Problems 3

Due: Friday, 17 February 2023 before 17:00 EST
Students registered in MATH 413 should submit solutions to any three problems, whereas students in MATH 813 should submit solutions to all five.

P3.1. Let $I:=\left\langle x z-y^{2}, w z-x y, w y-x^{2}\right\rangle$ be an ideal in the polynomial ring $\mathbb{Q}[w, x, y, z]$.
(i) Find (without using computer software) the reduced Gröbner basis of I with respect to the graded reverse lexicographic order and $w>x>y>z$.
(ii) Find (without using computer software) the reduced Gröbner basis of I with respect to the lexicographic order and $w>x>y>z$.
(iii) (Bonus) The ideal I has 8 distinct leading term ideals. Can you exhibit these eight monomial ideals?

P3.2. Fix the lexicographic order on the ring $S:=\mathbb{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ where $x_{1}>x_{2}>\cdots>x_{n}$. Let $\mathbf{A}:=\left[a_{j, k}\right]$ be an $(m \times n)$-matrix with entries in the field \mathbb{K}. For all $1 \leqslant j \leqslant m$, let $f_{j}:=a_{j, 1} x_{1}+a_{j, 1} x_{2}+\cdots+a_{j, n} x_{n}$ be the linear polynomial determined by the j-th row of the matrix \mathbf{A}. Suppose that \mathbf{B} is the row-reduced echelon matrix associated to \mathbf{A} and let $g_{1}, g_{2}, \ldots, g_{r}$ be the linear polynomials determined by the nonzero rows in \mathbf{B}.
(i) Prove that $\left\langle f_{1}, f_{2}, \ldots, f_{m}\right\rangle=\left\langle g_{1}, g_{2}, \ldots, g_{r}\right\rangle$.
(ii) Show that $g_{1}, g_{2}, \ldots, g_{r}$ form a Gröbner basis of the ideal $\left\langle f_{1}, f_{2}, \ldots, f_{m}\right\rangle$.
(iii) Explain why $g_{1}, g_{2}, \ldots, g_{r}$ is the reduced Gröbner basis.

P3.3. Suppose we have numbers a, b, c which satisfy the equations

$$
a+b+c=2, \quad a^{2}+b^{2}+c^{2}=18, \quad \text { and } \quad a^{3}+b^{3}+c^{3}=5
$$

(i) Prove that $a^{4}+b^{4}+c^{4}=106$.
(ii) Show that $a^{5}+b^{5}+c^{5} \neq 17$.
(iii) What are $a^{5}+b^{5}+c^{5}$ and $a^{6}+b^{6}+c^{6}$?

P3.4. The Whitney umbrella surface is the image of the polynomial map $\rho: \mathbb{A}^{2} \rightarrow \mathbb{A}^{3}$ defined by

$$
(u, v) \mapsto\left(u v, v, u^{2}\right)
$$

(i) Find the equation(s) for the smallest algebraic subvariety in \mathbb{A}^{3} containing the Whitney umbrella.
(ii) Show that the parametrization fills up this algebraic subvariety over \mathbb{C} but not over \mathbb{R}. Over \mathbb{R}, exactly what points are omitted?
(iii) Show that the parameters u and v are not always uniquely determined by a point in \mathbb{A}^{3}. Find the points where uniqueness fails.

P3.5. Consider the ideal $I:=\left\langle x^{2}+2 y^{2}-12, x^{2}+x y+y^{2}-12\right\rangle$ in $\mathbb{Q}[x, y]$.
(i) Find Gröbner basis for $I \cap \mathbb{Q}[x]$ and $I \cap \mathbb{Q}[y]$.
(ii) Find all solutions to the equations $x^{2}+2 y^{2}=12$ and $x^{2}+x y+y^{2}=12$ in \mathbb{C}.
(iii) Which of the solutions are rational?
(iv) What is the smallest field \mathbb{K} containing \mathbb{Q} such that all solutions lie in \mathbb{K} ?

