer m such that $I_{m}=I_{m+1}=I_{m+2}=\cdots$.
(i) For any positive integer n, show that the quotient rings $\mathbb{Z} /\langle n\rangle$ and $\mathbb{K}[x] /\left\langle x^{n}\right\rangle$ are artinian.
(ii) Show that rings \mathbb{Z} and $\mathbb{K}[x]$ are not artinian.
(iii) Show that every prime ideal in an artinian ring is maximal.

