Problems 6

Due: Monday, 10 April 2023 before 17:00 EDT

Students registered in MATH 413 should submit solutions to any three problems, whereas students in MATH 813 should submit solutions to all four.

- **P6.1.** We analyze how affine lines in \mathbb{R}^n relate to the points at infinity in $\mathbb{P}^n(\mathbb{R}) = \mathbb{R}^n \cup \mathbb{P}^{n-1}(\mathbb{R})$. Given a line *L* in \mathbb{R}^n , we can parametrize *L* by the formula a + bt where *a* is a point on *L* and *b* is a nonzero vector parallel to *L*. In coordinates, we write this parametrization as $t \mapsto (a_1 + b_1 t, a_2 + b_2 t, \dots, a_n + b_n t)$.
 - (i) Regard the line *L* as lying in $\mathbb{P}^{n}(\mathbb{R})$ via $t \mapsto [1:a_{1}+b_{1}t:a_{2}+b_{2}t:\cdots:a_{n}+b_{n}t]$. What happens as $t \to \pm \infty$? What is $L \cap \mathbb{P}^{n-1}(\mathbb{R})$?
 - (ii) Show that the point of $\mathbb{P}^{n-1}(\mathbb{R})$ given by part (i) is the same for all parameterizations of the line *L*.
 - (iii) Show that two lines in \mathbb{R}^n are parallel if and only if they pass through the same point at infinity in $\mathbb{P}^n(\mathbb{R})$.
- **P6.2.** A *homogeneous prime ideal* in the polynomial ring $\mathbb{K}[x_0, x_1, ..., x_n]$ is an ideal that is both homogeneous and prime.
 - (i) Show that a homogeneous ideal *I* in the ring $\mathbb{K}[x_0, x_1, ..., x_n]$ is prime if and only if $I \neq \langle 1 \rangle$ and, for all homogeneous polynomials $f, g \in I$, the relation $f g \in I$ implies that $f \in I$ or $g \in I$.
 - (ii) Prove that, for all homogeneous prime ideals *I* in the ring $\mathbb{K}[x_0, x_1, \dots, x_n]$, the projective variety V(I) is irreducible if *I* is a prime ideal. When *I* is radical, prove that the converse also holds.
- **P6.3.** A projective line in $\mathbb{P}^2(\mathbb{C})$ is an subvariety defined by the equation ax + by + cz = 0where $(0,0,0) \neq (a,b,c) \in \mathbb{A}^3(\mathbb{C})$.
 - (i) Show that the triples (a, b, c) and (a', b', c') define the same projective line if and only if $(a, b, c) = \lambda(a', b', c')$ for some nonzero $\lambda \in \mathbb{C}$.
 - (ii) Show that the map sending the projective line with equation a x + b y + c z = 0 to the vector (a, b, c) gives a bijection ψ : {lines in \mathbb{P}^2 } $\rightarrow (\mathbb{A}^3 \setminus \{0\}) / \sim$, where \sim is the equivalence relation in part (i). This quotient is called the *dual projective plane* and is denoted by $\check{\mathbb{P}}^2$. Geometrically, the points of $\check{\mathbb{P}}^2$ are lines in \mathbb{P}^2 .
 - (iii) Describe the subset of $\check{\mathbb{P}}^2$ corresponding to affine lines in the distinguished affine subset $\mathbb{A}^2 \cong U_0 = \mathbb{P}^2 \setminus V(x)$.
 - (iv) Show that the *incidence correspondence*

$$Y := \left\{ (P,L) \in \mathbb{P}^2 \times \check{\mathbb{P}}^2 \mid P \in L \right\} \subset \mathbb{P}^2 \times \check{\mathbb{P}}^2$$

is a closed subvariety.

(v) Given a point p in \mathbb{P}^2 , consider the set X_p of all projective lines L containing p. We can regard X_p as a subset of $\check{\mathbb{P}}^2$. Show that X_p is a projective line in $\check{\mathbb{P}}^2$. We call the X_p the *pencil of lines* through p.

- **P6.4.** The *general linear group* $GL(\mathbb{K}^{n+1})$ is the set of invertible $(n + 1) \times (n + 1)$ matrices with entries in \mathbb{K} together the binary operation of ordinary matrix multiplication. The center $Z(\mathbb{K}^{n+1})$ of this groups consists of scalar matrices, namely, matrices of the form λI for some $\lambda \in \mathbb{K}$. The *projective linear group* $PGL(\mathbb{K}^{n+1})$ is the quotient of the general linear group by its center.
 - (i) Show that each element of $PGL(\mathbb{K}^{n+1})$ induces an automorphism of \mathbb{P}^n .
 - (ii) For any two sets $\{p_0, p_1, \ldots, p_{n+1}\}, \{q_0, q_1, \ldots, q_{n+1}\} \subset \mathbb{P}^n$ of n+2 points in general position (meaning no n+1 lying on a hyperplane), show that there exists an element of PGL(\mathbb{K}^{n+1}) carrying p_i to q_i for all $0 \leq i \leq n+1$.

