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Smooth Hilbert schemes:
Their classification and geometry

By Roy Skjelnes at Stockholm and Gregory G. Smith at Kingston

Abstract. Closed subschemes in projective space with a fixed Hilbert polynomial are
parametrized by a Hilbert scheme. We classify the smooth ones. We identify numerical condi-
tions on a polynomial that completely determine when the Hilbert scheme is smooth. We also
reinterpret these smooth Hilbert schemes as generalized partial flag varieties and describe the
subschemes being parametrized.

Overview

Hilbert schemes are crucial for compactifying families of subschemes and constructing
moduli spaces. Among these parameter spaces, the Hilbert schemes of points on a projective
surface are exceptional. Being smooth, they have a wider range of applications including deep
results in algebraic geometry, combinatorics, and representation theory; see [1, 11, 13, 21]. In
contrast, little is known about geometric properties of other Hilbert schemes. Even the geome-
try of Hilbp.Pm/, the Hilbert scheme parametrizing closed subschemes in projective m-space
Pm with Hilbert polynomial p, is poorly understood when m > 3. Although Hartshorne [14]
shows that each Hilbp.Pm/ is path-connected, celebrated insights into these Hilbert schemes
typically highlight pathologies. For example, Mumford [20] exhibits an irreducible component
in Hilb14t�23.P3/ that is generically non-reduced, Ellia, Hirschowitz, and Mezzetti [5] show
that the number of irreducible components in HilbdtCc.P3/ is not bounded by a polynomial
in QŒc; d �, and Vakil [29] proves that every singularity type appears in some Hilbp.P4/. As
a counterpoint, this article classifies the smooth Hilbp.Pm/ and describes their geometry.

Our primary theorem uses integer partitions to characterize smooth Hilbert schemes.
A partition � is an r-tuple � WD .�1; �2; : : : ; �r/ of integers satisfying �1 > �2 > � � �> �r > 1.

Theorem A. For any positive integer m and any polynomial p in QŒt �, the Hilbert
scheme Hilbp.Pm/ is a smooth irreducible variety if and only if there exists an integer partition
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� WD .�1; �2; : : : ; �r/ such that
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and one of the following seven conditions holds:

(1) m D 2 > �1,

(2) m > �1 and �r > 2,

(3) � D .1/ or � D .mr�2; �r�1; 1/D .
.r�2/-times‚ …„ ƒ
m; : : : ; m; �r�1; 1/, where r > 2 andm> �r�1 > 1,

(4) � D .mr�s�3; �sC2r�s�2; 1/, where r � 3 > s > 0 and m � 1 > �r�s�2 > 3,

(5) � D .mr�s�5; 2sC4; 1/, where r � 5 > s > 0,

(6) � D .mr�3; 13/, where r > 3,

(7) � D .mC 1/ or r D 0.

These combinatorial conditions encode the underlying geometry. Rewriting the poly-
nomial p in terms of an integer partition � is equivalent to Hilbp.Pm/ being nonempty; see
Remark 2.4. The partition � D .�1/ corresponds to the Grassmannian of .�1 � 1/-dimensional
planes in Pm and � D .mr/ D .m;m; : : : ; m/ corresponds to the Hilbert scheme parametrizing
hypersurfaces of degree r in Pm; both well-known families are covered by Condition (2) and
the case � D .1/ in Condition (3). More generally, every point on a Hilbert scheme satisfying
Condition (3) where � D .md ; `; 1/ corresponds to the scheme-theoretic union of a hyper-
surface of degree d , a linear subspace of dimension ` � 1, and a point. Similarly, general points
on a Hilbert scheme satisfying Condition (5) with � D .md ; 2c ; 1/ correspond to the union of
a hypersurface of degree d , a plane curve of degree c, and a point, whereas those satisfying
Condition (4) with � D .md ; `c ; 1/ correspond to the union of a hypersurface of degree d ,
a hypersurface of degree c contained in an `-dimensional linear subspace, and a point. The
minor discrepancies in Conditions (4) and (5), arising from the integer partitions � D .22; 1/
and � D .23; 1/, are required because the Hilbert schemes with points corresponding to two
skew lines and a twisted cubic curve are singular; see Example 4.4. For Condition (6), a gen-
eral point on the Hilbert scheme with � D .md ; 13/ corresponds to the union of a hypersurface
of degree d and 3 reduced points. For completeness, observe that the unique point on a Hilbert
scheme satisfying Condition (7) corresponds to either Pm or the empty scheme.

The list of conditions in Theorem A is new and answers Lin’s question [17]. However,
the challenge lies in proving that this list is exhaustive. Understanding the geometry of Con-
dition (2) is, unexpectedly, the key to overcoming this challenge. Our geometric interpretation
in this condition relies on expanding the traditional notion of a residual scheme. To be more
precise, consider a hypersurfaceD in Pm. The residual scheme of a closed immersionD � X
in Pm is the unique closed subscheme Y � X such that their defining ideal sheaves on Pm

satisfy IX D IY � ID . Geometrically, the scheme X is the union of Y and D. Building on this
concept, a closed immersion Y � X in Pm is a residual inclusion if there exists a linear sub-
space ƒ in Pm containing X and a hypersurface D in ƒ such that Y is the residual scheme of
D � X in ƒ. We define a residual flag in Pm to be a chain

¿ D XeC1 � Xe � � � � � X1
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such that, for all 1 6 i 6 e, the closed immersion XiC1 � Xi is a residual inclusion; see Defi-
nition 1.4. Unlike other flags, the scheme Xi routinely fails to be equidimensional. Informally,
a residual flag extends a partial flag like a multiset extends a set: the degree of each hypersurface
in a residual flag is analogous to the multiplicity of each element in a multiset. Proposition 1.11
demonstrates that the parameter spaces representing residual flags are projective bundles over
partial flag varieties.

Beyond the classification in Theorem A, our second major contribution proves that a gen-
eral point on the smooth Hilbert schemes satisfying Conditions (2)–(7) corresponds to either
a residual flag or the union of a residual flag and a point. For all integers m greater than 2,
this describes the closed subschemes parametrized by a smooth Hilbp.Pm/. In the first case,
we deduce that these smooth Hilbert schemes are projective bundles over partial flag varieties;
see Theorem 3.2. In particular, every point on a Hilbert scheme satisfying Conditions (2)–(3)
corresponds to a residual flag. In the second case, the smooth Hilbert schemes are birational to
the product of Pm and a projective bundle over a partial flag variety; see Proposition 3.8 and
Example 3.10. In other words, we realize the smooth Hilbert schemes Hilbp.Pm/ as suitable
generalizations of partial flag varieties.

The success in classifying these smooth Hilbert schemes suggests new questions that may
be tractable. What conditions on the partition � imply that Hilbp.Pm/ is irreducible? How does
one extend this result to Quot schemes or nested Hilbert schemes? What is the analogue if Pm

is replaced with a smooth toric variety, a complete intersection, or a Grassmannian?

Strategy of proof. We analyze Hilbp.Pm/ via the induced action of the general lin-
ear group. A point in this Hilbert scheme is Borel-fixed if the stabilizer of the corresponding
closed subscheme contains all lower triangular matrices. Every nonempty Hilbp.Pm/ has a dis-
tinguished Borel-fixed point called the lexicographic point. This point shows that rewriting the
polynomial p in terms of the integer partition � is equivalent to Hilbp.Pm/ being nonempty;
see [18] or [14, Corollary 5.7]. Reeves and Stillman [25, Theorems 1.4 and 4.1] establish that
the lexicographic point is always smooth and determine the dimension of the unique irreducible
component containing it. Proving smoothness reduces, in principle, to computing the dimen-
sion of the tangent space at the other Borel-fixed points. Unfortunately, the rapid growth in
the number of these points and the complexity of individual points overwhelm a brute-force
attack.

To circumvent these complications, we identify a new family of subschemes in Pm

that correspond to singular points on Hilbp.Pm/. Residual flags are used to describe these
points and to prove that they are singular. By exploiting the geometry of residual flags, our
analysis reduces to the Hilbert schemes with an integer partition � D ..m � 1/d ; `c ; 1/, where
m � 2 > ` > 1; see Proposition 4.3. In this situation, we construct an explicit monomial ideal
and exhibit a number of linearly independent deformations; see Lemma 4.2. Since this number
exceeds the dimension of the lexicographic component, this ideal corresponds to a singular
point on Hilbp.Pm/.

