Problems 2

Due: Friday, 3 February 2023 before 17:00 EST

Students registered in MATH 413 should submit solutions to any three problems, whereas students in MATH 813 should submit solutions to all five.

- **P2.1.** Let $J := \langle x^{v_1}, x^{v_2}, \dots, x^{v_m} \rangle$ and $I := \langle x^{u_1}, x^{u_2}, \dots, x^{u_l} \rangle$ be two monomial ideals in the polynomial ring $S := \mathbb{K}[x_1, x_2, \dots, x_n]$.
 - (i) For any monomial x^w in *S*, prove that the ideal $(J : x^w) := \{f \in S \mid f x^w \in J\}$ is generated by the monomials of $x^{v_j} / \gcd(x^{v_j}, x^w)$ for all $1 \le j \le m$.
 - (ii) Prove that intersection $J \cap I$ is generated by monomials $lcm(x^{v_j}, x^{u_i})$ for all $1 \le j \le m$ and all $1 \le i \le l$.
- **P2.2.** Demonstrate that the following properties characterize the monomial orders $>_{lex}$ and $>_{grevlex}$ among all monomial orders > on the polynomial ring $S := \mathbb{K}[x_1, x_2, \dots, x_n]$ satisfying $x_1 > x_2 > \dots > x_n$.
 - (i) For any polynomial $f \in S$ such that $LT_{lex}(f) \in \mathbb{K}[x_i, x_{i+1}, \dots, x_n]$ for some $1 \leq i \leq n$, we have $f \in \mathbb{K}[x_i, x_{i+1}, \dots, x_n]$.
 - (ii) The monomial order $>_{\text{grevlex}}$ refines the partial order given by total degree and, for any homogeneous $f \in S$ such that $\text{LT}_{\text{grevlex}}(f) \in \langle x_i, x_{i+1}, \dots, x_n \rangle$ for some $1 \leq i \leq n$, we have $f \in \langle x_i, x_{i+1}, \dots, x_n \rangle$.
- **P2.3.** Let **M** be an $(m \times n)$ -matrix with nonnegative real entries and let r_1, r_2, \ldots, r_m denote the rows of **M**. Assume that ker(**M**) $\cap \mathbb{Z}^n = \{0\}$. Define a binary relation $>_M$ on the monomials in the polynomial ring $S := \mathbb{K}[x_1, x_2, \ldots, x_n]$ as follows:
 - $x^u >_{\mathbf{M}} x^v$ if there is an positive integer *i* (at most *m*) such that $u \cdot r_j = v \cdot r_j$ for all $1 \leq j \leq i-1$ and $u \cdot r_i > v \cdot r_i$.
 - (i) Show that $>_{M}$ is a monomial order on the polynomial ring *S*.
 - (ii) When $\mathbf{M} := \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$, show that $>_{\mathbf{M}}$ equals $>_{\text{grevlex}}$ on $\mathbb{K}[x, y, z]$.
 - (iii) For the $(n \times n)$ -identity matrix I, show that $>_{lex}$ equals $>_{I}$.
- **P2.4.** Let \mathbb{F}_2 be a finite field with 2 elements and let *I* be the ideal in $\mathbb{F}_2[x, y, z]$ consisting of polynomials that vanish at every point in $\mathbb{A}^3(\mathbb{F}_2)$.
 - (i) Show that $\langle x^2 x, y^2 y, z^2 z \rangle \subseteq I$.
 - (ii) For any $a_0, a_1, \ldots, a_7 \in \mathbb{F}_2$, show that the polynomial

$$f := a_0 xyz + a_1 xy + a_2 xz + a_3 yz + a_4 x + a_5 y + a_6 z + a_7$$

belongs to the ideal *I* if and only if we have $a_0 = a_1 = \cdots = a_7 = 0$. (iii) Show that $I = \langle x^2 - x, y^2 - y, z^2 - z \rangle$.

- **P2.5.** A ring *R* satisfies the *artinian* if any descending sequence of ideals in *R* stabilizes. In other words, for any descending sequence $I_0 \supseteq I_1 \supseteq I_2 \supseteq \cdots$ of ideals in *R*, there exists a nonnegative integer *m* such that $I_m = I_{m+1} = I_{m+2} = \cdots$.
 - (i) For any positive integer *n*, show that the quotient rings $\mathbb{Z}/\langle n \rangle$ and $\mathbb{K}[x]/\langle x^n \rangle$ are artinian.
 - (ii) Show that rings \mathbb{Z} and $\mathbb{K}[x]$ are not artinian.
 - (iii) Show that every prime ideal in an artinian ring is maximal.

