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1. Introduction

Let X be an n-dimensional smooth complex projective variety and let E be a
globally generated vector bundle on X of rank e ⩽ n. The projective space
Pr = P

(
H0(X,E)∗

)
parameterizes sections of E up to scalars. The discriminant

of E is the locus in Pr, typically a hypersurface, defined by

∆(E) :=
{
s ∈ Pr

∣∣ the zero scheme Zeroes(s) of s is singular
}
.

The closed algebraic set Zeroes(s) is understood to have its natural scheme
structure: when e = n, ∆(E) consists of those sections that vanish at something
other than

∫
cn(E) distinct points. There are various situations where it is

of interest to calculate the degree of ∆(E). This comes up, for instance, in
connection with eigenvalues of tensors [2]. In [1], the first author derives a
formula for the degree when e = n and X = Pn.

The first purpose of this note is to give a very quick derivation of a formula
for the (virtual) degree of ∆(E) reproving some results from [10]. For example,
when e = n, we show that the expected degree of ∆(E) is given by

δ(E) =

∫
X

(
KX + c1(E)

)
cn−1(E) + n cn(E) .

If each section s in ∆(E) is singular at several points, then the actual degree
of the discriminant hypersurface is smaller than its postulated one. However,
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when E is very ample and 1-jet spanned, we also show that ∆(E) is irreducible
of the expected degree.

As one might expect, the basic idea is to compute the class of the singular
locus of the universal zero-locus over Pr. It turns out that a somewhat related
computation leads to an extremely quick proof of the Bogomolov instability
theorem for vector bundles of rank 2 on an algebraic surface, reducing the
statement in effect to the Riemann–Hurwitz formula. The existence of a proof
along these lines seems to have been known to the experts, but as far as we
can tell it is not generally familiar. We therefore take this occasion to present
the argument. Some time ago, Langer [9, Appendix] gave an even quicker, but
related proof, using the fact that stability is preserved under pulling back by
generically finite morphisms.

The formula for the ramification locus is derived in Section 1. In Section 2,
we show that, when E is very ample and 1-jet spanned, the discriminant locus
is irreducible of the expected degree. The proof of the Bogomolov instability
theorem occupies Section 3.

Conventions

We work throughout over the complex numbers C. For any vector space V or
vector bundle E, P(V ) or P(E) denotes the projective space of one-dimensional
quotients. Given a smooth variety X, the Chow ring of X is A•(X) (or, if the
reader prefers, this is the even cohomology ring H2•(X,Z)). We write ci(E)
and si(E) for the i-th Chern and Segre classes of a vector bundle E whereas
c(E) and s(E) are the corresponding total Chern and Segre classes. Following
[6, Example 3.2.7], we use the notation c(E − F ) := c(E)/c(F ) = c(E) s(F )
for the “difference” of the total Chern classes of two bundles. Finally, given a
class α in A•(X), the component of α in codimension k is αk ∈ Ak(X).

2. Ramification Locus

In this section, we derive a formula for ramification class of certain morphisms
from projectivized vector bundles. To be more explicit, fix an n-dimensional
smooth complex projective variety X and consider a globally-generated vector
bundle E on X of rank e such that e ⩽ n.

Let VE := H0(X,E) be the C-vector space of global sections of E and set
r := dimC VE − 1. The trivial vector bundle on X with fibre VE is VE ⊗C OX
and the kernel of the evaluation map evE : VE ⊗C OX → E is ME := Ker(evE).
It follows that ME is a vector bundle of rank r−e+1 sitting in the short exact
sequence

0 ME VE ⊗C OX E 0 .
evE
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Applying the duality functor (−)∗ := Hom(−,OX), we obtain the short exact
sequence

0 E∗ (VE ⊗C OX)∗ M∗
E 0 .

The surjective map ontoM∗
E identifies the projectivization P(M∗

E) with a closed
subscheme in the product P

(
(VE ⊗C OX)∗

)
= X × P(V ∗

E) where V ∗
E is the dual

vector space of VE . Thus, we have P(M∗
E) = {(x, [s]) ∈ X × P(V ∗

E) | s(x) = 0}.
Let pE : X × P(V ∗

E) → X be the projection onto the first factor. We also use
pE for the restriction to P(M∗

E). Let qE : P(M∗
E) → P(V ∗

E) be the restriction of
the projection from X×P(V ∗

E) onto the second factor P(V ∗
E). When the vector

bundle E is unnecessary, we omit the subscripts on V , M , p, and q.