In hindsight, the complete classification of smooth Hilbert schemes is obtained from just
a few families of Borel-fixed points. Only three singular families, in addition to our new family,
are required; see Examples 4.4–4.5. For smoothness, only one family other than the lexico-
graphic points is needed; see Theorem 3.2 and Proposition 3.8. This reduction may be the most
surprising development. The relevant Borel-fixed points also, fortuitously, avoid technicalities
arising in positive characteristic, thereby producing uniform results over the integers.
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All seven conditions in Theorem A correspond to Hilbert schemes that are known to
be smooth. Fogarty’s article [6, Theorems 1.4 and 2.4] shows that Conditions (1) and (6)
guarantee smoothness. Serving as our initial inspiration, Staal’s thesis [27, Theorem 1.1] estab-
lishes that Conditions (2)–(3) correspond to smooth Hilbert schemes. Likewise, Ramkumar’s
preprint [24, Theorem A] proves that Conditions (4)–(5) are associated to smooth Hilbert
schemes. Under Condition (7), the Hilbert scheme is just one point. Despite recognizing each
separate condition, the consolidated list does not already appear in the literature and is not
obviously complete.

Computational experience. Although independent of our proofs, calculations using
the software Macaulay2 [10] were indispensable in the discovery of our results. Recoding
the Hilbert polynomial as an integer partition gives a novel method of sampling nonempty
Hilbert schemes. Using Macaulay2, we made a systematic search of the Borel-fixed points,
for all 3 6 m 6 7, exposing Conditions (2)–(6). We learn, a posteriori, that Conditions (2)–(5)
imply that Hilbert schemes have at most two Borel-fixed points. Our computational experi-
ments suggest that the number of parts in the integer partition � equal to 1 governs the size of
the intersection graph for the irreducible components in the Hilbert scheme.

Acknowledgement. We thank Dave Anderson, Sam Payne, Mike Roth, Mike Still-
man, and an anonymous referee for their suggestions. Computational experiments done in
Macaulay2 [10] were indispensable.

1. Residual flags

In this section, we introduce the notion of a residual flag and demonstrate that the scheme
parametrizing these objects is smooth and projective. Throughout, we work over a locally
noetherian base scheme S and E denotes a coherent OS -module. The projectivization of the
graded symmetric algebra Sym.E/ is denoted by P .E/ WD Proj.Sym.E//.

Grassmannians. For any S -scheme T , let ET denote the pull-back of E to T . A sur-
jection of coherent T -modules ET ! F gives a closed immersion

P .F / � P .ET / D P .E/ �S T:

If F is locally free of constant rank nC 1, then the subscheme P .F / is an n-plane in P .ET /.
The set of T -valued points of the functor Gr.n;P .E// is the set of the n-planes in P .ET /.
The S -scheme representing this functor is projective; see [12, Proposition 9.8.4]. When E is
locally free of constant rankmC 1, the map Gr.n;P .E//! S is smooth of relative dimension
.nC 1/.m � n/.

Flag varieties. Consider an e-tuple n WD .n1; n2; : : : ; ne/ of nonnegative integers such
that n1 > n2 > � � � > ne > 0. For any S -scheme T , a flag of type n in P .ET / is a chain of
closed immersions

P .Fe/ � P .Fe�1/ � � � � � P .F1/

where each P .Fi / is an ni -plane in P .ET / for all 1 6 i 6 e. The set of T -valued points of
the functor Flag.n;P .E// is the set of flags of type n in P .ET /. The S -scheme represent-
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ing this functor is projective; see [12, Proposition 9.9.3]. A flag is a succession of Grass-
mannians. Hence, when E is locally free of constant rank n0 C 1, it follows that the map
Flag.n;P .E//! S is smooth of relative dimension

Pe
iD1.ni C 1/.ni�1 � ni /.

Relative divisors. A closed subscheme D � P .E/ is a relative effective Cartier divi-
sor if it is flat over S and its ideal sheaf is invertible. The divisor D has degree d if, for
each geometric point Spec.k/! S , the fibre D �S Spec.k/ is a hypersurface of degree d in
Pm Š P .E/ �S Spec.k/; compare with [15, Corollary 1.1.5.2]. Using the dual sheaf

E� WD Hom.E;OS /;

we may parametrize these divisors in P .E/; see [6, Proposition 1.2] and [16, Exercise 1.4.1.4].

Lemma 1.1. Assume that E is a locally free sheaf and let E� be its dual. For all non-
negative integers d , the S -scheme P .Symd .E�// represents the functor of relative effective
Cartier divisors in P .E/ having degree d .

Proof. Let T be an S -scheme and set

FT WD .Symd .E�//T D Symd ..E�/T /:

For a line bundle L on T and a surjection FT ! L, we see that L� is an invertible subsheaf
of F �T . The ideal sheaf generated by L� in Sym.E�/T is invertible. It determines a hyper-
surface of degree d fibrewise in P .ET / and a relative effective Cartier divisor in P .ET / of
degree d .

Residual scheme. Consider the closed immersion D � X in P .E/, where D is a rela-
tive effective Cartier divisor. Let ID and IX denote the ideal sheaves of the closed subschemes
D and X in P .E/. The residual scheme toD in X is the closed subscheme Y in P .E/ defined
by the colon ideal sheaf

IY WD .IX W ID/ D IX � ID
�1:

It follows that IX D IY � ID and X is the union of the subschemes D and Y ; see [7, Defini-
tion 9.2.1] and [6, pp. 512–513].

Definition 1.2. For any positive integer d , a closed immersion Y � X in P .E/ is
a d -residual inclusion if there exists a relative effective Cartier divisor D in P .E/ of degree d
such that the closed subscheme Y is the residual scheme to D in X with respect to P .E/.

Lemma 1.3. Let d be a positive integer and let Y � X in P .E/ be a d -residual
inclusion. The map Y ! S is flat if and only if the map X ! S is flat.

Proof. The existence of a relative effective Cartier divisorD in P .E/ such that Y is the
residual scheme to D in X yields the short exact sequence

0! OY .�D/! OX ! OD ! 0;

where multiplication by a local equation forD defines the injective map. Since the sheaf OD is
flat over S , we deduce that OY and OY .�D/ are flat over S if and only if OX is flat over S .
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Definition 1.4. Let .n; d/ WD .n1; d1/; .n2; d2/; : : : ; .ne; de/ be a sequence of pairs of
positive integers such that n1 > n2 > � � � > ne > 0. For any S -scheme T , a residual flag of
type .n; d/ in P .ET / is a chain of closed immersions ¿ D XeC1 � Xe � Xe�1 � � � � � X1
in P .ET / such that, for all 1 6 i 6 e, the following properties are satisfied:

(i) the scheme Xi is flat over T ,

(ii) the scheme Xi is contained in some ni -plane P .Fi / � P .ET /, and

(iii) the closed immersion XiC1 � Xi is a di -residual inclusion in P .Fi /.

Remark 1.5. For any residual flag, the third property for i D e asserts that closed
immersion ¿ D XeC1 � Xe is a de-residual inclusion. In other words, the closed subscheme
Xe is a relative effective Cartier divisor of degree de in some ne-plane P .Fe/ � P .ET /.

Remark 1.6. Residual flags generalize flags of linear subspaces. To be more explicit,
assume E is locally free of constant rank mC 1 and let T be an S -scheme. Given a flag
ƒe � ƒe�1 � � � � � ƒ1 of type n in P .ET /, where m > n1, there exists a flag

P .Fe/ � P .Fe�1/ � � � � � P .F1/

of type .n1 C 1; n2 C 1; : : : ; ne C 1/ in P .ET / such that the ni -plane ƒi is a hyperplane in
P .Fi / for all 1 6 i 6 e. Setting XeC1 WD ¿, we define Xi WD ƒi [XiC1 by a descending
induction. It follows that XiC1 � Xi is a 1-residual inclusion for all 1 6 i 6 e. Thus, the
chain of closed immersions ¿ � Xe � Xe�1 � � � � � X1 is a residual flag of type .n1 C 1; 1/,
.n2 C 2; 1/; : : : ; .ne C 1; 1/ in P .ET /.

Example 1.7. We illustrate how to recursively construct the defining ideal for the closed
subschemes in a residual flag. To this end, let .n; d/ WD .3; 2/; .2; 4/ and set S D Spec.k/,
where k is a field. The residual flags of type .n; d/ in P3 WD Proj.kŒx0; x1; x2; x3�/ are nested
pairs X2 � X1 in P3 such that X2 is a planar curve of degree 4 and X2 is a 2-residual scheme
in X1. The defining ideal of X2 has the form

IX2
WD hf1; f2i;

where f1 is a homogeneous polynomial in kŒx0; x1; x2; x3� of degree 1 and f2 is a homoge-
neous polynomial in kŒx0; x1; x2; x3� of degree d2 D 4 that is not divisible by f1. The 2-plane
P .F2/ containing X2 is given by the vanishing of the linear form f1. The defining ideal of the
closed subscheme X1 in P3 has the form

IX1
WD g � IX2

D hgf1; gf2i;

where g 2 kŒx0; x1; x2; x3� is a homogeneous polynomial of degree d1 D 2. Geometrically,
the scheme X1 is the union of the quadratic hypersurface defined by the vanishing of g and the
planar quartic curve X2. For the special configuration in which g D f 21 , the defining ideal of
the closed subscheme X1 is IX1

D hf 31 ; f
2
1 f2i D hf

2
1 i \ hf

3
1 ; f2i. ˘

Functor of residual flags. The pullback of a residual scheme is again a residual scheme;
see [6, Lemma 1.3]. It follows that residual flags define a contravariant functor from the cat-
egory of S -schemes to the category of sets. Let .n; d/ WD .n1; d1/; .n2; d2/; : : : ; .ne; de/ be
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a sequence of pairs of positive integers such that n1 > n2 > � � � > ne and let E be coherent
OS -module. For any S -scheme T , the set of T -valued points of the functor Flag.n; d;P .E//
is defined to be the set of residual flags of type .n; d/ in P .ET /.

