Theorem: Let V_l be pure of weight w, let $G_{\nu} \subset G_K$ be a decomposition group at ν .

a) If $w \neq 0$, then the restriction map

$$H^1(G_K, \Lambda_l) \longrightarrow \prod_{\nu} H^1(G_{\nu}, \Lambda_l)$$

is injective.

b) If
$$w \neq -2$$
, then $H^2(G_K, A_l) \xrightarrow{\sim} \bigoplus_{\nu} H^2(G_{\nu}, A_l) \cong \bigoplus_{\nu \in S} H^2(G_{\nu}, A_l)$.

This follows from a vanishing theorem of Serre. Applications are Tate's theorem $H^2(G_K, \mathbb{Q}/\mathbb{Z}) = 0$ or Kato's Hasse principle for function fields over number fields.

We mentioned a conjecture on the vanishing of $H^2(G_S, A(r))$ for certain $r \in \mathbb{Z}$ (where G_S is the S-ramified quotient of G_K) and the vanishing of $H^2(G_{\nu}, l\text{-Div}H^i(\overline{X}, \mathbb{Q}_l/\mathbb{Z}_l(n)))$ unless possibly for $\frac{i}{2} + 1 \le n \le i + 1$ (for $\nu \not\mid l$, this conjecture is "classical").

Theorem: $H^2(G_{\nu}, l\text{-Div}H^i(\overline{X}, \mathbb{Q}_l/\mathbb{Z}_l(n))) = 0$ unless possibly for $0 \le n \le i+1$, where we assume that X has a regular model over \mathcal{O}_{ν} (the ring of integers in K_{ν}) in the case $\nu \not | l$.

E. Kani

Arithmetic intersection theory

Arakelov's intersection theory on an arithmetic surface is based on the philosophy that potential theory on a Riemann surface is the archimedean analogue of the Lichtenbaum-Shafarevich intersection theory for curves over valuation rings. This analogy can be made precise in the following sense.

1) Integration. Let K_{ν} be a non-archimedean complete valued field (wrt. $|\cdot|_{\nu}$), W a projective variety over K_{ν} , viewed as a rigid analytic variety, and let $\mathcal{B}(V)$ denote the boolean algebra generated by all affinoid subdomains. We consider finitely additive set functions

$$\mu: \mathcal{B}(V) \to \{0,1\} \subset \mathbb{R}$$
 ("binary measures")

Theorem 1: The map $\mu \to V_{\mu}(\cdot) = -\int \log |\cdot| d\mu$ defines a bijection between the set of binary, regular, non-degenerate measures and the set of real-valued valuations V on F (=function field of W) with $V|_K = \nu$ (= $-\log |\cdot|_{\nu}$).

2) non-archimedean Green's functions. The analogy between Green's functions and intersection theory becomes precise when one considers affinoid spaces $X \subset C$ (=curve). The Green's function g, the harmonic measures h_i , and induction coefficients $\{a_{ij}\}$ piece together to yield the intersection pairing

Theorem 2: The Green's function g, the harmonic measures $\{h_i\}$, the $\{a_{ij}\}$ exist for every affinoid $X \subset C$ and are uniquely characterized by their properties.

