Diagonal Quotient Surfaces and a Question of Mazur

Introduction

Let E/K be an elliptic curve over a number field K, N an odd prime,

 $\bar{\rho}_{E/K,N}: G_K \to Aut(E[N]) \simeq GL_2(\mathbb{Z}/N\mathbb{Z})$ its associated Galois representation modulo N.

Question: To what extent is the isogeny class of E/K determined by the isomorphism class of $\bar{\rho}_{E/K,N}$?

Note: By definition, $\bar{\rho}_{E/K,N} \simeq \bar{\rho}_{E'/K,N} \Leftrightarrow \exists G_K$ -isomorphism $\psi : E[N] \xrightarrow{\sim} E'[N]$.

Mazur (1978): \exists ? E and E'/\mathbb{Q} with $E \not\sim E'$ such that $\bar{\rho}_{E/K,N} \simeq \bar{\rho}_{E'/K,N}$ for some $N \geq 7$?

Kraus-Oesterlé (1992): Yes! (for N = 7).

Frey + group (\sim 1993): Computer search: lots of examples for N=7,11.

Halberstadt-Kraus (1996): $\exists \infty$ 'ly many examples for N = 7.

Conjecture 1 (Frey, 1988): \exists a constant $M_{E,K}$ s. th.

$$\mathbb{S}_{N,E}(K) \stackrel{\text{def}}{=} \{E'/K : \bar{\rho}_{E'/K,N} \simeq \bar{\rho}_{E/K,N}, E' \not\sim E\}/\simeq$$

$$= \phi, \quad \text{for } N \geq M_{E,K}.$$

Note: Faltings' Theorem (Mordell Conjecture) \Rightarrow $\#\mathbb{S}_{N,E}(K) < \infty$ for all $N \geq 7$.

Theorem 0 (Frey, 1996): For $K = \mathbb{Q}$, Conjecture 1 is equivalent to the Asymptotic Fermat Conjecture:

(AFC) For every $a, b, c \in \mathbb{Z}$, $abc \neq 0$, the set

$$F_{a,b,c} = \bigcup_{n \ge 4} \{(x_n, y_n, z_n) \in \mathbb{Z}^3 : ax_n^n + by_n^n = cz_n^n, (x_n, y_n, z_n) = 1\}$$

is finite.

Conjecture 2 (Darmon, 1994): \exists constant M_K s. th.

$$\mathbb{S}_N(K) := \mathop{\cup}_{E/K} \mathbb{S}_{N,E}(K) \, = \, \phi, \quad \forall N \geq M_K.$$

Conjecture 3 (Darmon, 1994): \exists constant M s. th.

$$\#\mathbb{S}_N(K) < \infty, \quad \forall N \ge M.$$

Conjecture 3': Conjecture 3 is true for M = 23.

Note: We can alternately define the set $\mathbb{S}_N(K)$ as

$$\mathbb{S}_N(K) = \{(E, E')_{/K} : E \not\sim E' \text{ and } \exists G_K\text{-isom.}$$

$$\psi : E[N] \xrightarrow{\sim} E'[N] \}/\simeq.$$

Definition: A G_K -isomorphism $\psi : E[N] \xrightarrow{\sim} E'[N]$ is called trivial if it is "induced by an isogeny of very small degree", i.e. there exists a cyclic isogeny $f: E \to E'$ with $\deg(f) \leq 27, (\neq 22, 23, 26)$ s. th. $\psi = k \cdot f_{|E[N]}$, for some k, (k, N) = 1.

Conjecture 4: The set

$$\mathbb{S}_N^*(K) = \{(E, E')_{/K} : \exists \text{non-trivial } G_K \text{-isom.}$$

$$\psi : E[N] \xrightarrow{\sim} E'[N] \} / \simeq.$$

is finite, for all $N \geq 23$.

- **Remarks. 1)** Clearly, Conjecture $4 \Rightarrow$ Conjecture 3' (because $\mathbb{S}_N^*(K) \supset \mathbb{S}_N(K)$).
 - 2) On the other hand, the set

$$\mathbb{T}_N(K) = \{(E, E')_{/K} : \exists \operatorname{trivial} G_K \text{-isom.}$$

 $\psi : E[N] \xrightarrow{\sim} E'[N] \}/\simeq.$

is always infinite!