Lemma 1.8. Assume that .n1; d1/ is a pair of positive integers and E is a coherent
sheaf on S . Let F be the universal quotient sheaf on the Grassmannian Gr.n1;P .E// and let
F � denote its dual.

(i) When d1 > 1, the S -scheme P .Symd1.F �// represents the functor of residual flags of
type .n1; d1/ in P .E/. The structure map of this S -scheme is the composition of the
canonical maps P .Symd1.F �//! Gr.n1;P .E// and Gr.n1;P .E//! S .

(ii) When d1 D 1, the Grassmannian Gr.n1 � 1;P .E// represents the functor of residual
flags of type .n1; 1/ in P .E/.

Proof. Let T be an S -scheme. Remark 1.5 shows that residual flags of type .n1; 1/
in P .ET / are .n � 1/-planes, so part (ii) follows. Assume that d1 > 1. A T -valued point of
P .Symd1.F �// consists of a line bundle LT on T and a surjection Symd1..FT /

�/! LT
together with a T -valued point of Gr.n1;P .E//. Since

.Symd1.F �//T D Symd1..FT /
�/;

Lemma 1.1 demonstrates that LT corresponds to a relative effective Cartier divisors of degree
d1 in the n1-plane P .FT /. The T -valued point of Gr.n1;P .E// corresponds to the n1-plane
P .FT / � P .ET /. Thus, the S -scheme P .Symd1.F �// represents the residual flags of type
.n1; d1/ in P .E/.

Remark 1.9. When the base scheme S is the spectrum of a field k and d1 > 1, the
parameter space for the residual flags of type .n1; d1/ in Pm WD Proj.kŒx0; x1; : : : ; xm�/ is the
variety of degree d1 hypersurfaces in n1-planes in Pm; see [7, Example 14.7.12].

Latent planes. The definition of a residual flag ¿ � Xe � Xe�1 � � � � � X1 of type
.n; d/ in P .ET / includes the existence of flag of linear subspaces. For all 1 6 i 6 e, the
scheme Xi lies in some ni -plane P .Fi / � P .ET /. When de > 1, we will refer to the set
¹P .Fi / W 1 6 i 6 eº as the latent planes of the residual flag. In the special case de D 1, the
scheme Xe is itself a .ne � 1/-plane and the latent planes are ¹Xeº [ ¹P .Fi / W 1 6 i 6 e � 1º.

Lemma 1.10. Let .n; d/ be the type of a residual flag.

(i) When de > 1, there exists a morphism Flag.n; d;P .E//! Flag.n;P .E// sending
a residual flag to its flag of latent planes.

(ii) When de D 1, there exists a morphism Flag.n; d;P .E//! Flag.nı;P .E// sending
a residual flag to its flag of latent planes, where nı WD .n1; n2; : : : ; ne�1; ne � 1/.

Proof. We need to show that the latent planes are unique and form a flag. Let T be
an S -scheme and let ¿ � Xe � Xe�1 � � � � � X1 be a residual flag of type .n; d/ in P .ET /.
Suppose that, for some 1 6 i 6 e, the scheme Xi is contained in two distinct ni -planes P .Fi /
and P .Fi

0/. The closed immersion XiC1 � Xi is a di -residual inclusion in P .Fi /, so there
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exists a relative effective Cartier divisorDi in P .Fi / such thatXi is the union ofDi andXiC1.
Since the codimension of Xi in P .Fi / equals 1, we deduce that Xi D Di D P .Fi / \ P .Fi

0/.
It follows that either the ni -plane containing Xi is unique or i D 1, D1 D X1, and d1 D 1.
Thus, each schemeXi is contained in a unique plane having the dimension of its corresponding
latent plane, so both assertions follow.

Representability. The pivotal result in this section shows that the functor of residual
flags is representable. Moreover, it realizes this parameter space as a generalization of a partial
flag variety.

Proposition 1.11. Assume that .n; d/ WD .n1; d1/; .n2; d2/; : : : ; .ne; de/ is the type of
a residual flag and E is a coherent sheaf on S . For all 1 6 i 6 e, let F �i denote the dual of the
universal quotient sheaf on the Grassmannian Gr.ni ;P .E//.

(i) When de > 1, we have the Cartesian square

Flag.n; d;P .E// P

Flag.n;P .E// G,

where

P WD P .Symd1.F �1 // �S P .Symd2.F �2 // �S � � � �S P .Symde .F �e //;

G WD Gr.n1;P .E// �S Gr.n2;P .E// �S � � � �S Gr.ne;P .E//

(ii) When de D 1, setting nı WD .n1; n2; : : : ; ne�1; ne � 1/ gives the Cartesian square

Flag.n; d;P .E// P 0

Flag.nı;P .E// G0,

where

P 0 WD P .Symd1.F �1 // �S P .Symd2.F �2 // �S � � �

�S P .Symde�1.F �e�1// �S Gr.ne � 1;P .E//;

G0 WD Gr.n1;P .E// �S Gr.n2;P .E// �S � � �

�S Gr.ne�1;P .E// �S Gr.ne � 1;P .E//:

In both cases, the functor Flag.n; d;P .E// is represented by a projective S -scheme.

Proof. The bottom horizontal arrows in the squares are closed immersions; see for
instance [12, Proposition 9.9.3]. To prove the projectivity of Flag.n; d;P .E//, it is enough
to show that these squares are Cartesian.

Assume that de > 1. Let T be an S -scheme and let ¿ � Xe � Xe�1 � � � � � X1 be
a residual flag of type .n; d/ in P .ET /. For all 1 6 i 6 e, there exists a relative effective
Cartier divisor Di in P .Fi / such that Xi D Di [XiC1. Lemma 1.8 implies that the prod-
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uct of projective bundles P over the product of Grassmannians G parametrizes e-tuples of
relative effective Cartier divisors of degree di contained in some ni -plane in P .E/ for all
1 6 i 6 e. Hence, we have a morphism from Flag.n; d;P .E// to P sending the residual flag
¿ � Xe � Xe�1 � � � � � X1 to the e-tuple .D1 � P .F1/;D2 � P .F2/; : : : ;De � P .Fe//.
Combined with the morphism in Lemma 1.10, we obtain a morphism from Flag.n; d;P .E//
to the fibre product Flag.n;P .E// �G P .

We want to exhibit the inverse of this morphism. A T -valued point of this fibre product
is a flag P .Fe/ � P .Fe�1/ � � � � � P .F1/ of type n in P .ET / together with an e-tuple of rel-
ative effective Cartier divisors Di in P .Fi / for all 1 6 i 6 e. Setting XeC1 WD ¿, we define
Xi WD Di [XiC1 for all 1 6 i 6 e by descending induction. By construction, we have a chain
¿ � Xe � Xe�1 � � � � � X1 of closed immersions in P .ET /. Since Lemma 1.3 shows that,
for all 1 6 i 6 e, the scheme Xi is flat over T , this chain is a residual flag of type .n; d/
in P .ET /. As the pull-back of a residual scheme is again a residual scheme, this construc-
tion is also functorial. We conclude that the scheme Flag.n; d;P .E// and the fibre product
Flag.n;P .E// �G P are isomorphic.

The proof for the case de D 1 is very similar. Since the scheme Xe is a .ne � 1/-plane
in P .ET /, we have a natural morphism from Flag.n; d;P .E// to the product P 0 sending
the residual flag to .D1�P .F1/;D2�P .F2/; : : : ;De�1�P .Fe�1/; Xe �P .ET //. Using
Lemma 1.10, we obtain a morphism from Flag.n; d;P .E// to the appropriate fibre product. As
above, one exhibits the inverse morphism by defining Xi WD Di [XiC1 for all 1 6 i 6 e � 1.

Corollary 1.12. Let .n; d/ WD .n1; d1/; .n2; d2/; : : : ; .ne; de/ be the type of a residual
flag and let E be a locally free sheaf on S of constant rank n0 C 1 where n0 > n1.

(i) When de > 1, the structure map Flag.n; d;P .E//! S is smooth of relative dimension

eX
iD1

" 
ni C di

di

!
� 1C .ni C 1/.ni�1 � ni /

#
:

(ii) When de D 1, the structure map Flag.n; d;P .E//! S is smooth of relative dimension

�.ne�1 � ne/C

eX
iD1

" 
ni C di

di

!
� 1C .ni C 1/.ni�1 � ni /

#
:

Proof. For all 1 6 i 6 e, the sheaf Symdi .F �i / on the Grassmannian Gr.ni ;P .E//
is locally free of constant rank

�niCdi

di

�
. Using the relative dimensions of flag varieties and

Grassmannians, Proposition 1.11 shows that the map Flag.n; d;P .E//! S is smooth of the
claimed relative dimensions.

