ADVANCED WORKSHOP ON ARITHMETIC ALGEBRAIC GEOMETRY

(31 August - 11 September 1992)

Abelian Varieties/ \mathbb{C} and Theta-Divisors

E. Kani
Department of Mathematics and Statistics
Queens University
Jeffrey Hall
Kingston
K7L 3N6 Ontario
Canada

These are preliminary lecture notes, intended only for distribution to participants
Thus the map
\[X \rightarrow W^*/\Lambda, \]
\[x \mapsto (\omega \rightarrow \frac{1}{2}\omega \mod \Lambda) \]
is well-defined, and one check that this is an isomorphism. Thus one has the canonical identification
\[X \simeq H^1(X, \Omega')^*/\Phi_1(X, \mathbb{Z}) \]

Note that these two descriptions are inverse to each other via the canonical identification
\[T_0(X) \cong \mathbb{C} \cong H^1(X, \Omega'), \]
which is obtained by dualizing the map
\[T_0(X) \rightarrow H^1(X, \Omega')^*, \quad \omega \mapsto \omega \]
where \(\omega \) denotes the translation-invariant holomorphic 1-form defined by \((\omega)_x = T^*_x(\omega) \). Here \(T_x : X \rightarrow X \) denotes the translation map \(T_x(y) = x + y \).

Fact 2. \(H^0(X, \mathbb{Z}) \cong \text{Alt}^0(\Lambda, \mathbb{Z}), \quad \forall \Gamma \neq 0 \)

Let \(\pi : V \rightarrow X \) denote the projection map. Then
\((V, \gamma) \) is clearly the universal covering space of \(X \).
and so we have
\[H(X) = \Lambda \approx \mathbb{Z}^{2g}. \]
Thus
\[H'(X, \mathbb{Z}) = \text{Hom}(\pi_1(X), \mathbb{Z}) = \text{Hom}(\Lambda, \mathbb{Z}) = \text{Alt}'(\Lambda, \mathbb{Z}). \]
Furthermore, cupproduct induces a map
\[\Lambda \text{Hom}(\Lambda, \mathbb{Z}) \rightarrow H'(X, \mathbb{Z}) \]
which one checks to be an isomorphism by applying the Hirzebruch formula to \(C/\Lambda \approx (S')^\# \) (homeomorphism). Thus we obtain the identification
\[H'(X, \mathbb{Z}) \cong \Lambda \text{Hom}(\Lambda, \mathbb{Z}) = \text{Alt}'(\Lambda, \mathbb{Z}) \]
which, by description (6), satisfies \(\lambda(\Lambda) \subset \Lambda' \).
Conversely, each \(\lambda \in \text{Hom}(V, V') \) with \(\lambda(\Lambda) \subset \Lambda' \)
defines a bundle \(\tilde{\lambda} : X = \mathbb{V}/\Lambda \rightarrow \mathbb{V}/\Lambda' \). Since \(\mathbb{V} \) and \(\mathbb{V}' \) are also the universal covering spaces of \(X \) and \(X' \), it follows that \(\tilde{x} \rightarrow \tilde{\lambda} \) is injective, and so we obtain the indicated equality.

In particular:
1) Every \(h \in \text{Hom}(X, X') \) is a group homomorphism.
2) Every bundle map \(f : X \rightarrow X' \) of the form
\[f(x) = k(x) + y, \text{ where } k \in \text{Hom}(X, X') \text{ is a homomorphism and } y = f(0). \]
Furthermore:
3) The induced map
\[\text{Hom} \rightarrow \text{Hom}_{\mathbb{Z}}(\Lambda, \Lambda') \]
\[h \mapsto dh/\Lambda \]
is injective (since \(\Lambda \) contains a \(C \)-base of \(V) \),
and so \(\text{Hom}(X, X') \) is free \(\mathbb{Z} \)-module of finite rank, in fact, we have
\[\text{rank}_\mathbb{Z} \text{Hom}(X, X') = \text{rank}_\mathbb{Z}(\Lambda, \Lambda') = 4g \times 8. \]
Note that the above map (6) may be (canonical!) identified with the homology map
\[H_i \xrightarrow{\text{Hom}} \text{Hom}_2 \left(H_i(X, \mathbb{Z}), H_i(X', \mathbb{Z}) \right) \]
via the identification \(\Lambda = \pi_1(X) = H_i(X, \mathbb{Z}) \).

\[\Lambda : \pi_i(X, x) \to H_i(X, \mathbb{Z}). \]

Fact 4. \(H^n(X, \mathcal{O}_x^\circ) \cong \Lambda^n V^\circ \otimes \Lambda^n \overline{V}^\circ \), where \(V = T_c(X) \).

The identification (3) generalizes to yield short isomorphisms
\[(8) \quad C_\alpha \otimes \Lambda^n V^\circ \cong \mathbb{R}^n, \]
from which we obtain
\[(9) \quad H^9(X, \mathcal{O}_x^\circ) \cong H^9(X, \mathcal{O}_x) \otimes \Lambda^n V^\circ. \]

Much more difficult, however, is to show that
\[(10) \quad H^9(X, \mathcal{O}_x) \cong \Lambda^9 \overline{V}^\circ, \]
where \(\overline{V}^\circ = \text{Hom} \left(\mathcal{O}_x, \mathbb{C} \right) \), from which fact 4 follows in view of (9). (For the proof of (10), cf. [H], pp. 4-8.)

In particular:
\[H^i(X, \mathcal{O}_x^\circ) = V^\circ \otimes \overline{V}^\circ = \text{Hom}(V, \mathbb{C}), \]
where \(\text{Hom}(V, \mathbb{C}) = \{ H^i \cdot V \otimes V \to \mathbb{C} : H^i \cdot V \text{ cohomologies} \} \)
denotes the space of Hamiltonian forms on \(V \).