1. Diagonal Quotient Surfaces

Given: X a (smooth, projective) curve over K $G \leq Aut(X)$ a group of auto's of X/K $\alpha \in Aut(G)$ an automorphism of GLet: $Y = X \times X$ denote the product surface

Let: $Y = X \times X$ denote the product surface $\Delta_{\alpha} = \{(g, \alpha(g)) : g \in G\} \leq G \times G$ - the "twisted diagonal subgroup"

 $Z = Z_{X,G,\alpha}$ the diagonal quotient surface $\sigma: \tilde{Z} \to Z$ its desingularization

Proposition 1: The functor $\mathcal{Z}_{N,\varepsilon}$, defined by

$$\mathcal{Z}_{N,\varepsilon}(K) = \{ (E, E', \psi)_{/K} : \psi : E[N] \xrightarrow{\sim} E'[N], \det(\psi) = \varepsilon \} / \simeq$$

is (coarsely) representable by an open subscheme $Z'_{N,\varepsilon}$ of the diagonal quotient surface ("modular diagonal quotient surface")

$$Z_{N,\varepsilon} := Z_{X,G_N,\alpha_{\varepsilon}},$$

where X = X(N) is the modular curve of level N, $G_N = SL_2(\mathbb{Z}/N\mathbb{Z})/\{\pm 1\},$

$$\alpha_{\varepsilon}: g \mapsto Q_{\varepsilon}gQ_{\varepsilon}^{-1}$$
, with $Q_{\varepsilon} = \begin{pmatrix} \varepsilon & 0 \\ 0 & 1 \end{pmatrix}$.

- **Remarks. 1)** $Z_{N,\varepsilon}$ may be viewed as a "degenerate Hilbert modular surface" of discriminant $\Delta = N^2$. (point of view of C.F. Hermann)
 - **2)** Just like the curves X(N), the surfaces $Z_{N,\varepsilon}$ have canonical models defined over \mathbb{Q} , and the quotient maps

$$X(N) \times X(N) \xrightarrow{\varphi} Z_{N,\varepsilon} \xrightarrow{\psi} X(1) \times X(1)$$

are also \mathbb{Q} -rational (even though the elements of G_N are only defined over $\mathbb{Q}(\zeta_N)^+$).

Thus, the classification of iso.'s between the $\bar{\rho}_{E/K,N}$'s \leftrightarrow the study of rational points on $Z_{N,\varepsilon}$:

$$Z_{N,\varepsilon}(K)$$
" = " $\mathbb{T}_{N,\varepsilon}(K) \stackrel{.}{\cup} \mathbb{S}_{N,\varepsilon}^*(K) \stackrel{.}{\cup} \underbrace{\mathrm{cusps}_{N,\varepsilon}(K)}_{\text{finite union of curves}}$

Theorem 1 (C.F. Hermann; K.-Schanz): The rough classification type of $\tilde{Z}_{N,\varepsilon}$ is completely determined by its geometric genus $p_g = p_g(\tilde{Z}_{N,\varepsilon})$; in particular, its Kodaira dimension is

$$\kappa(\tilde{Z}_{N,\varepsilon}) = \min(p_g - 1, 2)$$

Corollary: $\tilde{Z}_{N,\varepsilon}$ is of general type $\forall \varepsilon \Leftrightarrow N \geq 13$.

2. Modular DQS's and Conjecture 4

Need: a geometric interpretation of the condition " ψ is induced by an isogeny".

 \rightarrow Hecke correspondences T_n on X(N)

$$T_{n} \longrightarrow T_{n} \subset Y = X(N) \times X(N)$$

$$X(N) \downarrow X(N) \longrightarrow T_{n,k} = (\langle k \rangle \times id) T_{n} \subset Y$$

$$\downarrow X_{0}(n) \downarrow \qquad \Delta_{\varepsilon} \downarrow$$

$$X(1) \qquad \bar{T}_{n,k} \subset Z = \Delta_{\varepsilon} \backslash Y$$

Note: $T_{n,k}$ is Δ_{ε} -invariant $\Leftrightarrow k^2 n\varepsilon \equiv 1 \pmod{N}$.