Question 1.13. When E is locally free, the fibre product interpretation leads to a pre-
sentation for the Chow ring of Flag.n; d;P .E//. Specifically, one combines the formula for the
Chow ring of a projective bundle with the description of the Chow ring of a partial flag vari-
ety; see [7, Examples 8.3.4 and 14.7.16]. Moreover, the cycle map on Flag.n; d;P .E// from
its Chow ring to its integral cohomology ring is an isomorphism; see [7, Example 19.1.11].
Which aspects of Schubert calculus on partial flag varieties extend to the parameter space of
residual flags?
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Question 1.14. For line bundles on P .E/, the higher-direct images under the struc-
ture map to the base scheme S are well-understood. Similarly, the Borel–Weil–Bott theorem
describes the higher-direct images of line bundles on a flag variety under the structure map
to the base scheme. What is the common refinement for line bundles on the parameter space
Flag.n; d;P .E//?

2. Hilbert polynomials and residual flags

Using the geometry of residual flags, we explain the combinatorial formula for the Hilbert
polynomials. We show that the type of a residual flag encodes the Hilbert polynomial of its
largest subscheme. We also prove that every lexicographic ideal (other than the zero ideal and
unit ideal) determines a residual flag. Let R WD kŒx0; x1; : : : ; xm� denote the standard graded
polynomial ring over a field k and set Pm WD Proj.R/.

Integer partitions. We repackage the type of a residual flag as an integer partition.
Given a sequence .n1; d1/; .n2; d2/; : : : ; .ne; de/ of pairs of positive integers such that

n1 > n2 > � � � > ne > 0;

the partition � WD .�1; �2; : : : ; �r/ satisfies �1 > �2 > � � � > �r > 1 and

� D .n1; n1; : : : ; n1„ ƒ‚ …
d1-times

; n2; n2; : : : ; n2„ ƒ‚ …
d2-times

; : : : ; ne; ne; : : : ; ne„ ƒ‚ …
de-times

/:

The length of � is r WD d1 C d2 C � � � C de. It can be convenient to use a notation for integer
partitions that indicates the number of times each integer occurs as a part; see [19, Subsec-
tion 1.1]. The expression � D .: : : ; iai ; : : : ; 2a2 ; 1a1/ means that, for all positive integers i ,
exactly ai of the parts in � are equal to i . For instance, we have � D .nd1

1 ; n
d2
2 ; : : : ; n

de
e /.

To describe Hilbert polynomials, we treat a binomial coefficient with a variable in its
numerator as a polynomial. Specifically, for all integers c, we set 

t

c

!
WD

8<:
1

cŠ
.t/.t � 1/ � � � .t � c C 1/ if c > 0;

0 if c < 0.

The polynomial
�
t
c

�
has rational coefficients and degree c.

Lemma 2.1. Let .n; d/ be the type of a residual flag and let � WD .�1; �2; : : : ; �r/ be its
associated integer partition. For any residual flag ¿ � Xe � Xe�1 � � � � � X1 of type .n; d/
in Pm, the Hilbert polynomial of the closed scheme X1 in Pm is

p.t/ D

rX
iD1

 
t C �i � i

�i � 1

!
:

Proof. We proceed by induction on e. The closed immersion X2 � X1 is a d1-residual
inclusion in some n1-plane contained in Pm. Hence, there exists a relative effective Cartier
divisor D1 in this n1-plane and a short exact sequence of sheaves

(2.1) 0! OX2
.�D1/! OX1

! OD1
! 0:
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When e D 1, we have X2 D ¿. The closed scheme X1 is the divisor D1, so its Hilbert poly-
nomial is

p.t/ D

 
t C n1

n1

!
�

 
t C n1 � d1

n1

!

D

d1X
iD1

" 
t C n1 � i C 1

n1

!
�

 
t C n1 � i

n1

!#
D

d1X
iD1

 
t C n1 � i

n1 � 1

!
:

The partition associated to the residual flag ¿ � X1 is � D .nd1
1 /, so the base case holds.

Suppose that e > 1. The residual flag

¿ � Xe � Xe�1 � � � � � X2

has e � 1 subschemes and its integer partition is .nd2

2 ; n
d3

3 ; : : : ; n
de
e /. The induction hypothesis

implies that the Hilbert polynomial of the closed scheme X2 is

rX
iDd1C1

 
t C �i � i C d1

�i � 1

!
:

From the short exact sequence (2.1), we deduce that the Hilbert polynomial of the closed
scheme X1 is

p.t/ D

rX
iDd1C1

 
t C �i � i C d1

�i � 1

!
C

d1X
iD1

 
t C nj � i

nj � 1

!
D

rX
iD1

 
t C �i � i

�i � 1

!
:

Remark 2.2. Let X be a closed subscheme in Pm having Hilbert polynomial

p.t/ D

rX
iD1

 
t C �i � i

�i � 1

!
:

The dimension of X is �1 � 1 and the degree of X is the number d1 of parts in � equal to �1.
One verifies that the arithmetic genus of X is

.�1/�1�1
rX
iD2

 
�i � i

�i � 1

!
D

rX
iD2

.�1/�1��i

 
i � 2

�i � 1

!
:

Remarkably, the Gotzmann Regularity Theorem shows that the length r of � is an upper bound
on the Castelnuovo–Mumford regularity of the saturated ideal defining the closed subschemeX
in Pm; see [8, Lemma 2.9] or [2, Theorem 4.3.2].

Lexicographic ideals. We identify a special residual flag from the geometric properties
of a distinguished monomial ideal. The lexicographic order on the monomials in the poly-
nomial ring R D kŒx0; x1; : : : ; xm� is defined by declaring xb0

0 x
b1
1 � � � x

bm
m > xc0

0 x
c1
1 � � � x

cm
m

whenever the first nonzero entry in the integer sequence .b0 � c0; b1 � c1; : : : ; bm � cm/ is
positive. A lexicographic ideal I is a monomial ideal in R such that, for all integers j , the
homogeneous component Ij is the k-vector space spanned by the largest dimk Ij monomials
in lexicographic order.
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As the cornerstone of our approach, we recount a variant of the Macaulay characteriza-
tion [18] of the Hilbert functions for homogeneous ideals in R. Recall that the Hilbert function
hR=I WZ! N of a homogeneous ideal I in R is defined, for all integers j , by

hR=I .j / WD dimk.R=I /j :

Lemma 2.3. Let p be a numerical polynomial having degree less thanm. The following
statements are equivalent.

(a) There exists a closed subscheme X in Pm whose Hilbert polynomial is p.

(b) There exists an integer partition � WD .�1; �2; : : : ; �r/ such that p.t/ D
Pr
iD1

�tC�i�i
�i�1

�
.

(c) There exists an integer partition � WD .�1; �2; : : : ; �r/ such that p.t/ D
Pr
iD1

�tC�i�i
�i�1

�
and a lexicographic ideal L.�/ in R such that, for all integers j , we have

hR=L.�/.j / D

rX
iD1

 
j C �i � i

j � i C 1

!
:

Outline of proof. We sketch the details because a proof may be derived from other
accounts of Macaulay’s work via identities for binomial coefficients; see [9, Table 174].

� (a) ) (b): Let ` be a fixed sufficiently large integer. One uses the `-th Macaulay rep-
resentation for the integer p.`/ to obtain an integer partition � WD .�1; �2; : : : ; �r/ such
that

p.t/ D

rX
iD1

 
t C �i � i

�i � 1

!
I

see [2, Lemma 4.2.6 and Corollary 4.2.14] or [27, Proposition 2.3].

� (b)) (c): One verifies that the function hWZ! N defined by

h.j / WD

rX
iD1

 
j C �i � i

j � i C 1

!
;

for all integers j , satisfies the inequality .h.j //hj i > h.j /; see [2, Theorem 4.2.10].

� (c)) (a): One takes X to be the closed subscheme of Pn defined by the ideal L.�/.

Remark 2.4. By using the conjugate integer partition, [18] and [14, Corollary 5.7] give
an alternative condition via sums of differences of binomial coefficients that is equivalent to
Lemma 2.3 (b); see [27, Lemma 2.4]. Our expression as a sum of binomial coefficients is
a slight modification of the Gotzmann decomposition [8, Section 2].

We specify monomial generators and a primary decomposition of the lexicographic ideal
L.�/; these generators are also listed in [25].

