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ABSTRACT: We highlight some features of the SimplicialComplexes package in Macaulay2.

This updated version of the SimplicialComplexes package in Macaulay2, originally developed by
Sorin Popescu, Gregory G. Smith, and Mike Stillman, adds constructors for many classic examples,
implements a new data type for simplicial maps, and incorporates many improvements to the methods
and documentation. Emphasizing combinatorial and algebraic applications, the primary data type encodes
an abstract simplicial complex—a family of subsets of a finite set that is closed under taking subsets.
These simplicial complexes are the combinatorial counterpart to their geometric realizations formed from
points, line segments, filled-in triangles, solid tetrahedra, and their higher-dimensional analogues in some
Euclidean space. The subsets in a simplicial complex are called faces. The faces having cardinality 1 are
its vertices and the maximal faces (ordered by inclusion) are its facets. The dimension of a simplicial
complex is one less than the maximum cardinality of its faces. Following the combinatorial conventions,
every nonempty simplicial complex has the empty set as a face.

In this package, a simplicial complex is represented by its Stanley–Reisner ideal. The vertices are
identified with a subset of the variables in a polynomial ring and each face is identified with the product of
the corresponding variables. A nonface is any subset of the vertices that does not belong to the simplicial
complex and each nonface is again identified with a product of variables. The Stanley–Reisner ideal of a
simplicial complex is generated by the monomials corresponding to its nonfaces; see Definition 5.1.2 in
[Bruns and Herzog 1993], Definition 1.6 in [Miller and Sturmfels 2005], or Definition II.1.1 in [Stanley
1996]. Because computations in the associated polynomial ring are typically prohibitive, this package is
not intended for simplicial complexes with a large number of vertices.

CONSTRUCTORS. The basic constructor for a simplicial complex accepts two different kinds of input.
Given a list of monomials, it returns the smallest simplicial complex containing the corresponding faces.
Given a radical monomial ideal I, it returns the simplicial complex whose Stanley–Reisner ideal is I. We
illustrate both methods using the “bowtie” complex in Figure 1.
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Figure 1. On the left is the bowtie complex ▶◀ and on the right its Alexander dual ▶◀∗

i1 : needsPackage "SimplicialComplexes"; S = QQ[v..z];
i3 : ▶◀ = simplicialComplex {v*w*x, x*y*z}
o3 = simplicialComplex | xyz vwx |
o3 : SimplicialComplex
i4 : I = monomialIdeal ▶◀
o4 = monomialIdeal (v*y, w*y, v*z, w*z)
o4 : MonomialIdeal of S
i5 : ▶◁ = simplicialComplex I
o5 = simplicialComplex | xyz vwx |
o5 : SimplicialComplex
i6 : assert(▶◀ === ▶◁)

The package also has convenient constructors for some archetypal simplicial complexes. For example,
we recognize the real projective plane and the Klein bottle from the reduced homology groups of some
explicit triangulations; see Theorems 6.3–6.4 in [Munkres 1984].

i7 : P = realProjectiveSpaceComplex(2, R = ZZ[a..h])
o7 = simplicialComplex | bef aef cdf adf bcf cde bde ace abd abc |
o7 : SimplicialComplex
i8 : for j from 0 to 2 list prune HH_j P

o8 = {0, cokernel | 2 |, 0}
o8 : List
i9 : for j from 0 to 2 list prune HH_j kleinBottleComplex R
o9 = {0, cokernel | 2 |, 0}

| 0 |
o9 : List

More comprehensively, Frank H. Lutz enumerates simplicial complexes having a small number of
vertices; see [Lutz]. Using this list, the package creates a database of 43138 simplicial 2-manifolds
having at most 10 vertices and 1343 simplicial 3-manifolds having at most 9 vertices. We demonstrate
this feature by exhibiting the distribution of f-vectors among the 3-manifolds having 9 vertices. For all
nonnegative integers j , the j-th entry in the f-vector is the number of faces having j vertices.

i10 : tally for j from 0 to 1296 list fVector smallManifold(3, 9, j, ZZ[vars(1..9)])
o10 = Tally{{1, 9, 26, 34, 17} => 7 }