Fact 5. The above isomorphisms render the following diagram commutative:

\[\begin{array}{ccc}
H^i(X, \mathcal{O}_x) & \cong & \Lambda^r(\Lambda, \mathbb{Z}) = \Lambda^r \text{Hom}(\Lambda, \mathbb{Z}) \\
\downarrow & & \downarrow \Lambda^r \\
H^i(X, \mathcal{O}_x) & \cong & \Lambda^r(V^\circ \otimes \overline{V}^\circ) = \bigoplus \Lambda^r V^\circ \otimes \Lambda^r \overline{V}^\circ \\
\downarrow p & & \downarrow \Lambda^r \\
H^i(X, \mathcal{O}_x) & \cong & \Lambda^r(\overline{V}^\circ)
\end{array} \]

Here, \(\alpha \circ \beta \) are the maps induced by the inclusion of sheaves \(\mathcal{O}_x \subset \mathcal{O}_x \), and \(i : \text{Hom}(\Lambda, \mathbb{Z}) \to V^\circ \otimes \overline{V}^\circ \) is the coadj. inclusion. Finally, \(p \) denotes the projection onto the \(p=0, q=0 \) factor.
§2. Line bundles on X

To construct line bundles on $X = V / \Lambda$, let us start with the trivial line bundle $L = V \times \mathbb{C}$ on V. If L admits a Λ-action of the form

$$\lambda (v, z) = (v + \lambda, e_\lambda (v) \cdot z),$$

where $\lambda \in \Lambda, v \in V, z \in \mathbb{C}$ and $e_\lambda (v) \in \mathbb{C}^\times$, then we can consider the quotient

$$L(\{e_1\}) = V \times \mathbb{C} / \Lambda,$$

where e_1 is a fixed element of Λ. One easily checks:

1. $\pi_1(L(\{e_1\})) \to V / \Lambda$ is a holomorphic line bundle on X.

We now want to arrive at a convenient representation of this cohomology group $H^1(V, \Lambda)$. To this end, let

$$H^1(V, \Lambda) = \{ H \in \text{Hom}(V, \mathbb{C}^\times) : (\text{Im} H)|_{\Lambda, N} \subset \mathbb{Z} \}$$

and for a homomorphism $H \in H^1(V, \Lambda)$ let

$$\mathcal{C}_h^R(H) = \{ \chi : \Lambda \to \mathbb{C}^\times \text{ s.t. } (4)_h \text{ below holds} \}.$$

Here, $\mathcal{C}_h = \{ z \in \mathbb{C} : |z| = 1 \}$ and the condition condition holds is

$$H^1(V, \Lambda) = \mathcal{C}_h^R \times \mathbb{C}^\times,$$

by pulling line bundles on X back to V that carry holomorphic line bundle $L \subset \text{Pic}(X)$ on X arises in this way. Moreover, one checks easily that we have an isomorphism:

$$H^1(V, H^0(V, \Theta^*)) \cong H^1(V, \Theta^*) = \text{Pic}(X).$$

Here, the group on the left is the usual 1st cohomology group $H^1 = Z^1 / B^1$ in group cohomology.

In fact, since every line bundle on V is trivial (because $H^1(V, \Theta^*) = 0$), one sees easily

$x)$ Since $V = 0$ and $H^1(V, \Theta^*) = 0$ (δ-Poincaré lemma) and $H^1(V, \mathcal{O}) = 0$ ($V \times \mathbb{C}^\times$ contractible), it follows from the exact sequence that $H^1(V, \Theta^*) = 0$.
where, as usual, \(\Phi(t) = \exp(2\pi i t) \) and \(\im(H) \).

Note that since \(\Phi(\frac{1}{2} E_1, \lambda^i) = \pm 1 \), each \(\lambda^i \)
is a character (when \(\lambda \in \mathrm{Ch}^k(H) \)), so the \(\lambda^i \)
are "square roots of characters", which justifies the notation \(\mathrm{Ch}^k(H) \).

Consider now a pair \((H, \lambda)\), where \(H \in \mathrm{Hom}(V, \Lambda) \) and \(\lambda \in \mathrm{Ch}^k(H) \). Then, as
a corollary checked,

\[
\ell_n, \lambda, \chi(t) = \chi(\lambda) \exp(-\frac{i}{2} H(V, \lambda) - \frac{i}{2} H(\lambda, \lambda))
\]
is a couple \(\{ \ell_n, \lambda, \chi(t) \} \in Z^1(\Lambda, H^0(V, \Omega^1_v)) \)
and hence gives rise to a holomorphic line bundle

\[
L(H, \lambda) := L(\{ \ell_n, \lambda, \chi(t) \}).
\]

Let

\[
P = P(V, \Lambda) = \{ H, \lambda \} : H, \lambda \text{ as above}\}
\]
de note the set of such pairs. We can make \(P \) into a group via the addition law

\[
(H_1, \lambda_1) + (H_2, \lambda_2) = (H_1 + H_2, \lambda_1 + \lambda_2).
\]

We then have:

Theorem 2.1 (Appell - Humbert). The map \((H, \lambda) \mapsto L(H, \lambda) \)
induces a group homomorphism

\[
L : P(V, \Lambda) \rightarrow \mathrm{Pic}(X) = H^0(X, \Omega^1).
\]

More precisely, we have the following commutative diagram with exact rows and columns

\[
\begin{array}{ccc}
0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow \\
\mathrm{Hom}(V, \Lambda) & P(V, \Lambda) & \mathrm{Hom}(V, \Lambda) \\
\downarrow & \downarrow & \downarrow \\
\mathrm{Pic}^0(X) & \mathrm{Pic}(X) & \mathrm{Pic}(X) \\
\downarrow & \downarrow & \downarrow \\
0 & 0 & 0 \\
\end{array}
\]

where

\[
\begin{align*}
\ell_n & \downarrow \quad L \downarrow \quad S \downarrow \\
0 & \rightarrow \mathrm{Hom}(V, \Lambda) & P(V, \Lambda) & \rightarrow \mathrm{Hom}(V, \Lambda) & \rightarrow 0 \\
0 & \rightarrow \mathrm{Pic}^0(X) & \rightarrow \mathrm{Pic}(X) & \rightarrow \mathrm{Hom}(H^0(Z, \Omega) \rightarrow H^1(X, \Omega)) & \rightarrow 0 \\
0 & \rightarrow 0 & 0 & \rightarrow 0 & \rightarrow 0
\end{align*}
\]
in which
\[\text{Hom}(V, \Lambda)^{\text{mod}} = \{ H \in \text{Hom}(V) : (\text{Im}H)(\Lambda \times \Lambda) \subset \mathbb{Z} \} \]
\[\text{Pic}^0(X) = \ker (c_1 : H^1(X, \mathcal{O}^*) \to \text{Pic}(X) \to H^2(X, \mathbb{Z})) \]
\[\alpha(x) = (0, x) \in \text{Pic}(V, \Lambda) \]
\[\beta(H, x) = \beta(H) \in \text{Hom}(V, \Lambda) \]
\[\lambda(x) = L(0, x) \]
\[\rho(H) = \text{Im}(H)|_{\Lambda \times \Lambda} \in \text{Alg}(\Lambda, \mathbb{Z}) = H^2(X, \mathbb{Z}) \]