Proposition 2.5. Let � WD .�1; �2; : : : ; �r/ be an integer partition and let aj be the
number of parts in � equal to j , for all positive integers j . When n > �1, the corresponding
lexicographic ideal is

L.�/ D
˝
xamC1
0 ; xam

0 xam�1C1
1 ; : : : ; xam

0 xam�1
1 � � � xa3

m�3 x
a2C1
m�2 ; x

am
0 xam�1

1 � � � xa2
m�2 x

a1
m�1

˛
:
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Moreover, the unique irredundant irreducible decomposition of this monomial ideal is

L.�/ D
\

16i6m
ai¤0

˝
xamC1
0 ; xam�1C1

1 ; : : : ; xaiC1C1
m�i�1 ; x

ai
m�i

˛
:

Proof. We first establish the decomposition. As each intersectand is generated by pow-
ers of the variables and no two have the same dimension, this intersection is the irredundant
irreducible decomposition of some monomial ideal. It remains to show that this ideal is L.�/.
Since aj D 0 for all j > �1, each irreducible ideal contains hx0; x1; : : : ; xm��1�1i and we
may assume that �1 D m.

We proceed by induction on the number e of positive entries in .a1; a2; : : : ; am/. When
e D 1, the integer partition is .mam/ and the ideal is hxam

0 i. The ideal hxam
0 i is lexicographic.

Since the monomials ¹1; x0; : : : ; x
am�1
0 º form a basis as free kŒx1; x2; : : : ; xm�-module for the

quotient R=hxan
0 i, it follows that

hR=hxam
0 i.j / D

amX
iD1

 
j Cm � i

j � i C 1

!
:

Lemma 2.3 (c) implies that L.mam/ D hxam
0 i and the base case holds.

Assume that e > 1. Set I WD L.mam/ D hxam
0 i. The induction hypothesis implies that

J WD
\

16i6m�1
ai¤0

˝
xamC1
0 ; xam�1C1

1 ; : : : ; xaiC1C1
m�i�1 ; x

ai
m�i

˛
is the lexicographic ideal associated to the integer partition � WD .�amC1; �amC2; : : : ; �r/.
Since the intersection of lexicographic ideals is again lexicographic, it is enough to prove that
the ideals I \ J and L.�/ have the same Hilbert function. From the short exact sequences of
graded R-modules

0!
R

I \ J
!

R

I
˚
R

J
!

R

I C J
! 0

and

0!
R.�an/

J
!

R

J
!

R

I C J
! 0;

we see that hR=I\J .j / D hR=I .j /C hR=J .j / � hR=.ICJ/.j / D hR=I .j /C hR=J .j � an/
for all integer j . The equality J D L.�/ implies that

hR=J .j / D

rX
iDamC1

 
j C �i � i C am

j � i C am C 1

!
;

so we deduce that

hR=I\J .j / D

amX
iD1

 
j C �i � i

j � i C 1

!
C

rX
iDamC1

 
j C �i � i

j � i C 1

!

D

rX
iD1

 
j C �i � i

j � i C 1

!
;

which by Lemma 2.3 (c) completes the induction.
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Lastly, we establish that the given set of monomials generate L.�/. The intersection of
monomial ideals is generated by the least common multiples of their monomial generators, so
we observe

xam
0 xam�1

1 � � � xaiC1
m�i�1 x

aiC1
m�i D lcm

�
xaiC1
m�i ; x

aiC1
m�i ; : : : ; x

aiC1
m�i ; x

ai
m�i ; x

aiC1
m�i�1; : : : ; x

am
0 ;

xam
0 xam�1

1 � � � xa2
m�2 x

a1
m�1 D lcm

�
xa1
m�1; x

a2
m�2; : : : ; x

am
0

�
for all 2 6 i 6 m. Hence, each of the given monomials is a least common multiple of a gener-
ator from the irreducible components. Since each variable xi appears as a minimal generator in
an irreducible component with exponent either am�i or am�1 C 1, we see that the least com-
mon multiple of any subset of generators for the irreducible components is divisible by at least
one of the given monomials, so the opposite inclusion also holds.

We complete our converse to Lemma 2.1 by relating lexicographic ideals to residual flags.
This geometric interpretation for the lexicographic ideal L.�/ appears to be new.

Corollary 2.6. Let .n; d/ be the type of a residual flag in Pm. For all 1 6 i 6 e, let Xi
be the closed subscheme in Pm defined by the lexicographic ideal L.ndi

i ; n
diC1

iC1 ; : : : ; n
de

e /. The
chain ¿ � Xe � Xe�1 � � � � � X1 of closed immersions forms a residual flag of type .n; d/
in Pm.

Proof. For all i with 1 6 i 6 e, the irreducible decomposition in Proposition 2.5 gives
XiC1 � Xi and the monomial generators in Proposition 2.5 establish that the closed subscheme
Xi is contained in the ni -plane in Pm defined by the monomial ideal hx0; x1; : : : ; xm�ni�1i.
For all positive integers j , let aj be the number of parts in the partition .nd1

1 ; n
d2
2 ; : : : ; n

de
e /

equal to j . Restricting to the linear subspace

Pni WD Proj.kŒxm�ni
; xm�niC1; : : : ; xm�/

in Pm, Proposition 2.5 also shows that the closed subscheme Xi is defined by the monomial
ideal

Ii WD
˝
xani

C1
m�ni

; xani
m�ni

xaniC1C1
m�ni�1

; : : : ; xani
m�ni

xaniC1C1
m�ni�1

� � � xa3
m�3 x

a2C1
m�2 ;

xani
m�ni

xaniC1C1
m�ni�1

� � � xa2
m�2 x

a1
m�1

˛
:

It follows that Ii D xanim�ni
� J where

J WD
˝
xm�ni

; xaniC1C1
m�ni�1

; : : : ; xaniC1C1
m�ni�1

� � � xa3
m�3 x

a2C1
m�2 ; x

aniC1C1
m�ni�1

� � � xa2
m�2 x

a1
m�1

˛
D
˝
xn�ni

; xn�ni�1
; : : : ; xn�niC1�1

˛
C IiC1:

As ani
D di , the closed immersion XiC1 � Xi is a di -residual inclusion in Pni . Thus, the

chain ¿ � Xe � Xe�1 � � � � � X1 is a residual flag of type .n; d/ in Pm.

Remark 2.7. By definition, the lexicographic point in a Hilbert scheme corresponds to
the closed subscheme in Pm defined by the lexicographic ideal. Note that [25, Theorem 1.4]
proves that the lexicographic point is smooth, so this point lies on a unique irreducible com-
ponent called the lexicographic component; and [25, Theorem 4.1] computes the dimension of
this component. When .n; d/ WD .n1; d1/; .n2; d2/; : : : ; .ne; de/ is the type of a residual flag,
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n0 WD m, and � is its associated integer partition, the lexicographic component determined by
L.�/ in the polynomial ring R WD kŒx0; x1; : : : ; xm� is

(2.2)

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

eX
iD1

Ni if ne > 1 and de > 1,

�.ne�1 � ne/C

eX
iD1

Ni if ne > 1 and de D 1,

n0 de C

e�1X
iD1

Ni if ne D 1 and de�1 > 1,

n0 de � .ne�2 � ne�1/C

e�1X
iD1

Ni if ne D 1 and de�1 D 1,

n0 de if ne D 1 and e D 1,

where

Ni WD

 
ni C di

di

!
� 1C .ni C 1/.ni�1 � ni /:

Question 2.8. The saturated monomial ideals defining residual flags of type .n; d/
in Pm determine the torus-fixed points in the parameter space Flag.n; d;P .E//. Following
Proposition 2.5, the irredundant irreducible decomposition for each such monomial ideal has
a combinatorial description. Can one use this perspective to count these monomial ideals and,
thereby, compute the Euler characteristic of the projective scheme Flag.n; d;P .E//?

3. Geometry of smooth Hilbert schemes

In this section, we identify the Hilbert schemes isomorphic to a parameter space of resid-
ual flags. Exploiting this identification, we describe the closed subscheme corresponding to
a general point on any smooth Hilbert scheme. Thus, we obtain a birational description of all
smooth Hilbert schemes.

Geometry. Let E be a locally free sheaf on a locally noetherian scheme S . The pro-
jective bundle P .E/ carries a tautological invertible sheaf that is relatively ample over S . We
compute the Hilbert polynomials for closed subschemes in P .E/ relative to this tautological
bundle. For any numerical polynomial p, the set of T -valued points of the functor Hilbp.P .E//
is the set of closed subschemesX � P .ET / that are flat over the S -scheme T and have Hilbert
polynomial p. The S -scheme representing this functor is projective; see [16, Theorem 1.4].

Lemma 3.1. Let E be locally free sheaf on S of constant rank mC 1 and fix a poly-
nomial p in QŒt �. The Hilbert scheme Hilbp.P .E// is smooth over S if and only if the fibre
Hilbp.Pm/ is nonsingular over every geometric point of S .

Proof. Let X � Pm be a closed subscheme in the fibre of P .E/ over a geometric point
in S . When X corresponds to a smooth point on Hilbp.Pm/, [16, Theorem 2.10] proves that
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the structure map Hilbp.P .E//! S is flat at this geometric point. Therefore, this structure
map is smooth if and only if its the fibre is nonsingular over every geometric point.