Guided by Example 14.4.8 in [6], the ramification locus R(q) of the map
q : P(M∗) → P(V ∗) is the (r−1)-st degeneracy locus of the induced differential
dq : q∗ΩP(V ∗) → ΩP(M∗);

R(q) :=
{
x ∈ P(M∗)

∣∣ rank of map dq at the point x is at most r − 1
}

= Zeroes(
∧r

dq) .

Since P(V ∗) and P(M∗) have dimension r and n + r − e, the subscheme R(q)
has codimension at most

(
r − (r − 1)

)(
n + r − e − (r − 1)

)
= n − e + 1; see

[6, p. 242]. The next proposition provides a formula for the ramification class
[R(q)] in the Chow ring A•(P(M∗)

)
.

Proposition 2.1. When the ramification locus R(q) has codimension n−e+1,
its class in A•(P(M∗)

)
is [R(q)] =

{
c(p∗ΩX) s

(
p∗E∗ ⊗ OP(M∗)(−1)

)}
n−e+1

and
the degree of its pushforward is

deg q∗[R(q)] =

∫
X

p∗

(
[R(q)] c1

(
OP(M∗)(1)

)
r−1

)
.

Proof. Since R(q) has codimension n − e + 1, the Thom–Porteous formula [6,
Theorem 14.4] establishes that [R(q)] = cn−e+1

(
ΩP(M∗) − q∗ΩP(V ∗)

)
. Hence, it

suffices to prove that

cn−e+1

(
ΩP(M∗) − q∗ΩP(V ∗)

)
= cn−e+1

(
p∗ΩX − p∗E∗ ⊗ OP(M∗)(−1)

)
.

By combining the two short exact sequences

0 IP(M∗)/I
2
P(M∗) ΩX×P(V ∗)

∣∣
P(M∗)

ΩP(M∗) 0

0 q∗ΩP(V ∗) ΩX×P(V ∗)

∣∣
P(M∗)

p∗ΩX 0 ,

δ

θ
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we obtain the commutative diagram:

0

q∗ΩP(V ∗)

0 IP(M∗)/I
2
P(M∗) ΩX×P(V ∗)

∣∣
P(M∗)

ΩP(M∗) 0 .

p∗ΩX

0

dq

δ

θ

The snake lemma shows that Coker(dq) ∼= Coker(θ ◦ δ), so we deduce that

cn−e+1

(
ΩP(M∗) − q∗ΩP(V ∗)

)
= cn−e+1

(
p∗ΩX − IP(M∗)/I

2
P(M∗)

)
.

It remains to show that the conormal bundle IP(M∗)/I
2
P(M∗) on P(M∗) is

isomorphic to the vector bundle p∗E∗ ⊗OP(M∗)(−1). As a closed subscheme of
X × P(V ∗), the projectivization P(M∗) is the zero scheme of a regular section
of p∗E ⊗ OX×P(V ∗)(1); see [6, Appendix B.5.6]. Tensoring the Koszul complex
associated to this regular section with OP(M∗) produces the desired isomorphism
p∗E∗ ⊗ OP(M∗)(−1) ∼= IP(M∗) ⊗ OP(M∗)

∼= IP(M∗)/I
2
P(M∗).

To prove the second part, observe that OP(M∗)(1) = q∗OP(V ∗)(1); see [11,
Example 6.1.5]. It follows from the projection formula that the degree of push-
forward is

deg q∗[R(q)] =

∫
P(V ∗)

q∗[R(q)] c1
(
OP(V ∗)(1)

)
r−1

=

∫
P(M∗)

q∗
(
q∗[R(q)] c1

(
OP(V ∗)(1)

)
r−1

)
=

∫
P(M∗)

[R(q)] c1
(
OP(M∗)(1)

)
r−1

=

∫
X

p∗

(
[R(q)] c1

(
OP(M∗)(1)

)
r−1

)
.