In particular, we have the following formula for the first Chern class of \(L(H, x) \):
\[(\gamma) \quad c_1(L(H, x)) = E \mid_{\Lambda \times \Lambda} \in \text{Alg}(\Lambda, \mathbb{Z}) = H^2(X, \mathbb{Z}), \]
where, as before, \(E = \text{Im}(H) \).

Remark 2: Recall that if \(L \in \text{Pic}(X) \) is a line bundle on a complex space \(X \), then its Chern class is defined as
\[c_1(L) = \delta(L), \]
where
\[\delta : H^1(X, \mathcal{O}^*) = \text{Pic}(X) \to H^2(X, \mathbb{Z}) \]
is the boundary map of the long exact sequence induced by the exponential sequence
\[(\delta) \quad 0 \to \mathbb{Z} \to \mathbb{C} \overset{\delta}{\to} \mathcal{O}^* \to 0. \]

Pt. 2. Sketch of the proof. Clearly, the diagram \((\delta) \) commutes and has exact rows.

Using facts 5 of §1 one sees easily that \(\rho \) is an isomorphism.

To see that \(\lambda \) is injective, use the fact that if \(f \in H^0(V, \mathcal{O}^*) \) is bounded, then \(f \) is constant.

The surjectivity of \(\lambda \) follows by a suitable diagram chase and observing that \(\gamma : H^1(X, \mathcal{O}) \to H^1(X, \mathcal{O}) \)
is surjective (cf. fact 5).

Since \(\rho \) and \(\lambda \) are isomorphisms, and the rows are exact, it follows that \(L \) is also an isomorphism.
1. The dual torus $\hat{X} = \text{Pic}^0(X)$

In the course of proving the A-H Theorem we had established the isomorphism
$$\text{Hom}(\Lambda, \mathbb{C}^*) \cong \text{Pic}^0(X).$$

Note that $\hat{X} = \text{Hom}(\Lambda, \mathbb{C}^*)$ itself is a complex torus (also of dimension g), so the group $\text{Pic}^0(X)$ carries a natural structure.

On the other hand, from the long exact sequence associated to the exponential sequence we obtain
$$\hat{X} = \text{Pic}^0(X) = \text{ker}(\partial) = \text{ker}(\text{hom}(H^1(X, \mathcal{O}) \to H^1(X, \mathcal{O}_X)))$$
$$= \text{ker}(\text{hom}(H^1(X, \mathcal{O}_X) / H^1(X, \mathcal{O}_X)))$$

which shows that \hat{X} is again a complex torus.

2. The theorem of the square

The pullback $T_x^* L$ of a line bundle $L \in \text{Pic}(X)$ w.r.t. the translation map $T_x : X \to X$, $T_x(y) = xy$, is given explicitly as follows:

(10) $T_x^* L \otimes L \cong L(H, \mathcal{E}(\epsilon_0, 1) X)$, for $x \in X$. From this we see that for any $L \in \text{Pic}(X)$ and $x \in X$ we have

(11) $\phi_L(x) := T_x^* L \otimes L^{-1} \in \text{Pic}^*(X)$, so that ϕ_L defines a map

$\phi_L : X \to \text{Pic}^*(X) = \hat{X}$.

The theorem of the square asserts that this is a homomorphism, i.e., that

(12) $T_x^* y(L) \otimes L = T_x^* (L) \otimes T_y^*(L)$.

Again, this follows readily from (9) (and $-H$):

Write $L = L(H, \mathcal{E})$, then for $x \in \mathbb{C}^*$, we have $T_x^* L \otimes L \cong L(H, \mathcal{E}(\epsilon_0, 1) X) \otimes L(H, \mathcal{E})$
$$\cong L(2H, \mathcal{E}(\epsilon_0, 1) X) \otimes L(1, \mathcal{E})$$

$$= L(H, \mathcal{E}(\epsilon_0, 1) X) \otimes L(1, \mathcal{E})$$
\[= L(H, e^{-E(\cdot, \cdot)}) X) \cdot L(H, e^{-E(\cdot, \cdot)}) X \]
\[= T_x^* L \otimes T_y^* L, \quad \text{which proves (1)}. \]

We can also easily determine the kernel of \(\phi \):
\[K(L) := \ker(\phi_L) = \{ x \in X : T_x^* L \cong L \}. \]

Indeed, since \(e(E(\cdot, \cdot)) = 1 \Leftrightarrow E(\cdot, \cdot) \in \mathbb{Z}, \forall x \in X \), it follows that
\[K(L) = \mathcal{V}(H)/\Lambda, \]
where \(\mathcal{V}(H) = \{ v \in V : E(\cdot, \lambda) \in \mathbb{Z}, \forall \lambda \in \Lambda \} \).

In particular, we see
\[K(L) \text{ is finite } \iff \mathcal{V}(H) \text{ is a lattice} \]
\[\iff (E(\cdot, \cdot), E(\cdot, \cdot)) \text{ is non-degenerate}. \]

3. The Theorem of the Cube

The line bundles \(L(H, X) \) satisfy the following functoriality property: If \(L = L(H, X) \) is a line bundle on \(X' = Y/\Lambda' \) and \(\lambda : X \to X' \) is induced by \(\lambda \in \text{Hom}_G(V, V') \), then
\[(\lambda^* L(H, X)) = L(\lambda^* H, \lambda^* X). \]

We can use this to prove the theorem of the cube.

