Endomorphisms of Jacobians of Modular Curves and an Application

1. Introduction

Let Γ be a congruence group with $\Gamma_1(N) \leq \Gamma \leq \Gamma_0(N)$, $X_{\Gamma} = \Gamma \backslash \mathcal{H}^*$ be the associated modular curve, $X = X_{\Gamma,Q}$ its canonical model over \mathbb{Q}, $J = J_X$, its Jacobian variety of dimension g_X, $E = \text{End}_0^0(J) = \text{End}_Q(J) \otimes \mathbb{Q}$, its endomorphism algebra.

Problem 1: Determine E, i.e. find explicit generators for E.

Recall: The Hecke operators (correspondences) T_n on X give rise to a commutative subalgebra called the Hecke algebra,

$$\mathcal{T} = \langle T_n : n \geq 1 \rangle_\mathbb{Q} \subset E.$$

It contains the (semi-simple) subalgebra

$$\mathcal{T}' = \langle T_n : n \geq 1, (n, N) = 1 \rangle_\mathbb{Q} \subset \mathcal{T} \subset E.$$

Then we have

$$\dim_\mathbb{Q} \mathcal{T} = \dim J, \quad \text{(Shimura)}$$

$$\dim_\mathbb{Q} \mathcal{T}' = \# \mathcal{N}(\Gamma), \quad \text{(Atkin-Lehner)}$$

where $\mathcal{N}(\Gamma) \subset S_2(\Gamma)$ denotes the set of normalized newforms of weight 2 of all levels, i.e. if $f \in \mathcal{N}(\Gamma)$, then f is a normalized newform of level $N_f | N$.

Note: If $N = p$ is prime, then by Ribet we have that $T' = T = E$, but in general these three algebras are different.

Reason: For each pair (M, d) with $Md|N$, there is a degeneracy morphism (Mazur)

$$B_{M,d} : X \to X_M,$$

where X_M is the corresponding curve of level M, and these give rise to new endomorphisms

$$D_{M,d} := B_{M,1}^* \circ (B_{M,d})_* , \quad t_{M,d} := B_{M,d}^* \circ (B_{M,1})_* \in \text{End}(J_X).$$

Theorem 1: $E = \langle T', \{D_{M,d}, t_{M,d} : Md|N \} \rangle \mathbb{Q}$.

Corollary: $Z(E) = T'$.

Thus: T' has an intrinsic interpretation.

Remark: The above results also apply to other modular curves such as the principal modular curve

$$X(N) = X_{\Gamma(N), \mathbb{Q}},$$

where $\Gamma(N) = \text{Ker}(\text{SL}_2(\mathbb{Z}) \to \text{SL}_2(\mathbb{Z}/N\mathbb{Z}))$.

[Indeed, $\Gamma(N)$ is conjugate to a group $\Gamma[N]$ with

$$\Gamma_1(N^2) \leq \Gamma[N] \leq \Gamma_0(N),$$

and we have \mathbb{Q}-isomorphisms

$$X(N) \simeq X_{\Gamma[N], \mathbb{Q}} \quad \text{and} \quad J(N) \simeq J_{X_{\Gamma[N], \mathbb{Q}}}$$

which are compatible which the action of the Hecke algebras.]
Problem 2: For each \(\varepsilon \in (\mathbb{Z}/N\mathbb{Z})^\times \), determine \(\dim \mathbb{Q} T_\varepsilon \), where

\[
T_\varepsilon = \sum_{a^2n \equiv \varepsilon(N)} \mathbb{Q}T_{a,n}.
\]

Here \(T_{a,n} = T(a, a)T_n \), where \(T(a, a) = \langle a \rangle \) denotes the diamond operator. Note that by definition we have

\[
\sum_\varepsilon T_\varepsilon = T'.
\]

Theorem 2: If \(X = X(N) \), then

\[
T' = \bigoplus_\varepsilon T_\varepsilon.
\]

Remarks:

1) Thus, we might expect that

\[
\dim T_\varepsilon \approx \frac{1}{\phi(N)} \dim T' = \frac{1}{\phi(N)} \# \mathcal{N}(\Gamma(N)).
\]

This is almost true, but the presence of CM elliptic curves in \(J(N) \) makes the actual result a bit more complicated. (See Theorem 5 below.)