Proposition 2: The set $\mathbb{T}_{N,\varepsilon}$ has the following geometric interpretation:

$$\mathbb{T}_{N,\varepsilon}(K) = \bigcup_{\substack{n,k\\g(\bar{T}_{n,k}) \leq 1}} \bar{T}_{n,k}(K) \setminus \text{cusps}(K)$$

In addition, we have

$$g(\bar{T}_{n,k}) \le 1 \Leftrightarrow \begin{cases} n \le 27, n \ne 22, 23, 26 \\ k^2 n \varepsilon \equiv 1 \pmod{N}. \end{cases}$$

Remark. Thus we have:

$$Z_{N,\varepsilon}(K) = \underbrace{\mathbb{T}_{N,\varepsilon}(K)}_{\text{infinite}} \cup \mathbb{S}_{N,\varepsilon}^*(K) \cup \underbrace{\text{cusps}(K)}_{\text{finite for } N \geq 13}$$

Conjecture 5: If $N \ge 23$, then every curve C on $Z_{N,\varepsilon}$ of genus $g(C) \le 1$ is modular, i.e. $C = \bar{T}_{n,k}$, for some n,k.

Lang's Conjecture: If Z is a surface of general type and

$$Z_{exc} = \bigcup_{\substack{C \subset Z \\ g(C) \le 1}} C,$$

- then a) Z_{exc} consists of finitely many curves;
 - **b)** the open variety $Z \setminus Z_{exc}$ is Mordellic.

Remark. Conjecture $5 \Rightarrow$ Lang's Conjecture, part a) for $Z_{N,\varepsilon}$.

3. Evidence for Conjecture 5

a) G_N -equivariant curves:

Proposition 3. If $N \geq 23$, then

- a) $H \leq G_N \Rightarrow g(H \setminus X(N)) \geq 2$.
- **b)** Every curve C on $Z_{N,\varepsilon}$ with $g(C) \leq 1$ lifts to a Δ_{ε} -equivariant curve \tilde{C} on $Y = X(N) \times X(N)$:

$$C$$
 $X(N) \downarrow X(N)$
 $\downarrow^{G_N} C \stackrel{G_N}{\searrow} \downarrow$
 $X(1) X(1)$

However: $\exists \infty$ 'ly many Δ_{ε} -equivariant curves C on $Z_{N,\varepsilon}$ with sufficiently large genus g(C) >> 0.

b) Minimal models:

Conjecture 6: (Hermann, 1991) If $N \geq 7$, then the minimal model $\tilde{Z}_{N,\varepsilon}^{min}$ of $\tilde{Z}_{N,\varepsilon}$ is obtained by blowing down "known curves".

Remarks. 1) Conj. $5 \Rightarrow$ Conjecture 6 (for $N \ge 23$).

2) Conjecture 6 \Leftrightarrow explicit formula for $P_2(\tilde{Z}^{min})$ \Leftrightarrow explicit formula for $K_{\tilde{Z}^{min}}^2$.

In particular: Conject. $6 \Rightarrow K_{\tilde{Z}min}^2 - K_{\tilde{Z}}^2 \leq 6$. (Note: Vanishing thms $\Rightarrow K_{\tilde{Z}min}^2 - K_{\tilde{Z}}^2 \leq f(N)$, where f(N) is a quadratic polynomial in N.)

3) Conjecture 6 is a natural analogue of a Conjecture of Hirzebruch for Hilbert modular surfaces; this latter conjecture was proven by C.F. Hermann in 1987 in many cases. His method also yields:

Theorem 2 (Hermann) If $N \equiv 7 \pmod{8}$ and $\varepsilon \equiv -1 \pmod{N}$, then Conjecture 6 is true.

Theorem 3: Conjecture 6 is true for $N \leq 13$.