Problems 3

Due: Friday, 17 February 2023 before 17:00 EST

Students registered in MATH 413 should submit solutions to any three problems, whereas students in MATH 813 should submit solutions to all five.

- **P3.1.** Let $I := \langle xz y^2, wz xy, wy x^2 \rangle$ be an ideal in the polynomial ring $\mathbb{Q}[w, x, y, z]$.
 - (i) Find (without using computer software) the reduced Gröbner basis of *I* with respect to the graded reverse lexicographic order and w > x > y > z.
 - (ii) Find (without using computer software) the reduced Gröbner basis of I with respect to the lexicographic order and w > x > y > z.
 - (iii) (Bonus) The ideal I has 8 distinct leading term ideals. Can you exhibit these eight monomial ideals?
- **P3.2.** Fix the lexicographic order on the ring $S := \mathbb{K}[x_1, x_2, \dots, x_n]$ where $x_1 > x_2 > \dots > x_n$. Let $\mathbf{A} := [a_{i,k}]$ be an $(m \times n)$ -matrix with entries in the field \mathbb{K} . For all $1 \le j \le m$, let $f_i := a_{i,1} x_1 + a_{i,1} x_2 + \cdots + a_{i,n} x_n$ be the linear polynomial determined by the j-th row of the matrix **A**. Suppose that **B** is the row-reduced echelon matrix associated to **A** and let g_1, g_2, \dots, g_r be the linear polynomials determined by the nonzero rows in **B**.
 - (i) Prove that $\langle f_1, f_2, \dots, f_m \rangle = \langle g_1, g_2, \dots, g_r \rangle$.
 - (ii) Show that g_1, g_2, \ldots, g_r form a Gröbner basis of the ideal $\langle f_1, f_2, \ldots, f_m \rangle$.
 - (iii) Explain why g_1, g_2, \dots, g_r is the reduced Gröbner basis.
- **P3.3.** Suppose we have numbers *a*, *b*, *c* which satisfy the equations

$$a + b + c = 2$$
, $a^2 + b^2 + c^2 = 18$,

$$-\iota$$
 – 10,

and
$$a^3 + b^3 + c^3 = 5$$
.

- (i) Prove that $a^4 + b^4 + c^4 = 106$.
- (ii) Show that $a^5 + b^5 + c^5 \neq 17$.
- (iii) What are $a^5 + b^5 + c^5$ and $a^6 + b^6 + c^6$?
- **P3.4.** The *Whitney umbrella surface* is the image of the polynomial map $\rho: \mathbb{A}^2 \to \mathbb{A}^3$ defined by $(u,v) \mapsto (uv,v,u^2)$.
 - (i) Find the equation(s) for the smallest algebraic subvariety in \mathbb{A}^3 containing the Whitney umbrella.
 - (ii) Show that the parametrization fills up this algebraic subvariety over C but not over \mathbb{R} . Over \mathbb{R} , exactly what points are omitted?
 - (iii) Show that the parameters u and v are not always uniquely determined by a point in \mathbb{A}^3 . Find the points where uniqueness fails.
- **P3.5.** Consider the ideal $I := \langle x^2 + 2y^2 12, x^2 + xy + y^2 12 \rangle$ in $\mathbb{Q}[x, y]$.
 - (i) Find Gröbner basis for $I \cap \mathbb{Q}[x]$ and $I \cap \mathbb{Q}[y]$.
 - (ii) Find all solutions to the equations $x^2 + 2y^2 = 12$ and $x^2 + xy + y^2 = 12$ in \mathbb{C} .
 - (iii) Which of the solutions are rational?
 - (iv) What is the smallest field \mathbb{K} containing \mathbb{Q} such that all solutions lie in \mathbb{K} ?