2) As we shall see, \(T_\varepsilon \) also has an intrinsic interpretation in terms of the algebra \(\mathcal{M} \) of all modular correspondences.

3) The group \(T_\varepsilon \) is closely related to the Neron-Severi group \(\text{NS}(Z_{N,\varepsilon}) \) of the modular diagonal quotient surface (MDQS)

\[
Z_{N,\varepsilon} = (X(N) \times X(N))/\Delta_\varepsilon,
\]

where \(\Delta_\varepsilon \leq G_N \times G_N \) is a certain (twisted) diagonal subgroup of the group \(G_N = \text{SL}_2(\mathbb{Z}/N\mathbb{Z})/\pm1 \).
2. Ingredients of Theorem 1

(a) The Degeneracy Algebra:

Recall: The algebra E acts faithfully on the \mathbb{Q}-vector spaces

$$H^0(J, \Omega^1_J) \cong H^0(X, \Omega^1_X) \cong S_{\mathbb{Q}} := S_2(\Gamma, \mathbb{Q}),$$

where $S_{\mathbb{Q}} = S_2(\Gamma, \mathbb{Q})$ = space of all weight 2 cusp forms on Γ with \mathbb{Q}-rational Fourier expansions. Thus:

$$E_{\mathbb{C}} = E \otimes \mathbb{C} \text{ acts faithfully on } S := S_2(\Gamma) = S_{\mathbb{Q}} \otimes \mathbb{C}.$$

Basic Fact (Atkin-Lehner Theory): The isotypic decomposition of S as a $T'_{\mathbb{C}}$-module is given by

$$S = \bigoplus_{f \in \mathcal{N}(\Gamma)} S_f, \text{ where } S_f = \sum_{d | (N/N_f)} \mathbb{C} f|\beta_d.$$

Here $\beta_d = \begin{pmatrix} d_0 & 0 \\ 0 & 1 \end{pmatrix}$, so $f|\beta_d(z) = f(dz)$ and hence

$$n_f := \dim S_f = \sigma_0(N/N_f).$$

Definition: The degeneracy algebra is

$$\mathbb{D} = \langle T', \{D_{M,d}, t^M D_{M,d} : Md|N}\rangle \subset E.$$

Theorem 3: Each S_f is an irreducible $\mathbb{D}_{\mathbb{C}}$-module, and every irreducible $\mathbb{D}_{\mathbb{C}}$-module is isomorphic to a unique S_f. Thus $Z(\mathbb{D}_{\mathbb{C}}) = T'_{\mathbb{C}}$ and $\mathbb{D}_{\mathbb{C}} = C_S(T'_{\mathbb{C}})$, the centralizer of T' in $\text{End}_{\mathbb{C}}(S)$. In particular, S has multiplicity 1 as a $\mathbb{D}_{\mathbb{C}}$-module.

Remark: There is an analogous statement for the space $S_k(\Gamma)$ of cusp forms of arbitrary weight k.
(b) Ribet’s work:

Notation: $K_f := \mathbb{Q}(\{a_n(f)\})$, if $f = \sum a_n(f)q^n \in \mathcal{N}(\Gamma)$.

Theorem 4 (Ribet)

$$E := \text{End}^0_Q(J) \cong \prod_{f \in \mathcal{N}(\Gamma)/G_Q} M_{n_f}(K_f).$$

Remark: Although the above result is not mentioned explicitly in Ribet’s work, it can be deduced from his results (with some difficulty).

Proof of Theorem 1: Since $D \subset E$, we have $Z(E) \subset C_{S_Q}(E) \subset C_{S_Q}(D) = \mathbb{T}'$ (Theorem 3). But by Theorem 4 we have $\dim Z(E) = \#\mathcal{N}(\Gamma) = \dim \mathbb{T}'$, and so $Z(E) = C_{S_Q}(E) = \mathbb{T}'$. Thus $D = E$ by the double centralizer theorem.

