Problems 5

Due: Friday, 24 March 2023 before 17:00 EST
Students registered in MATH 413 should submit solutions to any three problems, whereas students in MATH 813 should submit solutions to all five.
$\mathbf{P}_{5.1}$. (i) For any univariate polynomial $f:=a_{m} x^{m}+a_{m-1} x^{m-1}+\cdots+a_{1} x+a_{0}$ of degree m in the ring $\mathbb{K}[x]$, define its homogenization in the ring $\mathbb{K}[x, y]$ to be

$$
f^{\mathrm{h}}:=a_{m} x^{m}+a_{m-1} x^{m-1} y+\cdots+a_{1} x y^{m-1}+a_{0} y^{m} .
$$

Prove that the polynomial f has a root in \mathbb{K} if and only if there exists a point (b, c) in $\mathbb{A}^{2}(\mathbb{K})$ such that $(b, c) \neq(0,0)$ and $f^{h}(b, c)=0$.
(ii) Let \mathbb{K} be a field that is not algebraically closed. Exhibit a bivariate polynomial h in the ring $\mathbb{K}[x, y]$ such that the affine subvariety $\mathrm{V}(h)$ in $\mathbb{A}^{2}(\mathbb{K})$ is just the origin $(0,0)$.
(iii) Let \mathbb{K} be a field that is not algebraically closed. For any positive integer n, demonstrate that there exists a polynomial f in the ring $\mathbb{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ such that the affine subvariety $\mathrm{V}(f)$ in $\mathbb{A}^{n}(\mathbb{K})$ is the origin $(0,0, \ldots, 0)$.
(iv) Let \mathbb{K} be a field that is not algebraically closed. Prove that any $X=\mathrm{V}\left(g_{1}, g_{2}, \ldots, g_{r}\right)$ in $\mathbb{A}^{n}(\mathbb{K})$ can be defined by a single equation.
$\mathbf{P}_{5.2}$. For any ideal I in the $\operatorname{ring} S:=\mathbb{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and any polynomial f in S, the saturation of I with respect to f is the set
$\left(I: f^{\infty}\right):=\left\{g \in S \mid\right.$ there exists a positive integer m such that $\left.f^{m} g \in I\right\}$.
(i) Prove that $\left(I: f^{\infty}\right)$ is an ideal in the ring S.
(ii) Prove that there is an ascending chain of ideals $(I: f) \subseteq\left(I: f^{2}\right) \subseteq\left(I: f^{3}\right) \subseteq \cdots$.
(iii) For any positive integer ℓ, prove that we have the equality $\left(I: f^{\infty}\right)=\left(I: f^{\ell}\right)$ if and only if we have the equality $\left(I: f^{\ell}\right)=\left(I: f^{\ell+1}\right)$.

P5.3. Two ideals I and J in the ring $S:=\mathbb{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ are comaximal if $I+J=S$.
(i) Over an algebraically closed field, show that the ideals I and J are comaximal if and only if we have $\mathrm{V}(I) \cap \mathrm{V}(J)=\varnothing$. Without the algebraically closed hypothesis, show that this can be false.
(ii) When the ideals I and J are comaximal, show that $I J=I \cap J$.
(iii) When the ideals I and J are comaximal, show that, for all positive integers i and j, the ideals I^{i} and J^{j} are comaximal.

P5.4. (i) Consider the affine subvariety $X:=\mathrm{V}\left(x^{2}-y z, x z-x\right)$ in \mathbb{A}^{3}. Demonstrate that X is a union of 3 irreducible components. Describe them and find their prime ideals.
(ii) Show that the set of real points on the irreducible complex surface

$$
\mathrm{V}\left(\left(x^{2}+y^{2}\right) z-x^{3}\right) \subset \mathbb{A}^{3}
$$

is connected but is not equidimensional; it is the union of a closed curve and a closed surface in the induced Euclidean topology.

P5.5. Let I be a monomial ideal in the ring $S:=\mathbb{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. For any monomial ideal J generated by pure powers of a subset of the variables, every zerodivisor in the quotient ring S / J is nilpotent, so the ideal J is primary.
(i) Suppose that $x^{\mathbf{u}}$ is a minimal generator of the monomial ideal I such that $x^{\mathbf{u}}=x^{\mathbf{v}_{1}} x^{\mathbf{v}_{2}}$ where the monomials $x^{\mathbf{v}_{1}}$ and $x^{\mathbf{v}_{2}}$ are relatively prime. Show that

$$
I=\left(I+\left\langle x^{\mathbf{v}_{1}}\right\rangle\right) \cap\left(I+\left\langle x^{\mathbf{v}_{2}}\right\rangle\right) .
$$

(ii) Using part (i), find an irredundant primary decomposition of the monomial ideal $\left\langle x^{3} y, x^{3} z, x y^{3}, y^{3} z, x z^{3}, y z^{3}\right\rangle$.