In the following examples, we examine three special cases that express ram-
ification class as a polynomial in the Chern classes for E and ΩX . For all
nonnegative integers i, the defining short exact sequence of the kernel bundle
ME shows that p∗ c1

(
OP(M∗)(1)

)
r−e+i = si(M) = ci(E).
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Example 2.2 (e = 1). Suppose that the vector bundle E has rank 1. When
ramification locus R(q) has codimension n, Proposition 2.1 implies that

[R(q)] =
{
c(p∗ΩX) s

(
p∗E∗ ⊗ OP(M∗)(−1)

)}
n

=

n∑
i=0

cn−i(p
∗ΩX) (−1)ic1

(
p∗E∗ ⊗ OP(M∗)(−1)

)i
=

n∑
i=0

cn−i(p
∗ΩX)

i∑
j=0

(
i
j

)
c1(p

∗E)j c1
(
OP(M∗)(1)

)
i−j ,

and deg q∗[R(q)] =

n∑
i=0

(i+ 1)

∫
X

cn−i(ΩX) c1(E)i.

Example 2.3 (n = e). Suppose that the rank of the vector bundle E equals
the dimension of its underlying variety X. When R(q) has codimension 1,
Proposition 2.1 implies that

[R(q)] =
{
c(p∗ΩX) s

(
p∗E∗ ⊗ OP(M∗)(−1)

)}
1

= c1(p
∗ΩX)− c1

(
p∗E∗ ⊗ OP(M∗)(−1)

)
= c1(p

∗ΩX) + c1(p
∗E) + n c1

(
OP(M∗)(1)

)
and deg q∗[R(q)] =

∫
X

(
c1(ΩX) + c1(E)

)
cn−1(E) + n cn(E).

Example 2.4 (e = n− 1). Suppose that the rank of E is the dimension of X
minus 1. Observe that s2(p

∗E) = s1(p
∗E)2 − c2(p

∗E∗) = c1(p
∗E)2 − c2(p

∗E)
and

s2
(
p∗E∗ ⊗ OP(M∗)(−1)

)
=

(
n

n− 2

)
c1
(
OP(M∗)(1)

)
2 − n s1(p

∗E∗) c1
(
OP(M∗)(1)

)
+ s2(p

∗E∗)

=
(
n
2

)
c1
(
OP(M∗)(1)

)
2 − n c1(p

∗E) c1
(
OP(M∗)(1)

)
+ c1(p

∗E)2 − c2(p
∗E) ;

see [6, p. 50 and Example 3.1.1]. When R(q) codimension 2, Proposition 2.1
implies that

[R(q)]

=
{
c(p∗ΩX) s

(
p∗E∗ ⊗ OP(M∗)(−1)

)}
2

= c2(p
∗ΩX) + c1(p

∗ΩX) s1
(
p∗E∗ ⊗ OP(M∗)(−1)

)
+ s2

(
p∗E∗ ⊗ OP(M∗)(−1)

)
= c2(p

∗ΩX) + c1(p
∗ΩX)

(
c1(p

∗E) + (n− 1) c1
(
OP(M∗)(1)

))
+
(
n
2

)
c1
(
OP(M∗)(1)

)
2 − n c1(p

∗E) c1
(
OP(M∗)(1)

)
+ c1(p

∗E)2 − c2(p
∗E)
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and

deg q∗[R(q)] =

∫
X

(
c2(ΩX) + c1(ΩX) c1(E) + c1(E)2 − c2(E)

)
cn−2(E)

+
(
(n− 1) c1(ΩX) + n c1(E)

)
cn−1(E) .

3. Discriminant Locus of a Vector Bundle

This section determines the degree of the discriminant of a vector bundle. As
in the first section, X is an n-dimensional smooth complex projective variety
X and E is a globally-generated vector bundle on X of rank e ⩽ n. Set
VE := H0(X,E), let ME be the kernel of evE : VE ⊗C OX → E, and write
qE : P(M∗

E) → P(V ∗
E) for composition of the inclusion P(M∗

E) → X × P(V ∗
E)

and the projection X × P(V ∗
E) → P(V ∗

E) onto the second factor.
The discriminant locus ∆(E) of the vector bundle E is the reduced scheme

structure on the image of the ramification locus R(qE) under the map qE . A
section s in V ∗

E is nonsingular if its zero scheme Zeroes(s) is nonsingular and
has codimension e in P(V ∗

E); otherwise it is singular. With this terminology,
one verifies that

∆(E) :=
{
[s] ∈ P(V ∗

E)
∣∣ the section s is singular

}
.

The defect of the vector bundle E is the integer def(E) := codim∆(E)−1, the
expected degree of the discriminant locus ∆(E) is δ(E) := deg(qE)∗[R(qE)], and
the coefficient of R(qE) in [R(qE)red] is the unique positive integer mE such
that [R(qE)] = mE [R(qE)red] in the Chow ring A•(P(M∗

E)
)
.