Theorem 2.3. Given a complex space \(Y \) and holomorphic maps \(f, g, h : Y \to X \), where \(X \) is a complex torus. Then, for any \(L \in \text{Pic}(X) \) we have
\[(f + g + h)^* (L) \otimes (f^* (L) \otimes g^* (L) \otimes h^* (L)) \]
\[= (f + g)^* (L) \otimes [(f + h)^* (L) \otimes g^* (L)]. \]

To prove this, consider the line bundle
\[\Omega^i (L) = \bigotimes_{i \neq j, \ldots} (m_i^* L)^{\otimes (\alpha_{ij})}, \]
on \(X^* \), where \(m_i^* : X^* \to X \).
map \(m_i(x_1, \ldots, x_n) = \sum x_i \). Then (16) is clearly equivalent to the assertion

\[(13) \quad (f, g, h) \in \mathcal{D}_c(L) \Rightarrow \mathbb{C} \, .\]

where \((f, g, h) : Y \rightarrow x_1 \times x_2 \times \cdots \times x_n \). Now in fact we have

\[(15) \quad \mathcal{D}_c(L) \cong \bigodot_{x \in x_n} \, \forall \, n \geq 3 \, ,
\]

because for \(L = L(H, X) \) we have

\(\mathcal{D}_c(L) \cong L(\mathcal{D}_c(H), \mathcal{D}_c(X)) \), and \(\mathcal{D}_c(H) \)

and \(\mathcal{D}_c(X) \) are clearly compact to be trivial.

Hence, for any map \(h : x' \rightarrow x \)

\(\mathcal{D}_c(h) = \mathcal{D}_c \left(m_i(h) \right) \),

and this is easily seen to be trivial.)

\[\text{Remark 24. For the line bundle } \mathcal{D}_c(L) \text{ etc., cf.} \]
\[\text{[M-82], p. 12 ff.} \]

§3. Theta-functions

We now turn to examining the holomorphic sections of the line bundles \(L \rightarrow L(H, X) \). By general principles of quasiregular spaces and algebras, we have a natural correspondence

\[(1) \quad \mathcal{H}^0(X, \mathcal{L}(H, X)) \cong \mathcal{H}^0(V, V \times C)^{\mathfrak{g}, \mathfrak{f}}
\]

of the space of holomorphic sections of \(L(H, X) \) with the space of \(\mathfrak{g} \)-equivariant sections of \(V \times C \) (via the \(\mathfrak{h} = \mathfrak{n} \times \mathfrak{z} \)-action).

Now we can identify

\(\mathcal{H}^0(V, V \times C) \cong \mathcal{H}^0(V, \mathcal{O}) = \{ \text{holomorphic } f : V \rightarrow \mathcal{O} \} \),

\(s : V \rightarrow V \times C \mapsto f_s \), \(f_s(v) = \pi_2(g(v)) \),

but this identification is incompatible with the group action. However, it is immediate that

\(s \in \mathcal{H}^0(V, V \times C)^{\mathfrak{g}, \mathfrak{f}} \iff f = f_s \) satisfies.

\[(2) \quad f(\sigma + \lambda) = e^{(H, X)} f(\sigma), \quad \forall \sigma \in V, \quad \forall \lambda \in \mathfrak{h} \, .
\]

Thus we have a natural identification:
(2) \(H^0(X, L(H, X)) = \text{Th}(H, X) \),

where

\[
\text{Th}(H, X) = \{ \text{holo. } f : V \to \mathbb{C} \text{ satisfying (2)} \}.
\]

Definition. The functions \(f \in \text{Th}(H, X) \) are called (normalized) theta functions (with respect to \((H, X)\)).

Remark 3.0 If we consider more general cocycles \(1_{e_3} \in Z'(\Lambda, H^0(Y, \Theta)) \) then an analogous assertion holds, i.e.

\[
H^0(X, L(1_{e_3})) = \text{Th}(1_{e_3}),
\]

where the space on the right denotes the space of holomorphic functions \(f : V \to \mathbb{C} \) satisfying

\[
(f(v + \lambda) = e_2(v) f(v), \forall v \in V, \lambda \in \Lambda).
\]

Such functions \(f \) are called unnormalized theta functions.

We first make some preliminary observations about \(\text{Th}(H, X) \) (cf. [MI], pp. 25-6):

1) If \(R = \text{Rad}(H) = \{ u \in \mathbb{V} : H(u, w) = 0, \forall w \in V \} \)
\[
= \{ u \in \mathbb{V} : E(v, w) = 0, \forall w \in V \}
\]
denotes the radical of \(H(v, w) \) and \(\overline{H} : \overline{V} \times \overline{V} \to \mathbb{C} \) the induced (non-degenerate) Hermitian form on \(\overline{V} = V/R \), then \(\overline{X} = V/R \) is a lattice in \(\overline{V} \) and \(X = \Lambda \to \mathbb{C} \) admits a map \(\overline{X} : \overline{X} \to \mathbb{C} \) such that \((\overline{H}, \overline{X}) \in \mathcal{P}(\overline{V}, \overline{X}) \). Then, if \(p : V \to \overline{V} \) denotes the projection map, one checks that

\[
\text{Th}(\overline{H}, \overline{X}) \cong \text{Th}(H, X) \quad f \mapsto pf
\]

is a bijection.

2) If \(H \) is not positive, then

\[
\text{Th}(H, X) = 0
\]
3) By 1) and 2) we see:

If $L \cong L(H, X)$ is ample, then

H is positive-definite (i.e., non-degenerate).

Theorem 3.1. A line bundle $L(H, X)$ is ample

if and only if $H \in \text{Herm}(V) = H^1(X)$ is positive-

definite.

In particular, X is projective if H is pos.

definite Hermitian form H on V with $V(\lambda x, x) < 2$.

- **Sketch (via Kodaira embedding theorem):**

 We had already seen that $L(H, X)$ ample \Rightarrow H positive.