{1, 9, 27, 36, 18} => 23
{1, 9, 28, 38, 19} => 45
{1, 9, 29, 40, 20} => 84
{1, 9, 30, 42, 21} => 128
{1, 9, 31, 44, 22} => 175
{1, 9, 32, 46, 23} => 223
{1, 9, 33, 48, 24} => 231
{1, 9, 34, 50, 25} => 209
{1, 9, 35, 52, 26} => 121
{1, 9, 36, 54, 27} => 51

o10 : Tally
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Exploiting the same loop, we construct the simplicial maps from a minimal triangulation of a torus to
the induced subcomplex on the first 7 vertices for each of these 3-manifolds.

i11 : T = smallManifold(2, 7, 6, R = ZZ[a..i])
o11 = simplicialComplex | cfg afg beg aeg cdg bdg def bef adf bcf cde ace abd abc |
o11 : SimplicialComplex
i12 : for j from 0 to 2 list prune HH_j T

2 1
o12 = {0, ZZ, ZZ }
o12 : List
i13 : for j from 0 to 1296 list (

phi := map(smallManifold(3, 9, j, R), T, gens R);
if not isWellDefined phi then continue else phi);

o13 : {}
o13 : List

COMBINATORIAL TOPOLOGY. We use the bowtie complex to showcase some of the key operations on
simplicial complexes. Viewing a simplicial complex as a subcomplex of a simplex yields a duality theory.
For any simplicial complex 1 whose vertices belong to a set V, the Alexander dual is the simplicial
complex 1∗

:= {F ⊆ V | V \ F ̸∈ 1}. Since each simplicial complex in this package has an underlying
polynomial ring, the variables in this ring form a canonical superset of the vertices.

i14 : dual ▶◀
o14 = simplicialComplex | wxz vxz wxy vxy |
o14 : SimplicialComplex
i15 : assert(dual dual ▶◀ === ▶◀ and dual monomialIdeal ▶◀ === monomialIdeal dual ▶◀)

Algebraically, Alexander duality switches the roles of the minimal generators and the irreducible
components in the Stanley–Reisner ideal.

i16 : monomialIdeal dual ▶◀
o16 = monomialIdeal (v*w, y*z)
o16 : MonomialIdeal of S
i17 : irreducibleDecomposition monomialIdeal ▶◀
o17 = {monomialIdeal (v, w), monomialIdeal (y, z) }
o17 : List

The topological form of Alexander duality gives an isomorphism between the reduced homology of a
simplicial complex and reduced cohomology of its dual; see Theorem 5.6 in [Miller and Sturmfels 2005]:

i18 : n = numgens ring ▶◀
o18 = 5
i19 : assert all(-1..n-1, j -> prune HH^(n-j-3) dual ▶◀ == prune HH_j ▶◀)

A simplicial complex 1 is Cohen–Macaulay if the associated quotient ring S/I, where I is the
Stanley–Reisner ideal of 1 in the polynomial ring S, is Cohen–Macaulay. To characterize this attribute
topologically, we introduce a family of subcomplexes. For any face F in 1, the link is the subcomplex
link1(F) := {G ∈ 1 | F ∪ G ∈ 1 and F ∩ G = ∅}. The link of the vertex x in ▶◀ has two disjoint facets.

i20 : L = link(▶◀, x)
o20 = simplicialComplex | yz vw |
o20 : SimplicialComplex
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i21 : prune HH_0 L
1

o21 = QQ
o21 : QQ-module, free

As discovered by Gerald Reisner, the simplicial complex 1 is Cohen–Macaulay if and only if, for all
faces F in 1 and all integers j less than the dimension of link1(F), the j-th reduced homology group
of link1(F) vanishes; see Corollary 5.3.9 in [Bruns and Herzog 1993], Theorem 5.53 in [Miller and
Sturmfels 2005], or Corollary II.4.2 in [Stanley 1996]. Using this criterion, the 0-th reduced homology
certifies that ▶◀ is not Cohen–Macaulay.

i22 : assert(HH_0 L != 0)
i23 : assert(dim(S^1/monomialIdeal ▶◀) =!= n - pdim(^1/monomialIdeal ▶◀))