The significance of these numerical invariants becomes clear with an addi-
tional hypothesis.

Remark 3.1. Assume that the ramification locus R(qE) is irreducible and has
dimension r − 1 (or equivalently codimension n − e + 1). It follows that the
discriminant locus ∆(E) is also irreducible. For the function fields C

(
R(qE)

)
and C

(
∆(E)

)
of the reduced schemes R(qE)red and ∆(E), the degree of the

field extension is
[
C
(
R(qE)

)
: C

(
∆(E)

)]
and the degree of R(qE) over ∆(E) is

degR(qE)/∆(E) :=

{[
C
(
R(qE)

)
: C

(
∆(E)

)]
if dim∆(E) = r − 1

0 if dim∆(E) < r − 1.

The definition of the pushforward of a cycle gives

(qE)∗[R(qE)] = mE

(
degR(qE)/∆(E)

)
[∆(E)] ;

see [6, Section 1.4]. Hence, we have def(X) > 0 if and only if δ(E) = 0. When
R(qE) is integral and birational to ∆(E), we also have deg∆(E) = δ(E).
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Although the next result is likely known to experts, we could not find an
adequate reference.

Theorem 3.2. Assume that X an n-dimensional smooth projective variety X
and let E be a very ample vector bundle on X of rank e ⩽ n. Let π : P(E) → X
be the projective bundle associated to E and let L := OP(E)(1) be the tautological
line bundle on the projectivization P(E).

• The discriminant locus ∆(E) of the vector bundle E is isomorphic to the
discriminant locus ∆(L) of the line bundle L. In particular, the discriminant
locus ∆(E) is irreducible.

• When the discriminant locus ∆(E) is a hypersurface, the reduced scheme
R(qE)red is birational to ∆(E) and

deg∆(E) = mE

{
c(p∗ΩX) s

(
p∗E∗ ⊗ OP(M∗

E)(−1)
)}
n−e+1

.

Proof. The canonical isomorphism VE = H0(X,E)
∼=−−→ H0

(
P(E), L

)
= VL in-

duces an isomorphism φ : P(V ∗
L ) → P(V ∗

E). It is enough to show that the
restriction of φ to the discriminant locus ∆(L) yields an isomorphism from
∆(L) to ∆(E). To accomplish this, it suffices to prove that a section s in V ∗

E

is singular if and only if the corresponding section s̃ in V ∗
L is singular. As

this assertion is local, we may assume that X is affine and E ∼=
⊕e

i=1 OX .
Hence, there exist f1, f2, . . . , fe ∈ H0(X,OX) such that s = (f1, f2, . . . , fe) and
s̃ = f1 x1 + f2 x2 + · · · + fe xe where x1, x2, . . . , xe are homogeneous coordi-
nates of Pe−1 = P(V ∗

E). The assertion now follows from a local calculation of
derivatives as appears in [1, Subsection 3.2].

The same calculation shows that restriction of the map

π × φ : P(E)× P(V ∗
L ) → X × P(V ∗

E)

to R(qL)red is a birational map from R(qL)red to R(qE)red. When ∆(L) is a
hypersurface, Proposition 3.2 in [7] demonstrates that reduced scheme R(qL)red
is birational to discriminant locus ∆(L). It follows that the reduced scheme
R(qE)red is birational to discriminant locus ∆(E). Finally, the degree formula
is an immediate consequence of Remark 3.1.

To prove that the ramification locus is reduced, we first record a general
observation about degeneracy loci. Consider three vector bundles A, B, and
C on a smooth projective variety X together with an injective vector bundle
morphism µ : A ⊗ B∗ → C. Let ϖ : P(C) → X be the projective bundle
associated to C, let η : ϖ∗C → OP(C)(1) be the natural surjective morphism,
and let µ̃ : ϖ∗(A ⊗ B∗) → OP(C)(1) be the composition of µ with η. The map
µ̃ corresponds to the morphism µ′ : ϖ∗A → ϖ∗B ⊗ OP(C)(1) via tensor-hom
adjunction.
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Lemma 3.3. For any nonnegative integer k, the k-th degeneracy locus

Dk(µ
′) := Zeroes(

∧k+1
µ′)

is reduced and Cohen–Macaulay of codimension
(
rank(A)− k

)(
rank(B)− k

)
.