 Conversely, suppose H is ample. Via our
 identifications (foc 4.5) it follows that H
 $= c_1(L) \in H^2_{\text{top}}(X) = H^2(X, \mathbb{C})$ defines a positive
 $(1, 1)$-form. Thus $L(H, X)$ is positive line bundle
 in the sense of Kodaira (df. [G-HI], p. 148)
 and hence, by the Kodaira embedding theorem.

 ([G-HI], p 181), $L(H, X)$ is ample.

Remark 3.2. In place of using Kodaira's embedding

theorem, one can also deduce Th. 3.1 from the

following and more precise statement:

Theorem 3.3. Let $L = L(H, X)$ be a

line bundle such that H is positive-definite.

Then $H^0(X, L^\otimes k)$ has no zero points for

$k > 2$ and yields a projective embedding for

$k \geq 3$.

(Will not prove)

This proof depends in part on having a

suitable base at one's disposal. Here the first

step is given by

Theorem 3.4. (Riemann--Roch): If $L = L(H, X)$

is positive (i.e., H is positive-definite), then

(6) $h^0(X, L) = \sqrt{\text{det} (E_{\lambda \Lambda})} = \# \mathbb{K}(L),$

where $E = \text{Im}(\gamma)$. Thus, for any $n > 1$ we have:
\(\dim H^0(X, L^m) = \eta^g \dim H^0(X, L). \)

Remark 35. It is possible to deduce this theorem from the Hirzebruch–Riemann–Roch theorem:

\[\chi(\sigma(L)) = \deg(\text{ch}(L) \cdot \text{td}(X)) \]

once one knows in addition:

1) \(\omega_x \equiv \Omega_x \quad (\Rightarrow \text{td}(X) = 1) \)

2) \(H^q(X, \Theta(L)) = 0 \), \(\forall q > 0 \).

This follows from Kodaira's vanishing theorem since \(\omega_x \equiv \Omega_x \) and \(L \equiv \text{positive} \).

3) \(c_1(L)^g = \eta^g \sqrt{\det(\text{Hess}(\varphi_{\omega}))} \).

Thus, Th 3.3 is truly a "Riemann–Roch theorem". However, the proof sketched below is much more elementary and explicit in that a canonical basis of \(H^0(X, L) \) will be constructed. Since this basis lies at the heart of the theory of theta-

functions, we sketch the constructive. First:

Broué outline of proof of R–R:

1) For a suitable \(\chi_0 \in \text{Ch}^1(H) \), construct a "base" theta–function \(\varphi_0 \in \Theta(H, X) \).

2) There exists \(\varphi \in \text{V} \) such that \(\chi = \chi_0 \ast (\varphi, \varphi) \).

Then the (modified) translate \(\varphi - t^*\varphi_0 \) lies in \(\Theta(H, X) \).

3) There is a finite subgroup \(\mathbb{K}_2 \subset \mathbb{K}(L) \)

such that \(\{ t^* \varphi \}_{t \in \mathbb{K}_2} \) is a basis of \(\Theta(H, X) \).

Remark 36. As we shall see, the "base \(\Theta \) function" \(\varphi_0 \) above is a suitable modification of the classical Riemann's \(\Theta \)–function which is defined as follows.

Let \(T \in \mathbb{F}_g := \{ T \in \mathbb{H}_g(\mathbb{C}) : T^t = T \, \text{(i.e. symmetric)} \}

and \(\text{Im} \, T > 0 \, \text{(i.e. positive)} \).
be an element of the Siegel upper 1/2-space \(\mathfrak{H}_g \). Then the Riemann \(\Theta \)-function is defined by

\[
\Theta(z, T) = \sum_{\tau \in \mathbb{H}} e^{\frac{1}{2}(\tau^T T \tau + \tau^T \bar{z})}, \quad z \in \mathbb{C}.
\]

(Note that since \(\text{Im} T > 0 \), the terms of the sum are bounded by \(e^{-c \text{Im} \tau} \), with \(c > 0 \), so this series converges absolutely.)

Thus, in case \(g = 1 \), we have \(f_g = f = \) usual upper 1/2-plane, and

\[
\Theta(z, T) = \sum_{\tau \in \mathbb{H}} e^{\pi i (\tau^T z + 2\tau \bar{z})}
\]

is precisely Jacobi's \(\Theta \)-function. It is this latter function, which Jacobi denoted by \(\Theta \) "by accident", that gives the theory its name: "Theta".

As a function of \(z \in \mathbb{C} \), the transformation laws of \(\Theta(z, T) \) are as follows:

\[
\begin{align*}
(8a) \quad & \Theta(z + \tau, T) = \Theta(z, T) \\
(8b) \quad & \Theta(z + Tm, T) = e^{-\frac{1}{2} \text{Im}(Tm + m^T \bar{z})} \Theta(z, T), \\
& \text{for } \tau, m \in \mathbb{Z}^g, \ i \in \mathbb{Z}.
\end{align*}
\]

To see that this is a theta function, let:

\[
\begin{align*}
\Lambda &= \mathbb{Z}^g + T \mathbb{Z}^g \subset \mathbb{C}^g \quad \text{(lattice)} \\
T &= X + iY, \quad X, Y \in \mathbb{H}_g(\mathbb{R}) \\
H(z_1, z_2) &= z_1^* Y^{-1} z_2, \quad \text{pos. def. Hermitian} \\
\text{Herm}(\mathbb{C}^g, \Lambda) \\
\chi_0(T + Tm) &= e^{\frac{1}{2} \text{Re} m}, \quad \chi_0 \in C_c^\infty(H).
\end{align*}
\]

Then \(\Theta \) is "almost" in \(\text{Th}(H, \chi_0) \); put

\[
\begin{align*}
(9a) \quad & \Theta_0(z) = e^{-\frac{i}{4} z^* Y^{-1} z} \Theta(z, T), \\
& \text{then we have} \\
(11) \quad & \Theta_0 \in \text{Th}(H, \chi_0).
\end{align*}
\]

\[\text{cf. [LL], p. 140.}\]
A sketch of Th. 3.4 (Lefschetz–Roch)

Lemma 3.7 (Frobenius) Let $H \in \text{Hom}(V, V)$ be positive definite. Then there exists a basis $\lambda_1, \cdots, \lambda_g$ of V such that the (Gram) matrix of $E = \text{Im} H$ w.r.t. basis is

$$J_{\delta} := \begin{pmatrix} 0 & \Delta_{\delta} \\ -\Delta_{\delta} & 0 \end{pmatrix},$$

where $\Delta_{\delta} = \text{diag}(s_1, \ldots, s_g)$ with $s_i \in \mathbb{N}$ and $s_1 | s_2 | \cdots | s_g$. Furthermore, the vector $\delta = (s_1, \ldots, s_g)$ is uniquely determined by H.

