
1

The Ring of Modular Correspondences

1. Introduction.

Let: Γ(N) = Ker(SL2(Z) → SL2(Z/NZ)), the principal
congruence subgroup of level N,

X(N) = Γ(N)\H∗, the associated modular curve,
J(N) = Jac(X(N)), its Jacobian variety,
EN = End0(J(N)) = End(J(N))⊗Q, the endomorphism

algebra of J(N) (Ring of correspondences),
MN =

∑
QTA ⊂ EN , the subring of modular corre-

spondences.
Here, the above sum runs over all matrices A ∈ GL2(Q)+, and

TA = T
(N)
A : JN → JN ,

is the endomorphism defined by the curve (correspondence)
CA on XN ×XN which is the image of the curve

C̃A = {(z, A(z)) : z ∈ H∗} ⊂ H∗ ×H∗.

Note: Modular correspondences were introduced by Klein (1879)
and were studied by him and by Hurwitz (1883–87). The book
of Klein/Fricke (1893) gives a systematic exposition of the the-
ory. Their discussion suggests the following:

Questions: 1) When is every correspondence on XN modular,
i.e., when is MN = EN?

2) How large can δN := dim EN − dim MN be?

3) What is the growth rate of dim EN (and of dim MN) as
N →∞?
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Remarks: 1) We have the trivial upper bound

dim EN ≤ 2g2
N ,

where gN denotes the genus of X(N), i.e.

gN = 1 +
1

24
φ(N)ψ(N)(N − 6) � N 3,

where ψ(N) = N
∏

p|N(1 + 1
p) is the Dedekind ψ-function.

Thus, we shall measure the growth rate in terms of gN .

2) As we shall see, the answer to Question 3) sheds some light
on the more general question of determining the growth rate
of the function

dg := max{dim End(JX) : X/C is a curve of genus g} ≤ 2g2.

This question is partially related to the questions asked by
Ellenberg (2001) concerning the growth rate of certain subal-
gebras of End(JX).

3) Since X(N) has a canonical model X(N)/Q over Q, we
could also ask the corresponding questions for the subalgebra

EQ
N := End(J(N)/Q) = End(J(N))Gal(Q/Q)

of endomorphisms which are defined over Q. It turns out that
this situation is much easier to analyze.
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2. Main Results.

Let: K = {Q(
√
−n)}n≥1 be the set of imag.-quad. fields,

h(D) the class number of (forms of) discriminant D, so

hK = h(dK) is the class number of K, where dK = disc(K).

Theorem 1: If N ≥ 1, then

MN = EN ⇔ h(N 2/dK) = 1, ∀K ∈ K with dK|N.
⇔ either: 4 - N and p ≡ 1 (mod 4),∀p|N, p 6= 2,

or: N ∈ {3, 4, 6, 7, 8, 9, 11, 14, 19, 43, 67, 163}.

Remark: The second equivalence uses the resolution of the class
number 1 problem (Heegner, Stark).

Examples: (a) MN = EN , if N ≤ 11 or if N = 13, 14, 17, 25, . . .

(b) MN 6= EN , if N = 12, 15, 16, 18, 20, 21, 22, 23, 24, . . .

Theorem 2: If N ≥ 30, then

3
√

3/4 g
4/3
N ≤ dim MN ≤ ψ(N)gN +O(g1+ε

N )

≤ log log(gN)g
4/3
N +O(g1+ε

N ).

Remark: This uses the recent result of Solé/Planat (2011):

ψ(N) ≤ eγ log log(N)N, if N ≥ 30.

Theorem 3: For any ε > 0

δN := dim EN − dim MN = O(g
4/3+ε
N ) but δN 6= O(g

4/3−ε
N ).

Thus
dim EN = O(g

4/3+ε
N ).
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If we restrict N to primes and/or to prime powers, then more
can be said.

Theorem 4: If N = p is prime, then

dim(Mp) = 2
3
√

3 g4/3
p +O(gp).

Moreover, for any ε > 0

dim(Ep) = 2
3
√

3 g4/3
p +O(log(gp)

2gp).

Remark: This follows from a preprint of K.-Mohit, which gives
an explicit formula for dim Mp.

Theorem 5: If N = pr is a prime power with p ≡ 3 (mod 4),
then

δN = 24
3
√

3
h(−p)2

p2
g

4/3
N +O(log(p)gN).

Remarks: 1) Thus, the “error term” δN is almost as large as (the
lower bound for) dim EN .

Theorem 6: (a) Every Q-rational endomorphism f ∈ EQ
N is

modular, i.e.,

EQ
N = MQ

N := (MN)Gal(Q/Q).

(b) If N > 12, then

gN < dim EQ
N ≤ σ0(N

2)gN ;

In particular, dimEQ
N = O(g1+ε

N ), for all ε > 0.

Remark: Theorem 6 follows easily from the results of K. (2008).
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3. Basic Ingredients.

Main Steps: 1) Use Atkin-Lehner theory etc., to study the ac-
tion of MN,C := MN ⊗ C on the space

V = S2(Γ(N)),

and use this to determine the algebra structure of

MN,C = the image of MN,C in EndC(V ).