Proof. As the assertion is local, we may assume that X is affine and the three
vector bundles are trivial. Let U , V , and W be complex vector spaces such
that A = U ⊗C OX , B = V ⊗C OX , and C = W ⊗C OX . For each nonnegative
integer k, let Dk(U, V ) be the locus of points in P(U ⊗C V

∗) = P
(
HomC(U, V )

)
whose corresponding linear transformations from U to V have rank at most k.

Consider the projective bundle ρ : P(A⊗B∗) → X associated to A⊗B∗. On
Y := P(A⊗B∗), the surjective morphism θ : ρ∗(A⊗B∗) → OY (1) corresponds
to the morphism θ′ : ρ∗A → ρ∗B ⊗ OY (1) whose k-th degeneracy locus Dk(θ

′)
is X × Dk(U, V ). In particular, Dk(θ

′) is reduced and Cohen–Macaulay of
codimension

(
rank(A)− k

)(
rank(B)− k

)
.

Let Q be the cokernel of the map µ : A⊗ B∗ → C. It follows that P(Q) is
a subbundle of P(C). Let ψ : P(C)− P(Q) → Y be the associated trivial affine
bundle over X. Since the map µ′ : ϖ∗A → ϖ∗B ⊗ OP(C)(1) is nonzero away
from P(Q), we have the commutative diagram

P(C)− P(Q) Y

X

ψ

ϖ ρ

with the property that µ′ = ψ∗(θ′). Hence, the k-th degeneracy locus Dk(µ
′)

is the “cone” over Dk(θ
′) in P(C) with vertex P(Q); it is the product of X and

the cone over Dk(U, V ) in P(W ) with vertex P
(
W/(U ⊗ V ∗)

)
. We conclude

that the k-th degeneracy locus Dk(µ
′) is also reduced and Cohen–Macaulay of

codimension
(
rank(A)− k

)(
rank(B)− k

)
.

To ensure that the ramification locus R(qE) is reduced, we rely on a stronger
hypothesis than E being very ample. To define this condition, we use the first
jet bundle J1(E) that parametrizes the first-order Taylor expansions of the
sections of E. More precisely, let J be the ideal sheaf defining the diagonal
embedding X ↪→ X ×X and let pr1,pr2 : Zeroes(J2) → X be the restrictions
of the projections X ×X → X to the closed subscheme Zeroes(J2) ⊂ X ×X.
The first jet bundle is J1(E) := (pr1)∗ pr

∗
2 E; this is also called the bundle of

principal parts in [6, Example 2.5.6]. The vector bundle J1(E) has rank n+ 1
and sits in the short exact sequence

0 ΩX ⊗ E J1(E) E 0 .
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The vector bundle E is 1-jet spanned if the evaluation map VE⊗C OX → J1(E)
is surjective; see [3, Subsection 1.3]. With this concept, we have the following
corollary.

Corollary 3.4. Let X be an n-dimensional smooth projective variety and let
E be a very ample vector bundle of rank e ⩽ n. Assuming that the vector
bundle E is 1-jet spanned, the ramification locus R(qE) is reduced and Cohen-
Macaulay of codimension n − e + 1, so ∆(E) = (qE)∗[R(qE)]. Furthermore,
the discriminant locus ∆(E) is a hypersurface if and only if we have δ(E) > 0.
When ∆(E) is a hypersurface, the degree of discriminant locus is

deg∆(E) =
{
c(p∗ΩX) s

(
p∗E∗ ⊗ OP(M∗)(−1)

)}
n−e+1

.

Proof. By Theorem 3.2 and Lemma 3.3, it suffices to show the existence of an
injective vector bundle morphism from E∗ ⊗ (ΩX)∗ to M∗

E or equivalently a
surjective map fromME to E⊗ΩX . To establish this, we combine the defining
short exact sequence forME with the canonical short exact sequence for J1(E)
to obtain the following commutative diagram with exact rows:

0 ME VC ⊗C OX E 0

0 ΩX ⊗ E J1(E) E 0 .

Since E is 1-jet spanned, the second vertical map is surjective. Hence, the
snake lemma implies that the first vertical map is also surjective.

Remark 3.5. Remark 0.3.2 in [4] establishes that, for any very ample line bun-
dle L on an m-dimensional smooth projective variety Y , we have def(L) > 0 if
and only if cm

(
J1(L)

)
= 0. When the discriminant locus ∆(L) is a hypersurface,

this remark also shows that deg∆(L) =
∫
Y
cm

(
J1(L)

)
.