For a vector $\delta = (s_1, \ldots, s_g)$ as in the lemma, put

$$K_1(\delta) = \bigoplus_{i=1}^g \mathbb{Z}/s_i\mathbb{Z},$$

$$K_1(\delta)^* = \text{Hom} \left(K_1(\delta), \mathbb{C} \right),$$

$$K(\delta) = K_1(\delta)^* \oplus K_1(\delta).$$

Note that $K(\delta)$ carries a unique symplectic form $\langle \cdot, \cdot \rangle$ defined by

$$\langle (h_1, x_1), (h_2, x_2) \rangle = h_1(x_2) - h_2(x_1).$$

Lemma 3.8. If $\{\lambda_1, \ldots, \lambda_g\} \rightarrow \text{Hom}_c V$ as in Lemma 3.7, then

$$V(H) = \bigoplus_{i=1}^g \mathbb{C} \lambda_i \oplus \bigoplus_{i=1}^g \mathbb{C} \lambda_i^c$$

and hence there is a symplectic isomorphism

$$\lambda : K(\delta) \rightarrow K(L) = V(H)/\Lambda.$$

Furthermore, if we put $e_i = \lambda_i(\delta^c)$, $1 \leq i \leq g$, then $\{e_1, \ldots, e_g\}$ is a C-basis of V and if we write

$$\lambda = \sum_{i=1}^g \omega_{ij} e_j$$

then the $g \times g$ - matrix $\Omega = (\omega_{ij})$ has the form

$$\Omega = \begin{pmatrix} \Delta_{\delta} & T \\ -\Delta_{\delta} & -T \end{pmatrix},$$

where $T \in \mathfrak{g}_g$.

\[a\) Here, $K(L)$ has a symplectic structure via $\langle x, y \rangle \in C(E(\delta^c))$.\]
Remark 3.9 Conversely, if we fix a C-basis $\alpha_1, \ldots, \alpha_g$ of V and let $\beta = (\beta_1, \ldots, \beta_g)$ and T be given as in Lemma 3.8. Put

\begin{equation}
\Omega = \begin{pmatrix} \alpha_1 & \cdots & \alpha_g \\ \cdots & \cdots & \cdots \\ \alpha_g & \cdots & \alpha_1 \end{pmatrix}
\end{equation}

and $\Lambda = \mathbb{Z}^g \Omega (\beta_i) \subset V$.

Then, if we put

\begin{equation}
\Pi = \begin{pmatrix} \alpha_1 & \cdots & \alpha_g \\ \cdots & \cdots & \cdots \\ \alpha_g & \cdots & \alpha_1 \end{pmatrix}
\end{equation}

and $\Pi = \mathbb{Z}^g \Omega (\beta_i) \subset V$.

Choose a symplectic basis $\lambda_1, \ldots, \lambda_g$ of Λ as in Lemma 3.7 and put

\begin{equation}
V_1 = \mathbb{C} \lambda_1 ; \quad V_2 = \mathbb{C} \lambda_2 + i (R - V, \lambda_1)
\end{equation}

Thus $V = V_1 \oplus V_2$. With respect to this decomposition define $\chi_0 : \Lambda \to \mathbb{C}^1$, by

\begin{equation}
\chi_0(\lambda) = \frac{1}{2} \Re (\beta_i, \lambda_i),
\end{equation}

where $\beta = \lambda_1, \ldots, \lambda_g$ is the above mentioned decomposition. Furthermore, let

\begin{equation}
B = (\Pi | V_1 \times V_2) \otimes \Pi,
\end{equation}

and put

\begin{equation}
\delta_0 (\nu, \tau) = e^{(-\frac{i}{2} B(\nu, \tau))} \sum e^{(\frac{i}{2} (H - B)(n - \frac{i}{2}, \lambda)}
\end{equation}

Then $\delta_0 \in \text{Th}(H, \chi_0)$; cf. [B-L] and [H1], p.2.

step 2. to $\delta_0 \in L(H, \chi)$ for suitable $\omega \in V$.

Lemma 3.10 If $f \in \text{Th}(H, \chi)$ then $\omega \in \text{Th}(H, \chi \circ (E \omega, \cdot))$.

where

\begin{equation}
(\tilde{f}(\omega))(\nu) = e^{(\frac{i}{2} H(\nu, \omega))} f(\nu + \omega)
\end{equation}
Thus, since $\kappa_0 : \Lambda \to E_1^*$ is a character and $E_{1,\Lambda}$ non-degenerate, we can find $\omega = \omega_0 \in \Lambda$.

$\lambda = \kappa_0 \circ (E(\omega, \cdot))$

and so

$$\nu = t^* \delta_0 \in \text{Th}(H, \pi).$$

Remark 3.12. By using the theory of theta groups, one can give a representation-theoretic interpretation of this basis and show that it is unique (once such an identification Λ has been chosen). From this one can then, following Mumford, build up an algebraic theory of theta functions (cf. [12] and [13], [14]).

Theorem 3.11. Let $\nu \in \text{Th}(H, \pi)$ be as above,

and let $\lambda : K(\mathfrak{g}) \to K(\text{L}(\mathfrak{g}, \pi))$ be an \mathfrak{g}-linear form.

as in Lemma 3.8. Then

$$\{ t_{\mathfrak{g}}(\lambda) \delta_{g} \}_{g \in K(\mathfrak{g})}$$

is a basis of $\text{Th}(H, \pi)$. Note that $t_{\mathfrak{g}}(\lambda) = \sqrt{\kappa(\mathfrak{g})}$.