Theorem 3.2. Let .n; d/ be the type of a residual flag and let � WD .�1; �2; : : : ; �r/
be its associated integer partition. Set p.t/ D

Pr
iD1

�tC�i�i
�i�1

�
. Assume that E is a locally free

sheaf on X of constant rank mC 1. The natural morphism

� WFlag.n; d;P .E//! Hilbp.P .E//

sending a residual flag ¿ � Xe � Xe�1 � � � � � X1 to the closed subscheme X1 � P .E/, is
an isomorphism if and only if one of the two conditions holds:

(2) m > �1 and �r > 2,

(3) � D .1/ or � D .mr�2; �r�1; 1/, where r > 2 and m > �r�1 > 1.

In both cases, the Hilbert scheme Hilbp.P .E// is smooth over S .

Proof. Suppose that S D Spec.k/ for some algebraically closed field k. We note that
[27, Theorem 1.1] shows that Conditions (2) and (3) characterize when a nontrivial Hilbert
scheme Hilbp.Pm/ has a unique Borel-fixed point. Moreover, [27, Lemma 5.6] proves that
the target Hilbp.Pm/ is nonsingular and irreducible in this situation. Proposition 1.11 and
Corollary 1.12 show that the source Flag.�; d;P .E// is a smooth projective variety. Since �
is injective, it is enough to certify that the dimensions of the source and target agree. Using
Corollary 1.12 and equation (2.2), one verifies that the dimension of the lexicographic compo-
nent in Hilbp.Pm/ equals the dimension of the parameter space of residual flags if and only if
Conditions (2) or (3) holds.

Suppose that S is any locally noetherian scheme. Lemma 3.1 implies that the Hilbert
scheme is smooth. Hence, the source and target of the morphism � are smooth. Since the
induced morphism on fibres over any geometric point is an isomorphism, the result follows.

Example 3.3. The conditions in Theorem 3.2 cover the well-known cases of hyper-
surfaces and Grassmannians. Consider a partition � D .�r1/ and set

p.t/ WD

rX
iD1

 
t C �1 � i

�1 � 1

!
:

When �1 D m, each point in Hilbp.P .E// corresponds to a hypersurface of degree r in P .E/;
see Lemma 1.8. More generally, each point in Hilbp.P .E// corresponds to a hypersurface of
degree r lying some �1-dimensional linear subspace of P .E/. In the special case r D 1, the
Hilbert scheme Hilbp.P .E// is the Grassmannian parametrizing .�1 � 1/-dimensional linear
subspaces in P .E/. ˘

Example 3.4. For the integer partition � D .12/, Theorem 3.2 shows that each point in
the Hilbert scheme Hilb2.P .E// correspond to a hypersurface of degree 2 lying on some line
in P .E/. Alternatively, the Hilbert scheme of two points in P .E/ is also known to be the blow-
up of the diagonal of the quotient scheme P .E/ �S P .E/=S2, where the symmetric group S2

on two elements acts by permuting the factors in the product P .E/ �S P .E/. ˘

Remark 3.5. The geometry of residual flags also explains why the morphism � cannot
be surjective when Conditions (2) and (3) fail to holds. To avoid these conditions, we may
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assume that �r D 1, r > 3, and m > �r�2. The smallest scheme Xe in the residual flag is a
degree de hypersurface in a line. Hence, the map � cannot be surjective when de > 3. When
de 6 2, there exists a line ƒe containing Xe. The defining properties of a residual flag require
the line ƒe to be contained in the latent plane ƒe�1 which by assumption has dimension less
than m. Since a general line is not contained such a plane, the map � also not surjective in
this case.

Remark 3.6. The strategy outlined in Question 1.13 also leads to a description of the
Chow ring (and integral cohomology ring) of the Hilbert schemes classified in Theorem 3.2.

Example 3.7. Two trivial Hilbert schemes, not covered by Theorem 3.2, are neverthe-
less particular Grassmannians. When � D .mC 1/ and

p.t/ D

 
t Cm

m

!
;

the Hilbert scheme Hilbp.P .E// is a one point corresponding to closed subscheme P .E/ itself.
When r D 0, the Hilbert scheme Hilb0.P .E// is a one point corresponding to empty scheme
in P .E/. ˘

Birationality. Before examining the birational geometry of the other smooth Hilbert
schemes, we remember that some Hilbert schemes factor into a product of Hilbert schemes.
Let � D .ms; �sC1; �sC2; : : : ; �r/ be a partition with m > �sC1 and set

p.t/ WD

rX
iD1

 
t C �i � i

�i � 1

!
:

We see that p.t/ D q1.t/C q2.t � s/, where

q1.t/ WD

sX
iD1

 
t Cm � i

m � 1

!
is the Hilbert polynomial for a hypersurface of degree s in P .E/ and

q2.t/ WD

r�sX
iD1

 
t C �iCs � i

�iCs � 1

!
:

It follows from Lemma 1.1 that the Hilbert scheme parametrizing of these hypersurfaces is
P .Syms.E�// and [6, p. 514, Remark 2] yields there is a natural splitting

(3.1) Hilbp.P .E// Š P .Syms.E�// �S Hilbq2.P .E//:

Given an integer partition � WD .�1; �2; : : : ; �r/, the new integer partition � [ .1/ is
defined to be .�1; �2; : : : ; �r ; 1/ and has length r C 1; see [19, Section 1.1].

Proposition 3.8. Let .n; d/ be a residual type and let � WD .�1; �2; : : : ; �r/ be its inte-
ger partition. Set

p.t/ WD

rX
iD1

 
t C �i � i

�i � 1

!
:
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Assume that one of the following conditions holds:

(4) � [ .1/ D .mr�s�3; �sC2r�s�2; 1/, where r � 3 > s > 0, and m � 1 > �r�s�2 > 3, or

(5) � [ .1/ D .mr�s�5; 2sC4; 1/, where r � 5 > s > 0.

The Hilbert scheme HilbpC1.P .E// is smooth over S . Moreover, a general point on this
Hilbert scheme corresponds to the disjoint union of a residual flag of type .n; d/ and a point.

Proof. From the splitting in (3.1), it is enough to consider an integer partition � D .�r1/
where r > 1 and �1 > 2, excluding the two integer partitions .22/ and .23/. By Lemma 3.1,
we many assume that the base scheme is the spectrum of an algebraically closed field. Over
a field of characteristic zero, [24, Theorem A] classifies all Hilbert schemes with precisely two
Borel-fixed points; [24, Theorem B] and [28, Theorem 1.1] also describe this classification
over any algebraically closed field. Conditions (4) and (5) guarantee that the Hilbert scheme
HilbpC1.Pn/ has two Borel-fixed points. By computing the dimension of the tangent space at
the non-lexicographic Borel-fixed point, [24, Theorem A] demonstrates that HilbpC1.Pn/ is
nonsingular.

To understand a general point, consider the universal flag X1 of type .�1; s/ in P .E/ and
the universal closed subschemeZ having length one on P .E/ D Hilb1.P .E//. As the structure
map is proper, their intersection determines a closed subset in Flag.�1; s;P .E// �S P .E/.
Let U denote the open complement. There is a morphism  WU ! HilbpC1.P .E// induced
by sending the pair .X1; Z/ to their disjoint union. The source and target of  are smooth
S -schemes and, using Corollary 1.12 and equation (2.2), one verifies that they have the same
relative dimension. Over each geometric point in S , the induced morphism on the fibres is an
open immersion. We conclude that

 WFlag.�1; s;P .E// �S P .E/ Ü HilbpC1.P .E//

is a birational map.

Remark 3.9. Under the hypothesis of Proposition 3.8, the scheme HilbpC1.P .E// and
the product Flag.m; d;P .E// �S P .E/ are birational. However, these schemes are not iso-
morphic. For instance, the existence of two different Borel-fixed points on the Hilbert scheme
implies that there is more than one way to embedded a point of multiplicity 1 into the lexico-
graphic ideal; see Proposition 2.5 and Proposition 4.3.

Example 3.10. The integer partition � D .1r/ is associated to the constant Hilbert
polynomial r . The Hilbert scheme Hilbr.P .E// is known to be smooth in two cases: [6, Theo-
rem 2.4] applies when m D 2 and [3, equation (0.2.1)] applies when r 6 3. In either case, this
Hilbert scheme is birational to the r-fold symmetric product P .E/�SP .E/�S � � ��SP .E/=Sr

where the symmetric group Sr on r elements acts by permuting the factors in the product
P .E/ �S P .E/ �S � � � �S P .E/.

Using the splitting (3.1), this analysis extends to the integer partition � D .mr�s; 1s/
where r > s > 0. Set

p.t/ WD

rX
iD1

 
t C �i � i

�i � 1

!
:

Assuming m D 2 or r 6 3, a general point on Hilbp.P .E// corresponds to the disjoint union
of a hypersurface of degree r � s and s isolated points. ˘
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Remark 3.11. The seven conditions in Theorem A imply that Hilbp.P .E// is smooth
over S : Example 3.10 handles Conditions (1) and (6), Theorem 3.2 handles Conditions (2)
and (3), Proposition 3.8 handles Conditions (4) and (5), and Example 3.7 handles Condition (7).
In particular, we have a birational description for all of these smooth Hilbert schemes.