Given an n-dimensional smooth projective variety X and a very ample
vector bundle E on X of rank e ⩽ n, Lanteri and Muñoz compute the top
Chern class of the first jet bundle of the line bundle L := OP(E)(1). More

precisely, when Y = P(E), Proposition 1.1 in [10] expresses cn+e−1

(
J1(L)

)
as a

polynomial in the Chern classes of E and the tangent bundle TX . Under the
assumption that the vector bundle E is 1-jet spanned, Corollary 3.4 provides
a different formula for the degree of ∆(E).

Example 3.6. Let L be a very ample line bundle on a smooth projective
variety X. The line bundle L is 1-jet spanned; see [3, Subsection 1.3]. When
the discriminant locus ∆(L) is a hypersurface, Example 2.2 and Corollary 3.4
show that

deg∆(L) =

n∑
i=0

(i+ 1)

∫
X

cn−i(ΩX) c1(L)
i .

Thus, we recover the degree of the classical discriminant; see [7, Example 3.12].
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Our second corollary focuses on vector bundles whose rank equals the di-
mension of their underlying variety. Part of this result provides an alternative
proof for Proposition 2.2 in [10].

Corollary 3.7. Let X be a n-dimensional smooth complex projective vari-
ety. For any very ample vector bundle E of rank n on X, the discrimi-
nant locus ∆(E) is irreducible and def(E) > 0 if and only if X = Pn and
E =

⊕n
i=1 OPn(1). Assuming that the vector bundle E is 1-jet spanned and

(X,E) ̸=
(
Pn,

⊕n
i=1 OPn(1)

)
, the discriminant locus ∆(E) is an irreducible hy-

persurface of degree∫
X

(
c1(ΩX) + c1(E)

)
cn−1(E) + n cn(E) .

Proof. Theorem 3.2 and Example 2.3 show that the discriminant locus ∆(E)
is irreducible and def(E) > 0 if and only if

δ(E) =

∫
X

(
c1(ΩX) + c1(E)

)
cn−1(E) + n cn(E) = 0 .

When (X,E) =
(
Pn,

⊕n
i=1 OPn(1)

)
, we have δ(E) =

(
(−n − 1) + n

)
n + n = 0

and def(E) > 0. Hence, it suffices to show that, for any very ample E excluding⊕n
i=1 OPn(1), we have δ(E) > 0. If E is 1-jet spanned as well as very ample,

then Corollary 3.4 shows that deg∆(E) = δ(E).
Since E is very ample, we have

∫
X
cn(E) > 0; see [5, Proposition 2.2]. Thus,

it is enough to prove that
∫
X

(
c1(ΩX) + c1(E)

)
cn−1(E) ⩾ 0. Let KX be the

canonical divisor on X and let D be the Cartier divisor associated to det(E).
Since E is very ample, D is also. Moreover, Theorem 2 in [13] establishes
that the adjoint divisor KX + D is nef unless (X,E) =

(
Pn,

⊕n
i=1 OPn(1)

)
.

The very ampleness of the vector bundle E implies that cn−1(E) ̸= 0; again
see [5, Proposition 2.2]. We deduce that cn−1(E) is the class of a curve C by
a Bertini-type argument; see [8, Theorem B]. It follows that∫

X

(
c1(ΩX) + c1(E)

)
cn−1(E) = (KX +D) · C ⩾ 0 .

To illustrate this corollary, we recompute the degree of the discriminant
locus for nonnegative twists of the tangent bundle on Pn; see [2, Corollary 4.2]
and [1, Example 4.9].

Example 3.8. Let d be a nonnegative integer and let TPn be the tangent bundle
on Pn. We have c1(ΩPn) = c1

(
OPn(−n− 1)

)
. From the Euler sequence

0 OPn

n⊕
i=1

OPn(1) TPn 0 ,



DISCRIMINANT LOCI (11 of 15)

we deduce that ∫
Pn

ci
(
TPn(d)

)
=

i∑
j=0

(n− j
i− j

)
di−j

(
n+ 1
j

)
for all nonnegative integers i. Combining Propositions 2.1–2.3 in [3], the Euler
sequence also shows that vector bundle TPn(d) is very ample and 1-jet spanned.
Thus, Corollary 3.7 establishes that the discriminant locus ∆

(
TPn(d)

)
is an

irreducible hypersurface and

deg∆
(
TPn(d)

)
= nd

n−1∑
j=0

(n− j) dn−1−j
(
n+ 1
j

)
+ n

n∑
j=0

dn−j
(
n+ 1
j

)
= n

n∑
j=0

dn−j(n+ 1− j)
(

n+ 1
n+ 1− j

)
= n(n+ 1)

n∑
j=0

dn−j
(
n
j

)
= n(n+ 1)(d+ 1)n .