Note. Once this basis has been set up properly, the proof is not difficult; cf. [14], pp. 27-31, [13], pp. 318-20.
Polarizations and moduli spaces

The proof of the K - R theorem of the previous section is closely related to the construction of moduli spaces: there are complex varieties which parametrize abelian varieties together with some additional structure such as a polarization, we are now define.

Definition. A polarization of an abelian variety X is a homomorphism

$$\phi : X \rightarrow \hat{X} = \text{Pic}^0(X)$$

which is of the form

$$\phi = \phi_L$$

for some ample line bundle $L \in \text{Pic}(X)$.

Remark. Since $\text{Ker}(L) = \text{Ker}(\phi)$ is finite and

$$\dim X = \dim \hat{X},$$

it follows that ϕ_L is surjective.

If $L = L(H, X)$ and $L' = L(H', X)$

are two line bundles on X, then

$$\phi_L = \phi_{L'} \iff L \otimes L' \in \text{Pic}^0(X) \iff H = H'. $$

Thus, the set of polarizations $\text{Pol}(X) = \{ \phi_L \}$ can be canonically identified with the set

$$\text{Hom}(V, \Lambda) = \{ H \in \text{Hom}(V, \Lambda) : H \text{ pos, } \phi_L \}$$

via

$$H \mapsto \phi_L(H(x)).$$

By Lemma 3.7, each H (or ϕ_L) has a canonical sequence $S = (s_1, \ldots, s_g)$ attached to it; we have

$$s_1, \ldots, s_g = \sqrt{\text{det} \, \text{End} \Lambda} = \sqrt{\text{Ker}(L)}.$$

This sequence is called the type of the polarization. Note that Lemma 3.8 gives an intrinsic characterization of this seq. in terms of $[K(L) : \text{Ker}(\phi_L)].$

Definition. A polarized abelian variety of type $S = (s_1, \ldots, s_g)$ is a pair (X, ϕ) (or, equiv.,

This definition differs from that of [K], but is as in [H1] - [H2].
a pair \((X, H)\) where \(X\) is an abelian variety and \(\varphi \in \text{Pol}(X)\) (resp. \(\varphi \in \text{Hom}^+(V, W)\)).

Two such pairs \((X, \varphi)\) and \((X', \varphi')\) are isomorphic if \(\exists h : X \cong X'\) s.t. \(h^* \varphi' = \varphi\),

where \(h^* \varphi' = \varphi h^{-1}\) if \(\varphi' = \varphi L\), \(L \in \text{Aut}(X)\) (or \(h^* H' = H\)).

The moduli space of polarized abelian varieties of dimension \(g\) and type \(\delta = (\delta_1, \ldots, \delta_g)\) is:

\(A_g^{(\delta)} = \text{set of isomorphism classes of polarized abelian varieties \((X, \varphi)\) of type \(\delta\) and dim } X = g\).

By the lemmas of the previous section we see that we have a natural surjective map

\(\Pi_g : f_g \rightarrow A_g^{(\delta)}\)

via

\[\Pi_g \left((A, B) \in \text{Sp}_g(\mathbb{Z})/\mathbb{T} \right) = (AT + B)(CT + D)^{-1} \in A_g^{(\delta)}\]

More generally, consider the group

\[\mathcal{G} = \{ A \in \text{SL}(g, \mathbb{Z})/\mathbb{T}: A^T \varphi_A A = \varphi \}\]

which also acts on \(f_g\) (in the same way).

\(\Pi_g = \{ A \in \text{SL}(g, \mathbb{Z})/\mathbb{T}: A^T \varphi_A A = \varphi \}\)
Prop. 4.1 The surjection $\pi_2 \to \pi_1$ is π_1-equivariant and induces a bijection

$$\pi_2 \big/ \phi_2 \to \pi_1 \big/ \phi_1 \, .$$

Thus, $\pi_1 \big/ \phi_2$ may be endowed with the structure of a complex space. In particular, if $\xi = (1, \ldots, 1)$ then $\pi_2 = \text{Spec}(\mathbb{Z}) / \pi_1$ and so we have

$$\pi_1 \big/ \phi_2 \cong \text{Spec}(\mathbb{Z}) / \pi_1 \, .$$

Hint: 1) π_1 is called the moduli space of principally polarized abelian varieties.

2) It is more difficult to show that π_2 and $\pi_1 \big/ \phi_2$ are quasi-projective. This is done by "evaluating the canonical bound" (found in the previous section) at 0, cf. [H2],[H13] and [H2] for details.

35. Symmetric theta divisors

It seems natural to call an effective divisor $D \geq 0$ on X a theta divisor if the pullback

$$\pi^* D = (S)$$

is the divisor of zeros of some (normalized) theta function on V. However, such a definition is superfluous since we have, by our identification of theta divisors as sections of line bundles that:

Prop. 5.1 Every effective divisor $D \geq 0$ on X is of the form (1) for a suitable S.

For the purposes of these notes, let us therefore make the following (not universally accepted) definition.

Definition. A theta divisor is an effective divisor $D \geq 0$ on X such that its associated
line bundle $L = L(D)$ induces a principal polarization, i.e. an isomorphism $\phi_L : X \to X^*$. For a principal polarization $\phi : X \to X^*$ (or H), let $\Theta_H = \phi_H$ the theta divisor.

Remark 5.2: By Riemann-Roch, a divisor D on a theta divisor Θ_H has $\ell^0(X, L(D)) = 1$. Thus:

2) $\Theta_H + \phi : X \to X^*$.

3) If H, H' are two principal polarizations, then:

- $\Theta_H \cong \Theta_{H'}$, for some $\phi \in \Theta_H$.
- $\Theta_H \cong \Theta_{H'}$ for some $\phi \in \Theta_H$.

4) If Θ_H, then $\Theta_H = \{ T_x \phi : x \in X \}$.

Of particular interest are symmetric theta divisors; these are the divisors Θ satisfying

$$\Theta'' = i^* \Theta - \Theta$$

(6) If $\Theta_H^{\text{sym}} = \{ T_x \phi : x \in X \}$

Moreover, if $\Omega \in \Theta_H^{\text{sym}}$, then

$$\Theta_H^{\text{sym}} = \{ T_x \phi : x \in X \}$$

(7) $\Theta_H^{\text{sym}} = \{ T_x \phi : x \in X \}$.
where, as usual, \(X[2] = 3 x \in X : 2x = 0 \).

