The Ring of Modular Correspondences

1. Introduction.

Let: I'(N) = Ker(SLe(Z) — Slo(Z/NZ)), the principal
congruence subgroup of level N,

X(N)=T(N)\$*, the associated modular curve,

J(N) = Jac(X(N)), its Jacobian variety,

Ey = End"(J(N)) = End(J(N)) ® Q, the endomorphism
algebra of J(N) (Ring of correspondences),

My = > QT4 C Ey, the subring of modular corre-
spondences.

Here, the above sum runs over all matrices A € GLy(Q)™, and

TA — TAN) : JN — JN,

is the endomorphism defined by the curve (correspondence)
C'y on Xy x Xy which is the image of the curve

Ci={(z,A(2): ze H'} C H* x H".

Note: Modular correspondences were introduced by Klein (1879)
and were studied by him and by Hurwitz (1883-87). The book
of Klein /Fricke (1893) gives a systematic exposition of the the-
ory. Their discussion suggests the following:

Questions: 1) When is every correspondence on Xy modular,
i.e., when is My = Exn7?
2) How large can 0y := dim Ey — dim My be?

3) What is the growth rate of dimEy (and of dimMy) as
N — o0?



Remarks: 1) We have the trivial upper bound
dimEy < 2g%,

where gy denotes the genus of X (N), i.e.
1
o = L+ 6N (NN —6) = N,

where (N) = N[, y(1+ %) is the Dedekind -function.

Thus, we shall measure the growth rate in terms of gy.

2) As we shall see, the answer to Question 3) sheds some light
on the more general question of determining the growth rate
of the function

d, = max{dim End(Jx) : X/C is a curve of genus g} < 2¢°.

This question is partially related to the questions asked by
Ellenberg (2001) concerning the growth rate of certain subal-
gebras of End(Jx).

3) Since X(N) has a canonical model X(N),g over Q, we
could also ask the corresponding questions for the subalgebra

EY := End(J(N),g) = End(J(N))®@Q

of endomorphisms which are defined over Q. It turns out that
this situation is much easier to analyze.



2. Main Results.
Let: K = {Q(v/—n) }u>1 be the set of imag.-quad. fields,

h(D) the class number of (forms of) discriminant D, so

hi = h(dg) is the class number of K, where dyi = disc(K).
Theorem 1: If N > 1, then

My =Ey < h(N?/dg) =1, VK € K with dg|N.
& either: 44 N and p = 1 (mod4),Vp|N,p # 2,
or: N € {3,4,6,7,8,9,11, 14,19, 43, 67, 163}.

Remark: The second equivalence uses the resolution of the class
number 1 problem (Heegner, Stark).

Examples: (a) My = Ey,if N < 1lorif N =13,14,17,25,. ..
(b) My # En, if N =12,15,16, 18,20, 21, 22,23, 24, . ..
Theorem 2: If N > 30, then

3/AgHP < dimMy < ¥(N)gy + O(ght)

log log(gn)gn” + O(gi™).
Remark: This uses the recent result of Sol¢/Planat (2011):
Y(N) < e’loglog(N)N, if N > 30.
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Theorem 3: For any € > 0
oy =dimEy — dimMy = 0(9%3%) but oy # O(gf\,/g_g).

Thus
dimEy = O(gi{gﬁ).
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If we restrict N to primes and/or to prime powers, then more
can be said.

Theorem 4: If N = p is prime, then
dim(M,) = 2v/3 g% + O(g,).
Moreover, for any € > 0

dim(E,) = 2v'3g,"* + O(log(g,)*g,).

Remark: This follows from a preprint of K.-Mohit, which gives
an explicit formula for dim M,

Theorem 5: If N = p" is a prime power with p = 3 (mod4),
then

S = 2493 ( S 43 Ollog(p)gi).

Remarks: 1) Thus, the “error term” 0y is almost as large as (the
lower bound for) dim E .

Theorem 6: (a) Every Q-rational endomorphism f € EY is
modular, i.e.,

E% _ M% - (MN)Gal(@/@).
(b) If N > 12, then
gy < dmEY < oo(N?)gy:
In particular, dim EY = O(g), for all £ > 0.
Remark: Theorem 6 follows easily from the results of K. (2008).



3. Basic Ingredients.

Main Steps: 1) Use Atkin-Lehner theory ete., to study the ac-
tion of My ¢ := My ® C on the space

V = 5(I'(N)),
and use this to determine the algebra structure of

My ¢ = the image of My ¢ in Endg(V).