However, the 1-skeleton of ▶◀ is Cohen–Macaulay.
i24 : ▷◁ = skeleton(1, ▶◀)
o24 = simplicialComplex | yz xz xy wx vx vw |
o24 : SimplicialComplex
i25 : faceList = rsort flatten values faces ▷◁

o25 = {v*w, v*x, w*x, x*y, x*z, y*z, v, w, x, y, z, 1}
o25 : List
i26 : assert all(faceList, F -> (L := link(▷◁, F); all(dim L, j -> HH_j L == 0)))
i27 : assert(dim(S^1/monomialIdeal ▷◁) === n - pdim(S^1/monomialIdeal ▷◁))

Alternatively, we verify that ▶◀ is not Cohen–Macaulay by showing that its h-vector has a negative
entry; see Theorem 5.1.10 in [Bruns and Herzog 1993] or Corollary II.2.5 in [Stanley 1996]. By definition,
the h-vector of a simplicial complex 1 is a binomial transform of its f-vector: for all 0 ⩽ j ⩽ d := dim 1,
we have h j =

∑ j
k=0(−1) j−1

(d+1−k
j−k

)
fk−1. The h-vector encodes the numerator of the Hilbert series

for S/I.
i28 : d = dim ▶◀
o28 = 2
i29 : faces ▶◀
o29 = HashTable{-1 => {1} }

0 => {v, w, x, y, z}
1 => {v*w, v*x, w*x, x*y, x*z, y*z}
2 => {v*w*x, x*y*z}

o29 : HashTable
i30 : fVec = fVector ▶◀
o30 = {1, 5, 6, 2}
o30 : List
i31 : hVec = for j from 0 to d list

sum(j+1, k -> (-1)^(j-k) * binomial(d+1-k, j-k) * fVec#k)
o31 = {1, 2, -1}
o31 : List
i32 : hilbertSeries(S^1/monomialIdeal ▶◀, Reduce => true)

2
1 + 2T - T

o32 = –––––––––––
3

(1 - T)
o32 : Expression of class Divide



Hersey, Smith and Zotine :::: Simplicial complexes in Macaulay2 57

x0

x1
x2

x3

y0 y1

y0 y2
y0 y3

y1 y2 y3

Figure 2. On the left is 0 and on the right is the labeling of its vertices.

RESOLUTIONS OF MONOMIAL IDEALS. As David Bayer, Irena Peeva, and Bernd Sturmfels [Bayer
et al. 1998] revealed, minimal free resolutions of monomial ideals are frequently encoded by a simplicial
complex. Consider a monomial ideal J in the polynomial ring R := Q[y1, y2, . . . , ym]. Assume that R
is equipped with the Nm-grading given by deg(yi ) = ei , for each 1 ⩽ i ⩽ m, where e1, e2, . . . , em is the
standard basis. Let 1 be a simplicial complex whose vertices are labeled by the generators of J. We label
each face F of 1 by the least common multiple y aF ∈ R of its vertices; the empty face is labeled by the
monomial 1 = y a∅. The chain complex C(1) supported on the labeled simplicial complex 1 is the chain
complex of free Nm-graded R-modules with basis corresponding to the faces of 1. More precisely, the
chain complex C(1) is determined by the data

Ci (1) :=

⊕
dim(F) = i−1

R(−aF ) and ∂(F) =

∑
dim(G) = dim(F)−1

sign(G, F) y aF −aG G .

The symbols F and G represent both faces in 1 and basis vectors in the underlying free module of C(1).
The sign of the pair (G, F) belongs to {−1, 0, 1} and is part of the data in the boundary map of the chain
complex of 1. For more information, see Subsection 4.1 in [Miller and Sturmfels 2005] or Chapter 55 in
[Peeva 2011].