4. General classification

The final section completes our classification of smooth Hilbert schemes. By identifying
enough singular points, we prove that our list of smooth Hilbert schemes is exhaustive.

Nearly lexicographic points. We specify a novel point on a Hilbert scheme by per-
turbing a lexicographic ideal. Geometrically, this nearly lexicographic point corresponds to
a residual flag with an embedded point whose nilpotent elements do not lie in the smallest
linear subspace containing the residual flag.

Lemma 4.1. Let � WD .�1; �2; : : : ; �r/ be an integer partition and set

p.t/ WD

rX
iD1

 
t C �i � i

�i � 1

!
:

Fix m > �1 and consider both the lexicographic ideal L.�/ and the monomial ideal

J WD
˝
x0; x1; : : : ; xn��1�2

; x2m��1�1
; xm��1

; xn��1C1
; : : : ; xn�1

˛
in the polynomial ring R D kŒx0; x1; : : : ; xm�. The closed subscheme in Pm defined by the
homogeneous ideal K WD L.�/ \ J has Hilbert polynomial p C 1 and corresponds to a point
on the lexicographic component of the Hilbert scheme HilbpC1.Pm/.

Proof. By Lemma 2.3, the Hilbert polynomial of the closed subscheme defined by the
lexicographic ideal L.�/ is

p.t/ D

rX
iD1

 
t C �i � i

�i � 1

!
:

Proposition 2.5 implies that

L.�/C J D hx0; x1; : : : ; xm�1i:

For all integers j greater than 1, the sets ¹xm��1�1x
j�1
m ; xjnº and ¹xjmº form bases for the j -th

homogeneous components ofR=J andR=.L.�/C J / respectively. It follows that their Hilbert
polynomials are the constants 2 and 1. From the short exact sequence of graded R-modules

0!
R

L.�/ \ J
!

R

L.�/
˚
R

J
!

R

L.�/C J
! 0;

we deduce that p C 1 is the Hilbert polynomial of the closed subscheme in Pm corresponding
to the monomial ideal K D L.�/ \ J .

Using Proposition 2.5, we also deduce that the saturation .L.�/ W x1m�1/ is equal to the
saturation .K W x1m�1/. Since both L.�/ and K are Borel-fixed ideals, [26, Theorem 6] shows
that the point corresponding to the ideal K lies on the lexicographic component.
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Tangent spaces. We demonstrate that these nearly lexicographic points are singular for
a special class of integer partitions. The Zariski tangent space at the point in the Hilbert scheme
Hilbp.Pm/ corresponding to the closed subscheme X in Pm with ideal sheaf IX is naturally
isomorphic to HomPm.IX ;OX / D HomX .IX=I

2
X ;OX /; see [16, Theorem 2.8].

Lemma 4.2. Suppose that � WD ..m � 1/r�s�1; .m � n/sC1/ is an integer partition,
where r � 2 > s > 0 and m � 1 > n > 2. Set

p.t/ WD

rX
iD1

 
t C �i � i

�i � 1

!
:

The Hilbert scheme HilbpC1.Pm/ is singular at the point corresponding to the saturated
monomial ideal

K WD x0 �
˝
x0; x1; : : : ; xm�1

˛
C xr�s�11 �

˝
x1; x2; : : : ; xn�1; x

sC1
n

˛
D L.�/ \

˝
x20 ; x1; x2; : : : ; xm�1

˛
in the polynomial ring R D kŒx0; x1; : : : ; xm�.

Proof. From the monomial generators for the lexicographic ideal L.�/ appearing in
Proposition 2.5, we see that the given monomials generate the ideal K. It remains to show that
the dimension of the Zariski tangent space at the nearly lexicographic point is larger than the
dimension of the Zariski tangent space at the lexicographic point. Equation (2.2) establishes
that the dimension of later is less than or equal to (with equality holding when s > 0)

(4.1)

 
mC r � s � 2

r � s � 1

!
C

 
m � nC s C 1

s C 1

!
C .m � nC 1/.n � 1/C 2m � 2 :

To estimate the dimension of the Zariski tangent space at the nearly lexicographic point,
we examine the sheaf on Pm corresponding to the graded R-module HomR.K;R=K/. Since
the variable xm does not divide any of the generators of the ideal K, the dimension of this tan-
gent space is greater than or equal to dimk HomR.K;R=K/0; see [25, Lemma 3.1]. BecauseK
is a stable monomial ideal, the Eliahou–Kervaire resolution [22, Theorem 2.3] yields a homo-
geneous free presentation. The minimal syzygies among the generators of the idealK are given
by the block matrix

‚ WD
�
A1 A2 � � � Am�1 B1 B2 � � � Bn�1 C

�
;

where, for all 1 6 i 6 m � 1 and all 1 6 j 6 n � 1, we have

AT
i WD

x2
0 x0x1 � � � x0x

i�2
x0x

i�1
x0x

i
x0x

iC1
� � � x0xm�1 xr�s

1 xr�s�1
1 x1 � � � xr�s�1

1 xn�1 xr�s�1
1 x

sC1
n26664
37775

0 0 � � � 0 �xi xi�1 0 � � � 0 0 0 � � � 0 0 i

0 0 � � � 0 �xiC1 0 xi�1 � � � 0 0 0 � � � 0 0 iC 1

:::
:::

: : :
:::

:::
:::

:::
: : :

:::
:::

:::
: : :

:::
:::

:
:
:

0 0 � � � 0 �xm�1 0 0 � � � xi�1 0 0 � � � 0 0 m� 1

;

BT
j WD

x2
0 x0x1 � � � x0xm�1 xr�s

1 � � � xr�s�1
1 x

j�2
xr�s�1

1 x
j�1

xr�s�1
1 x

j
xr�s�1

1 x
jC1

� � � xr�s�1
1 xn�1 xr�s�1

1 x
sC1
n26664
37775

0 0 � � � 0 0 � � � 0 �xj xj�1 0 � � � 0 0 j

0 0 � � � 0 0 � � � 0 �xjC1 0 xj�1 � � � 0 0 j C 1

:::
:::

: : :
:::

:::
: : :

:::
:::

:::
:::

: : :
:::

:::
:
:
:

0 0 � � � 0 0 � � � 0 �xn�1 0 0 � � � xj�1 0 n� 1

;
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and

CT
WD

x2
0 x0x1 � � � x0xn�1 x0xn x0xnC1 � � � x0xm�1 xr�s

1 xr�s�1
1 x2 � � � xr�s�1

1 xn�1 xr�s�1
1 x

sC1
n26666664

37777775
0 0 � � � 0 �xr�x�11 xsn 0 � � � 0 0 0 � � � 0 x0 0

0 0 � � � 0 0 0 � � � 0 �xsC1n 0 � � � 0 x1 1

0 0 � � � 0 0 0 � � � 0 0 �xsC1n � � � 0 x2 2

:::
:::

: : :
:::

:::
:::

: : :
:::

:::
:::

: : :
:::

:::
:
:
:

0 0 � � � 0 0 0 � � � 0 0 0 � � � �xsC1n xn�1 m� 1

:

It follows that
HomR.K;R=K/ D Ker.HomR.‚;R=K//:

The two .mC n/ � 1-matrices defined by

x2
0 x0x1 x0x1 � � � x0xm�1 xr�s�1

1 xr�s�1
1 x2 � � � xr�s�1

1 xn�1 xr�s�1
1 x

sC1
nh i

DT
0 WD x0 x1 x2 � � � xn 0 0 � � � 0 0 0

and

x2
0 x0x1 x0x1 � � � x0xm�1 xr�s�1

1 xr�s�1
1 x2 � � � xr�s�1

1 xn�1 xr�s�1
1 x

sC1
nh i

DT
1 WD 0 0 0 � � � 0 x1 x2 � � � xn�1 xsC1n 1

satisfy
‚T D0 D 0 and ‚T D1 D 0:

Thus, for all 2 6 i 6 m, the column in the product xi D0 represents a nonzero element in
HomR.K;R=K/0. The column in the product of the matrix D1 with any monomial of degree
r � s � 1 in the variables x1; x2; : : : ; xm (excluding xr�s�11 ) also represents a nonzero element
in HomR.K;R=K/0. There are

.m � 1/C

 
mC r � s � 2

r � s � 1

!
� 1

columns of these products. Since all entries in the product x0‚ lie in the ideal K, the mC n
columns of the square matrix

1 2 � � � m 1 2 � � � n� 1 n26666666666666664

37777777777777775

x0xm 0 � � � 0 0 0 � � � 0 0 x2
0

0 x0xm � � � 0 0 0 � � � 0 0 x0x1

:::
:::

: : :
:::

:::
:::

: : :
:::

:::
:
:
:

0 0 � � � x0xm 0 0 � � � 0 0 x0xm�1

0 0 � � � 0 x0x
r�s�1
n 0 � � � 0 0 xr�s

1

0 0 � � � 0 0 x0x
r�s�1
n � � � 0 0 xr�s�1

1 x2

:::
:::

: : :
:::

:::
:::

: : :
:::

:::
:
:
:

0 0 � � � 0 0 0 � � � x0x
r�s�1
n 0 xr�s�1

1 xn�1

0 0 � � � 0 0 0 � � � 0 x0x
r�1
m xr�s�1

1 x
sC1
n

represent nonzero elements in HomR.K;R=K/0. Similarly, all of entries in the bottom n rows
of the matrix ‚ when multiplied by the monomial xr�s�11 lie in the ideal K. Hence, for all
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n 6 j 6 m, the columns of the matrices

1 2 � � � n� 1266666666666666664

377777777777777775

0 0 � � � 0

0 0 � � � 0
:::

:::
: : :

:::

0 0 � � � 0

xr�s�11 xj 0 � � � 0

0 xr�s�11 xj � � � 0
:::

:::
: : :

:::

0 0 � � � xr�s�11 xj
0 0 � � � 0

and
1 2 � � �

�
m�nCsC1

sC1

�
� 126666666666666664

37777777777777775

0 0 � � � 0 x2
0

0 0 � � � 0 x0x1

:::
:::

: : :
:::

:
:
:

0 0 � � � 0 x0xm�1

0 0 � � � 0 xr�s
1

0 0 � � � 0 xr�s�1
1 x2

:::
:::

: : :
:::

:
:
:

0 0 � � � 0 xr�s�1
1 xn�1

xr�s�11 xsnxnC1 xr�s�11 xsnxnC2 � � � x
r�s�1
1 xsC1m xr�s�1

1 x
sC1
n

represent nonzero elements in HomR.K;R=K/0. Each nonzero entry in the bottom row of
the second matrix is the product of xr�s�11 and a monomial of degree s C 1 in the variables
xn; xnC1; : : : ; xm (excluding xsC1n ). Hence, there are

�
m�nCsC1

sC1

�
� 1 columns in this matrix.

The number of distinct columns representing nonzero elements in HomR.K;R=K/0 is

N WD .m � 1/C

 
mC r � s � 2

r � s � 1

!
� 1C .mC n/

C .m � nC 1/.n � 1/C

 
m � nC s C 1

s C 1

!
� 1:

By comparing their nonzero entries, we see that theseN columns are linearly independent. The
difference between the number N and equation (4.1) is n � 1. As n > 2, we conclude that the
Hilbert scheme is singular at the point corresponding to the monomial ideal K.

Proposition 4.3. Let � WD .�1; �2; : : : ; �r/ be an integer partition such that � [ .1/
has at least three distinct parts or � WD .�r�s�11 ; 1sC1/, where r � 2 > s > 0 and �1 > 1. Fix
m > �1, set

p.t/ WD

rX
iD1

 
t C �i � i

�i � 1

!
;
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and consider the monomial ideal

J WD
˝
x0; x1; : : : ; xm��1�2

; x2m��1�1
; xm��1

; xm��1C1
; : : : ; xm�1

˛
in the polynomial ring R D kŒx0; x1; : : : ; xm�. The Hilbert scheme HilbpC1.Pm/ is singular
at the point corresponding to the saturated monomial ideal K WD L.�/ \ J .

Proof. Lemma 4.1 shows that the nearly lexicographic point lies on the lexicographic
component of the Hilbert scheme HilbpC1.Pm/. We reduce the analysis to a special case.

The inclusion hx0; x1; : : : ; xm��1�2i � K implies that the nearly lexicographic point is
contained in a .�1 C 1/-plane. Hence, we may assume that m D �1 C 1.

Assume that � [ .1/ has at least three distinct parts. The lexicographic ideal L.� [ .1//
is the flat limit of a one-parameter family whose general member is the sum of the lexi-
cographic ideal L.�/ and the ideal of a disjoint point. Since the dimension of the Zariski
tangent space at a point in family is an upper-semicontinuous function, we may also assume
that �r > 1. Applying Corollary 2.6, the lexicographic ideal L.� [ .1// determines a resid-
ual flag ¿ � Xe � Xe�1 � � � � � X1 in Pm. The hypotheses ensure that e > 3. The closed
subscheme Xe�2 lies in some linear space ƒ � Pm. We may deform the scheme Xe�2 in the
linear space ƒ and leave the rest of the residual flag Xe�3 � Xe�4 � � � � � X1 unchanged.
If the closed scheme Xe�2 corresponds to a singular point on the Hilbert scheme in ƒ, then it
follows that the closed schemeX1 corresponds to a singular point on the Hilbert scheme. Thus,
we may assume that e D 3.

With these reductions, it suffices to consider � D ..m � 1/r�s�1; .m � n/sC1/, where
r � 2 > s > 0 and m � 1 > n > 2. In this special case, Lemma 4.2 proves that the dimension
of the Zariski tangent space at the nearly lexicographic point exceeds the dimension of the
lexicographic component. Therefore, the Hilbert scheme HilbpC1.Pm/ is singular at the point
corresponding to the saturated monomial ideal K WD L.�/ \ J .

Other singular examples. In addition to our family of singular Hilbert schemes, the
classification of smooth Hilbert schemes relies on three other singular families.

Example 4.4. Two familiar Hilbert schemes explain the curious gap between Condi-
tions (4) and (5) in Proposition 3.8. By appealing to the splitting in (3.1), it is enough to
understand integer partitions .2; 1/, .22; 1/ and .23; 1/. The first of these is already covered
by both Theorem 3.2 and Example 3.10. In contrast, the Hilbert schemes in the other two cases
are singular.

The integer partition .22; 1/ is associated to the Hilbert polynomial 2t C 2. The Hilbert
scheme Hilb2tC2.Pm/ is singular; it has two irreducible components. A general point on one
component corresponds to a pair of skew lines and a general point on the other corresponds to
the union of a plane conic and an isolated point; compare with [4, Theorem 1.1].

The integer partition .23; 1/ is associated to the Hilbert polynomial 3t C 1. The Hilbert
scheme Hilb3tC1.Pm/ is again singular because it has two irreducible components. A general
point in first component corresponds to a twisted cubic curve and a general point in the other
corresponds to the union of a plane cubic and an isolated points; see [23, Theorem]. ˘

Example 4.5. For completeness, we give an explicit description of another well-known
singular Hilbert scheme. For any nonnegative integer s, consider the partition � D .1sC4/
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whose associated Hilbert polynomial is the constant s C 4. For all m > 3, the Hilbert scheme
HilbsC4.Pm/ is singular at the point corresponding to the saturated homogeneous ideal

B.s/ WD
˝
x0; x1; : : : ; xm�4; x

2
m�3; xm�3 xm�2; xm�3 xm�1; x

2
m�2; xm�2 xm�1; x

sC2
m�1

˛
in the polynomial ring R D kŒx0; x1; : : : ; xm�; compare with [3, Lemma 1.4]. ˘

Theorem 4.6. LetE be a locally free sheaf on a locally noetherian schemeS of constant
rank mC 1 and let p be a numerical polynomial. The Hilbert scheme Hilbp.P .E// is smooth
and irreducible over S if and only if there exists an integer partition � D .�1; �2; : : : ; �r/ such
that

p.t/ D

rX
iD1

 
t C �i � i

�i � 1

!
and one of the following seven conditions holds:

(1) m D 2 > �1,

(2) m > �1 and �r > 2,

(3) � D .1/ or � D .mr�2; �r�1; 1/, where r > 2 and m > �r�1 > 1,

(4) � D .mr�s�3; �sC2r�s�2; 1/, where r � 3 > s > 0 and m � 1 > �r�s�2 > 3,

(5) � D .mr�s�5; 2sC4; 1/, where r � 5 > s > 0,

(6) � D .mr�3; 13/, where r > 3,

(7) � D .mC 1/ or r D 0.

Proof. Remark 3.11 already shows that each condition implies that the Hilbert scheme
is smooth. Hence, it suffices to prove that the Hilbert scheme has a singular point when the
integer partition � WD .�1; �2; : : : ; �r/ does not satisfy Conditions (1)–(7). To bypass Con-
ditions (1) and (2), we must have m > 3 and �r D 1. By Lemma 3.1, we may assume that
S is the spectrum of an algebraically closed field. Using the splitting in (3.1), we may also
assume that m > �1. For the remaining integer partitions with one distinct part, Example 4.5
describes a singularity. When the integer partition has two distinct parts, there are three out-
standing cases, namely � D .22; 1/, � D .23; 1/, or � D .�r�s�21 ; 1sC2/, where r � 1 > s > 0

and �1 > 1. Example 4.4 and Proposition 4.3 exhibit their singularities. Finally, Proposition 4.3
also identifies a singular point whenever the integer partition has at least three distinct parts.
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