2) Determine Ker(My ¢ — My ¢). For this, it is useful to split
V' as
V = VnCM D VCM

where VM ig the subspace of forms with complex multiplica-
tion (CM) and V"“M the subspace of forms without CM, and
to study the action on these spaces separately. This leads to
the decomposition

— —nCM —CM
MN,(C — MN,C @ MN,(C‘

3) Using the results of Ribet (1980), study the structure of E .
For this, note that we have an isogeny decomposition

J(N) ~ J(N)"“M 5 J(N)M
which induces algebra decompositions
Ey = Ef¥M o ECM and My = MY @ MSM,

where E3“Y = End(J(N)"“M)@Q, E{M = End(J(N)“M)
Q, and MM = E2CM A My and MOM = EGM N My



4. The Structure of M = MN,@.

Notation: Let N (V') denote the set of normalized newforms (of
all levels) in V' = Sy(I'(N)).

Observation: The group A% of characters on Ay = (Z/NZ)*
acts on N (V'). (This action is induced by twisting.) Let

N(V)=N(V)/Ay (orbit space).

Theorem 7: V' has multiplicity one as an M-module. More pre-
cisely, if V(f) denotes the M-module generated by f € N(V),

then V' (f) is irreducible and one has the decomposition
V= @ V(f
feN(V
into pairwise non-isomorphic M-modules. Thus
dime Z(M) = [N(V)] = [NV f6(N) + 2JA Y| /6(N),
where N"M = (V)N VM and NOM = N (V)N VM,
Theorem 8: If N > 5, then

IN(V)] = 56N P((N) 6),

and hence dime Z(M) < 5¢(N)(¢(N) — 6).
Theorem 9 (K.-Mohit): We have that

dimc V(f) < ¢(N), forall f e N(V).

Remark: In our preprint we give in a precise formula for dim V' ( f).
(This uses the results of Atkin/Li (1978).)



Corollary: If N > 5, then

{)’/%9?\%3 < dimeM < (N)gy.
Remark: This follows from Theorems 7-9 because of the follow-
ing simple fact:

Lemma: Let A C End¢ (V) be a C-algebra such that V' is semi-
simple and has multiplicity one as an A-module. Then
2

where g = dim¢ V, 2z = dim¢(Z(A)), and
M = max{dim(V;) : V; C V is irreducible}.

Remark: More precisely, if
V-
i
is the decomposition of V' into irreducible A-modules, then

dim A = (dimV;)”.



5. The Kernel of My ¢ — MN,@.
Theorem 10: We have that
dim@(Ker(MN’@ — MN@)) = dlm@ M]C\Z\é

and so y
dim My = dimc¢ M?VC@ + 2dimc MN@

Remark: This result is proved by studying the Ml y-structure of
the module H(X(N),C) =~ V @& V*. Here V* = Home(V, C)
is the contragredient My c-module. A key ingredient is:

Theorem 11: If f € N(V), then
V) =u V() < [feN"M
Theorem 12: The number of CM-newforms in V' is
o, OWV) )
NV = B ST RN ),
di | N

where the sum is over all (fundamental) discriminants of imag-
inary quadratic fields K € K with dg|N. Thus

dlm@Z MNC ZhNZ/dK
di|N

and

dmM§¢ = O(N?™) = O(gy), Ve > 0.

In particular,

dim My = dim My + O(g3).



6. The Structure of Ey.

Notation: If K € I, let Vfg M denote the subspace of V of forms
with CM by ¥ = g, = (d—K) s and put sy = dime VEM.
Theorem 13: If N > 5, then
JINM ~ T B
di|N
where Ey /C is any elliptic curve with End’(Ex) = K. Thus

EGM ~ @ M, (K) and so dimE§M =2 Z(SK>2.
dr|N dr|N

Remark: This follows from the results of Shimura (1976), Ribet
(1980) and Theorem 11. Moreover, from the results of Ribet
and Theorems 7 and 10 we obtain:

Theorem 14: IE?([CM = M?\,CM :
Corollary: If N > 5, then
dim Z(My) — dim Z(Ey) =2 Y (h(N?/dg) - 1),

dc|N
and
dmEy — dimMy <2 sxh(N?/dg)(h(N?/dg) — 1).
dc|N

Remark: This corollary implies Theorem 1!