4. Bogomolov Instability Theorem

In this section, we use calculations involving the discriminant divisor of a multi-
section to give a simple proof of the Bogomolov instability theorem for vector
bundles having rank 2 on an algebraic surface. At the very least, it was known
to experts that one could give an argument along these lines. However, since
it fits well with the themes of this note and is not widely known, we felt it
worthwhile to include it here. We refer the reader to [9] for another approach
having several points of contact with the present proof.

Let X be a smooth complex projective surface. We consider a vector bundle
E of rank 2 on X, and denote by D a Cartier divisor associated to det(E). The
vector bundle E is Bogomolov unstable if there exist a divisor A and a finite
scheme W ⊂ X (possibly empty) such that the sequence

0 OX(A) E OX(D −A)⊗ IW 0 ,

is exact, (2A − D)2 > 4 length(W ), and (2A − D) · H > 0 for some (or any)
ample divisor H on X. Roughly speaking, being Bogomolov unstable means
that the vector bundle E contains an unexpectedly positive subsheaf.

Bogomolov’s theorem asserts that instability is detected numerically.

Theorem 4.1. The vector bundle E is Bogomolov unstable if and only if∫
X

c1(E)2 − 4 c2(E) > 0 .
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The defining exact sequence for a Bogomolov unstable vector bundle gives∫
X

c2(E) = length(W ) +A · (D −A) ,

so the inequality holds. Thus, the essential content of the Theorem 4.1 is
the converse statement: the inequality implies the existence of a destabilizing
subsheaf OX(A).

For our proof of this implication, suppose that
∫
X

(
c1(E)2 − 4 c2(E)

)
> 0.

Let π : P(E) → X the projectivization of E, so dimP(E) = 3. The starting
point, as in other arguments, is the next lemma.

Lemma 4.2. When the vector bundle E satisfies the inequality in Theorem 4.1,
the line bundle OP(E)(2)⊗π∗OX(−D) on P(E) is big. In other words, there is a
positive number C > 0 such that, for all sufficiently large integers m, we have

h0
(
P(E),OP(E)(2m)⊗π∗OX(−mD)

)
= h0

(
X,Sym2m(E)⊗OX(−mD)

)
⩾ Cm3 .

Idea of proof. The asymptotic Riemann–Roch theorem [11, Theorem 1.1.24]
shows that

χ
(
X,Sym2m(E)⊗ OX(−mD)

)
= 1

3

(
c21(E)− 4 c2(E)

)
m3 +O(m2) .

The assertion follows via Serre duality and the fact that the vector bundle
Sym2m(E)⊗ OX(−mD) has trivial determinant; see [12, Proposition 2].

Now let H be an ample divisor on X. By an argument of Kodaira [11,
Proposition 2.2.6], it follows from the lemma that, for all sufficiently large
integers m, we have H0

(
P(E),OP(E)(2m) ⊗ π∗OX(−mD − H)

)
̸= 0. Fix one

such integer m and choose nonzero section

s ∈ H0
(
P(E),OP(E)(2m)⊗ π∗OX(−mD −H)

)
.

Let Z := Zeroes(s) be the zero locus of the global section s. The subscheme Z
is a divisor on P(E) of relative degree 2m over X.

We study the irreducible components of Z with the aim of singling out a
particularly interesting one. To begin, let Z0 ⊂ P(E) denote the union of any
“vertical” components of Z: Z0 is the preimage under π of the zeroes of a section
of OX(−A0) for some anti-effective divisor A0 on X. Write Z1, Z2, . . . , Zt in
P(E) for the remaining irreducible components of Z allowing repetitions to
account for multiplicities. In other words, each Zi ⊂ P(E) is a reduced and
irreducible divisor that is defined by a section of OP(E)(di) ⊗ π∗OX(−Ai) for
some divisor Ai on X and positive integer di. By construction, the divisor
A0+A1+ · · ·+At is linearly equivalent to mD+H and d1+d2+ · · ·+dt = 2m,
so the divisor

∑
i⩾1

(
Ai− di

2 D
)
is numerically equivalent to H−A0. Since −A0
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is an effective divisor, it follows that
(∑

i⩾1 2Ai−diD
)
·H > 0. By reindexing

the components if necessary, we may assume that (2A1 − d1D) ·H > 0.