2) Determine Ker(MN,C → MN,C). For this, it is useful to split
V as

V = V nCM ⊕ V CM

where V CM is the subspace of forms with complex multiplica-
tion (CM) and V nCM the subspace of forms without CM, and
to study the action on these spaces separately. This leads to
the decomposition

MN,C = MnCM

N,C ⊕MCM

N,C.

3) Using the results of Ribet (1980), study the structure of EN .
For this, note that we have an isogeny decomposition

J(N) ∼ J(N)nCM × J(N)CM

which induces algebra decompositions

EN = EnCM
N ⊕ ECM

N and MN = MnCM
N ⊕MCM

N ,

where EnCM
N = End(J(N)nCM)⊗Q, ECM

N = End(J(N)CM)⊗
Q, and MnCM = EnCM

N ∩MN and MCM = ECM
N ∩MN .
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4. The Structure of M = MN,C.

Notation: Let N (V ) denote the set of normalized newforms (of
all levels) in V = S2(Γ(N)).

Observation: The group A∗N of characters on AN := (Z/NZ)×

acts on N (V ). (This action is induced by twisting.) Let

N (V ) = N (V )/A∗N (orbit space).

Theorem 7: V has multiplicity one as an M-module. More pre-
cisely, if V (f ) denotes the M-module generated by f ∈ N (V ),
then V (f ) is irreducible and one has the decomposition

V =
⊕

f∈N (V )

V (f )

into pairwise non-isomorphic M-modules. Thus

dimCZ(M) = |N (V )| = |N nCM |/φ(N) + 2|N CM |/φ(N),

where N nCM = N (V ) ∩ V nCM and N CM = N (V ) ∩ V CM .

Theorem 8: If N ≥ 5, then

|N (V )| =
1

24
φ(N)2(ψ(N)− 6),

and hence dimCZ(M) ≤ 1
12φ(N)(ψ(N)− 6).

Theorem 9 (K.-Mohit): We have that

dimC V (f ) ≤ ψ(N), for all f ∈ N (V ).

Remark: In our preprint we give in a precise formula for dimV (f ).
(This uses the results of Atkin/Li (1978).)
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Corollary: If N ≥ 5, then

3

√
3
4 g

4/3
N ≤ dimC M ≤ ψ(N)gN .

Remark: This follows from Theorems 7-9 because of the follow-
ing simple fact:

Lemma: Let A ⊂ EndC(V ) be a C-algebra such that V is semi-
simple and has multiplicity one as an A-module. Then

g2

z
≤ dimCA ≤ Mg,

where g = dimC V, z = dimC(Z(A)), and

M = max{dim(Vi) : Vi ⊂ V is irreducible}.

Remark: More precisely, if

V =
⊕
i

Vi

is the decomposition of V into irreducible A-modules, then

dimA =
∑

(dimVi)
2.
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5. The Kernel of MN,C → MN,C.

Theorem 10: We have that

dimC(Ker(MN,C → MN,C)) = dimC MCM

N,C

and so
dim MN = dimC MncM

N,C + 2 dimC MCM

N,C.

Remark: This result is proved by studying the MN -structure of
the module H1(X(N),C) ' V ⊕V ∗. Here V ∗ = HomC(V,C)
is the contragredient MN,C-module. A key ingredient is:

Theorem 11: If f ∈ N (V ), then

V (f )∗ 'M V (f ) ⇔ f ∈ N nCM .

Theorem 12: The number of CM-newforms in V is

|N (V )CM | =
φ(N)

2

∑
dK |N

h(N 2/dK),

where the sum is over all (fundamental) discriminants of imag-
inary quadratic fields K ∈ K with dK|N. Thus

dimCZ(MCM

N,C) =
∑
dK |N

h(N 2/dK),

and
dim MCM

N,C = O(N 3+ε) = O(g1+ε
N ), ∀ε > 0.

In particular,

dim MN = dim MN +O(g1+ε
N ).
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6. The Structure of EN .

Notation: If K ∈ K, let V CM
K denote the subspace of V of forms

with CM by ψK = ψdK =
(
dK
·

)
, and put sK = dimC V

CM
K .

Theorem 13: If N ≥ 5, then

J(N)CM ∼
∏
dK |N

E
sK
K ,

where EK/C is any elliptic curve with End0(EK) = K. Thus

ECM
N '

⊕
dK |N

MsK(K) and so dim ECM
N = 2

∑
dK |N

(sK)2.

Remark: This follows from the results of Shimura (1976), Ribet
(1980) and Theorem 11. Moreover, from the results of Ribet
and Theorems 7 and 10 we obtain:

Theorem 14: EnCM
N = MnCM

N .

Corollary: If N ≥ 5, then

dimZ(MN)− dimZ(EN) = 2
∑
dK |N

(h(N 2/dK)− 1),

and

dim EN − dim MN ≤ 2
∑
dK |N

sKh(N 2/dK)(h(N 2/dK)− 1).

Remark: This corollary implies Theorem 1!