Prop. 4. Suppose first that \(\Theta \in \Theta^\infty_0 \). Then
\[
\tau^* \Theta_0 = \tau_0^* \tau^* \Theta_0 = \tau_0^* \Theta_0,
\]
so \(\Theta = \tau^* \Theta_0 \in \Theta_0 \) is symmetric \(\iff\) \(\tau_0^* \Theta_0 = \tau_0^* \Theta_0 \)
\(\iff\) \(\tau_0^* \Theta_0 = \Theta_0 \iff 2x = 0 \iff x \in X[2] \). This proves (1). Thus, to prove (6), it is enough to show that \(\Theta^\infty_0 + \Theta \).

First proof: Given \(H \) (and \(X \)), we can a suitable \(T \) by the period matrix \(\Omega = (T^3 + T^3) \). By example 5.3, \(\Theta \in \Theta_0 \), then \(\Theta \) is a symmetric \(\Theta \)-divisor.

Second proof: Let \(L = L(H, X) \) be a line bundle (for some \(\chi \)). Then \(\tau^* L \cong L(\tau^* H, \tau^* \chi) = L(H, \tau^* \chi) \).

Since \(\tau^* \chi \) is a character and \(E \) is rank one, we can find \(V \) such that
\[
(\tau^* \chi)_{|V} = \chi(E) \epsilon(V, E).
\]

Put \(X = \chi_{|V} \epsilon(E) \epsilon(V, E) \); then \(\tau^* X = X \)
and so \(\tau^* L(H, X) = L(H, X) \). Then, if \(\Theta \) is the divisor of \(\chi \) of \(L(H, X) \) we have \(\tau^* L(\Theta) = \Theta \), so \(\tau^* \Theta = \Theta \).

Remark 5.5. 1) The divisors in \(\Theta^\infty_0 \) are often called **theta characteristics** (of the polarization \(H \)).

Note if \(\Theta \) denote the moduli space which classifies \(\Theta \)-divisors \((H, \Theta) \), where \(\Theta \) is a symmetric \(\Theta \)-divisor (theta char.), then Prop. 5.4 states that the map
\[
\pi : \Theta^\infty_0 \rightarrow \Theta,
\]
\((X, \Theta) \rightarrow (X, \pi_*(\Theta)) \)
is a surjective cover of degree \(2^g \).

2) Note that \(\Theta \)-characteristics are not totally homogeneous, for one can distinguish between odd and even characteristics (cf. [M2]).

Example 5.6. Recall that the Jacobian \(\mathfrak{J}_C \) of a curve \(C \) comes equipped with a theta divisor \(\Theta \) defined by the theta function \(\Theta_\theta(\tau) \) attached to the period lattice \(\Omega = \mathbb{Z}^g + \mathbb{Z}^g \) of \(C \). (Note that \(\Theta_\theta \) is symmetric!)
On the other hand, by fixing a base point \(p_0 \in C \), the Abel-Jacobi map
\[
\varphi_{p_0} : C^{(g-1)} \to J_C
\]
\[
\Delta \mapsto D - (\gamma_1 - \gamma_2) p_0
\]
defines a divisor \(W_{p_0} = W_{p_0}^{(g-1)} \) (which depends on the choice of \(p_0 \)). Since both have the same Chern class, we see that
\[
\tau_x(W_{p_0}^{(g-1)}) = 0
\]
for some \(x \in J_C \). While \(x \) will depend on the choice of \(T \) (i.e., the theta characteristic), we do have:
\[
2x = \varphi((\gamma_1 - \gamma_2) p_0 - \omega_C)
\]
\[
= -\varphi_{p_0}(\omega_C)
\]
(c.f. [64], p. 340).

86. Hamiltonian structures on line bundles and Arakelov theory

In [7], Faltings defined a canonical, possibly non-Hamiltonian metric on \(L - L(\Theta) \), where
\(\Theta \) is a symmetric \(\Theta \)-divisor (attached to a principal polarization) of an abelian \(X \), as follows:

1) If \(\Theta = (\Theta) \) is the divisor of a theta function \(\Theta = \Theta(z,T) \), then put
\[
||L_{(\Theta)}(z)|| = \sqrt{\text{det}(z)} \cdot \varTheta \left(\frac{1}{2} H(1,2) \right) \delta(1,1)
\]

2) More generally, if \(\Theta = \varphi_\ast \Theta_0 \otimes \mathcal{O}_X \) is another symmetric \(\Theta \)-divisor, then define:
\[
||L_{(\Theta)}(z)|| = ||L_{(\Theta_0)}(z-x)||
\]

As Faltings remarks, these metrics can be characterized by the property they are invariant under translation. In fact, these metrics...
Theorem 1. (Hortz-Baily): There is a unique way of attaching to each pair (X, L), where X is an abelian variety and L a line bundle on X, a set $\pi(X, L)$ of positive hermitian \mathbb{C}^2 metrics on L such that:

1. If $u : L_1 \cong L_2$ is an isomorphism, then $u(\pi(X, L)) = \pi(X, L)$.
2. $\pi(X, X \times L) = \text{set of constant metrics}$.
3. $\pi(X, L_1) \otimes \pi(X, L_2) \subset \pi(X, L_1 \otimes L_2)$.
4. If $f : X \to X_2$ is a morphism, $L_2 \in \text{Pic}(X_2)$ then $f^* \pi(X, L_2) \subset \pi(X, f^* L_2)$.

Moreover, each $\pi(X, L) \neq \emptyset$, and if $p \in \pi(X, L)$ then $\pi(X, L) = \{ \lambda p : \lambda \in \mathbb{C}^* \}$. Furthermore, $\pi(X, L) = \{ \rho : \text{the curve } \gamma \rho \text{ is translation invariant} \}$.

Ref. [HBI], pp 50-52; cf. also [HBI], p. 48ff.

Remark: This characterization is analogous to Neveu's class of K-functors.

References