We illustrate this construction with an explicit example. Consider the simplicial complex 0 in Figure 2
and the monomial ideal J = (y0 y1, y0 y2, y0 y3, y1 y2 y3) in R = Q[y0, y1, y2, y3]. Label the vertices of 0

by the generators of J :

x0 7→ y0 y1, x1 7→ y0 y2, x2 7→ y0 y3 and x3 7→ y1 y2 y3.

i33 : x = getSymbol "x"; S = ZZ[x_0..x_3];
i35 : 1 = simplicialComplex{x_0*x_1*x_2, x_2*x_3}
o35 = simplicialComplex | x_2x_3 x_0x_1x_2 |
o35 : SimplicialComplex
i36 : chainComplex 1

1 4 4 1
o36 = ZZ <– ZZ <– ZZ <– ZZ

-1 0 1 2
o36 : ChainComplex
i37 : y = getSymbol "y"; R = QQ[y_0..y_3, DegreeRank => 4];
i39 : J = ideal(y_0*y_1, y_0*y_2, y_0*y_3, y_1*y_2*y_3)
o39 = ideal (y y , y y , y y , y y y )

0 1 0 2 0 3 1 2 3
o39 : Ideal of R
i40 : C = chainComplex(1, Labels => J_*)

1 4 4 1
o40 = R <– R <– R <– R

0 1 2 3
o40 : ChainComplex
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i41 : C.dd
1 4

o41 = 0 : R <–––––––––––––––––––––––––––––––––- R : 1
| y_0y_1 y_0y_2 y_0y_3 y_1y_2y_3 |

4 4
1 : R <–––––––––––––––––––––––––––––––––––––– R : 2

{1, 1, 0, 0} | -y_2 -y_3 0 0 |
{1, 0, 1, 0} | y_1 0 -y_3 0 |
{1, 0, 0, 1} | 0 y_1 y_2 -y_1y_2 |
{0, 1, 1, 1} | 0 0 0 y_0 |

4 1
2 : R <–––––––––––––––––––––––- R : 3

{1, 1, 1, 0} | y_3 |
{1, 1, 0, 1} | -y_2 |
{1, 0, 1, 1} | y_1 |
{1, 1, 1, 1} | 0 |

o41 : ChainComplexMap
i42 : assert(res(R^1/J) == C)

The chain complex C(1) depends on the labeling and is not always a resolution.

i43 : C’ = chainComplex(1, Labels => reverse J_*)
1 4 4 1

o43 = R <– R <– R <– R
0 1 2 3

o43 : ChainComplex
i44 : prune homology C’
o44 = 0 : cokernel | y_0y_3 y_0y_2 y_0y_1 y_1y_2y_3 |

1 : cokernel {1, 1, 0, 1} | y_2 |
2 : 0
3 : 0

o44 : GradedModule

Given a monomial ideal J, there are several algorithms that return a labeled simplicial complex 1 such
that chain complex C(1) is a free resolution of R/J. We exhibit a few.

i45 : J’ = monomialIdeal(y_1*y_3, y_2^2, y_0*y_2, y_1^2, y_0^2);
o45 : MonomialIdeal of R
i46 : T = taylorResolution J’

1 5 10 10 5 1
o46 = R <– R <– R <– R <– R <– R

0 1 2 3 4 5
o46 : ChainComplex
i47 : gensJ’ = first entries mingens J’

2 2 2
o47 = {y y , y , y y , y , y }

1 3 2 0 2 1 0
o47 : List
i48 : S = ZZ[x_0..x_4];
i49 : assert(T == chainComplex(simplexComplex(4, S), Labels => gensJ’))
i50 : assert(lyubeznikSimplicialComplex(J’, S) === simplexComplex(4, S))
i51 : 0 = buchbergerSimplicialComplex(J’,S)
o52 = simplicialComplex | x_0x_2x_3x_4 x_0x_1x_2x_3 |
o52 : SimplicialComplex
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i53 : B = buchbergerResolution J’
1 5 9 7 2

o53 = R <– R <– R <– R <– R
0 1 2 3 4

o53 : ChainComplex
i54 : assert all(3, i -> HH_(i+1) B == 0)
i55 : assert(betti B == betti res J’)
i56 : assert(B == chainComplex(0, Labels => first entries mingens J’))
i57 : assert(0 === lyubeznikSimplicialComplex(J’, S, MonomialOrder => 2,1,0,3,4))
i59 : assert(0 === scarfSimplicialComplex(J’, S))

For more information about the Taylor resolution, the Lyubeznik resolution, and the Scarf complex,
see [Mermin 2012]. The Buchberger resolution is described in [Olteanu and Welker 2016].
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