The idea is to consider the discriminant divisor ∆ ⊆ X over which the fibre
of the map Z1 → X is not d1 distinct points. Specifically, Proposition 4.3 shows
that the class of ∆ is given by δ = d1(d1 − 1)D − 2(d1 − 1)A1 and δ is either
effective or zero, so δ ·H ⩾ 0. However, if d1 > 1, then this would contradict the
assumption that (2A1−d1D) ·H > 0. Thus, we have d1 = 1 and Z1 is defined
by a (necessarily saturated) section in H0

(
P(E),OP(E)(1)⊗ π∗OX(−A1)

)
. The

corresponding section in H0
(
X,E ⊗OX(−A)

)
defines a closed subscheme W of

X and gives rise to a short exact sequence

0 OX(A1) E OX(D −A1)⊗ IW 0 .

The inequality
∫
X
c1(E)2 − 4 c2(E) > 0 implies that (2A−D)2 > 4 length(W )

and (2A −D) ·H > 0. Therefore, we have established that the vector bundle
E is unstable.

It remains to prove the following proposition.

Proposition 4.3. Let E be a vector bundle on X having rank 2 and satisfying
det(E) = OX(D), let π : P(E) → X be the projectivization of E, and consider
a reduced and irreducible divisor

Y P(E)

X
f π

defined by a section of OP(E)(d)⊗ π∗OX(−A) for some positive integer d. The
locus ∆(f) ⊆ X of points x ∈ X over which the fibre f−1(x) fails to consist of
d distinct points supports an effective divisor in the class

δ = d(d− 1)D + 2(d− 1)A .

In particular, this class is effective or zero.

Proof. Consider the set Γ :=
{
y ∈ Y

∣∣ f is not étale at y
}
. The map f is

generically étale because Y is reduced. It follows that Γ has dimension 1 (or is
empty) and ∆(f) = f(Γ). We claim that, viewed as a cycle of codimension 2
on P(E), Γ supports the effective class

γ :=
(
(d− 2) c1

(
OP(E)(1)

)
+ π∗(D −A)

)
·
(
d c1

(
OP(E)(1)

)
− π∗A

)
. (∗)

There are at least two ways to confirm this claim.
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• As a cycle on Y , γ is the class of the first degeneracy locus of the induced
differential df : f∗ΩX → ΩY , so

γ = c1(ΩY − f∗ΩX) = c1
(
OY (KY − f∗KX)

)
which is the class of the relative canonical divisor KY/X := KY − f∗KX .
The adjunction formula shows that KY/X = (KP(E)/X + Y )|Y . Thus, as a
cycle on P(E), we have γ = [(KP(E)/X + Y )|Y ] ∩ [Y ]. Since we also have

[Y ] = c1
(
OP(E)(d) ⊗ π∗OX(−A)

)
, the equation (∗) follows from the equality

[KP(E)/X ] = c1
(
OP(E)(−2)⊗ π∗OX(D)

)
; see [11, Section 7.3.A].

• The section s in H0
(
X,OP(E)(d) ⊗ π∗OX(−A)

)
defining Y lifts to a section

of the first relative jet bundle of ds ∈ H0
(
P(E), Jπ1

(
OP(E)(d)⊗ π∗OX(−A)

))
,

and Γ = Zeroes(ds). From the canonical short exact sequence

0 ΩP(E)/X(d)⊗ π∗OX(−A) Jπ1
(
OP(E)(d)⊗ π∗OX(−A)

)
OP(E)(d)⊗ π∗OX(−A) 0

we see that γ = c2
(
Jπ1

(
OP(E)(d)⊗ π∗OX(−A)

))
, which again establishes the

equation (∗).
It remains to check that π∗(γ) = δ. This follows from the Grothendieck relation

c1
(
OP(E)(1)

)2 − π∗(c1(E)
)
· c1

(
OP(E)(1)

)
+ π∗(c2(E)

)
= 0 ,

π∗
(
π∗(α) · c1

(
OP(E)(1)

))
= α, and π∗

(
π∗(β)

)
= 0 for any classes α ∈ A1(X) and

β ∈ A2(X).
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