Example: $X = X(p)$, p a prime.

Let $\eta : X(p) \to X^1(p)$ and $\eta' : X(p) \to X_1(p)$ be the usual covering maps, and put $\tau = \eta^* \circ \eta_*, \tau' = (\eta')^* \circ \eta_*'$. Then Theorem 1 (+ a refinement) gives

$$E = \langle \mathbb{T}', \tau, T_p, tT_p \rangle_\mathbb{Q} = \langle \mathbb{T}', \tau, \tau' \rangle_\mathbb{Q}. \tag{1}$$

[Indeed, $\tau = D_{p,1}, T_p = tD_{p,p},$ and $tT_p = D_{p,p}$.] Moreover,

$$\dim \mathbb{T}' = g(p) - g_1(p)$$
$$\dim \mathbb{T} = g(p)$$
$$\dim E = g(p) + 2g_1(p)$$

where $g(p) = g_{X(p)}$ and $g_1(p) = g_{X_1(p)}$.

3. CM-forms and the Dimension of \mathcal{T}_ε

Notation: Let $f, g \in \mathcal{N}(\Gamma)$. If χ is a Dirichlet character with conductor $\text{cond}(\chi)|N$, then we write

$$f_{\chi} \sim g \iff \chi(n)a_n(f) = a_n(g), \forall n \geq 1, (n, N) = 1.$$

Definition: $f \in \mathcal{N}(\Gamma)$ is called a CM-form if $f_\theta \sim f$, for some Dirichlet character $\theta \neq 1$.

Let $\mathcal{N}(\Gamma)^{CM} \subset \mathcal{N}(\Gamma)$ denote set of all CM-forms on Γ.

Remarks:

1) If $f_\theta \sim f$, $\theta \neq 1$, then $\theta^2 = 1$ and $\theta = \theta_f$ is uniquely determined by f.

2) $\#\mathcal{N}(\Gamma)^{CM}$ can be calculated explicitly in terms of class numbers of imaginary quadratic fields. (Shimura)

3) $f \in \mathcal{N}(\Gamma)^{CM} \iff A_f \otimes \mathbb{C} \sim E^m$, where E is a CM elliptic curve. (Here A_f = abelian quotient of J.) (Shimura, Ribet)

Notation: If $f, g \in \mathcal{N}(\Gamma)$, then we write

$$f \approx g \iff f_{\chi} \sim g, \text{ for some } \chi \text{ with } \text{cond}(\chi)|N.$$

Moreover, for $\varepsilon \in (\mathbb{Z}/N\mathbb{Z})^\times$ put

$$\mathcal{N}_\varepsilon(\Gamma) = \{ f \in \mathcal{N}(\Gamma) : f \notin \mathcal{N}(\Gamma)^{CM} \text{ or } f \in \mathcal{N}(\Gamma)^{CM} \text{ and } \theta_f(\varepsilon) = 1 \}.$$

Theorem 5: We have

$$\dim \mathcal{T}_\varepsilon = \#\mathcal{N}_\varepsilon(\Gamma)/\approx.$$
4. The Algebra \mathcal{M} of Modular Correspondences

Fact (Klein, Gierster, Hurwitz, ...) Each $\alpha \in \text{GL}_2^+(\mathbb{Q})$ defines a modular correspondence

$$ T_\Gamma(\alpha) \subset X_\Gamma \times X_\Gamma $$

and hence induces an endomorphism $f_\alpha \in \text{End}_\mathbb{C}(X_\Gamma)$. We call the \mathbb{Q}-algebra $\mathcal{M} \subset \text{End}_\mathbb{C}^0(X_\Gamma)$ generated by the f_α’s the algebra of modular correspondences.

Remarks: 1) The Hecke correspondence T_p (p any prime) is given by $T_p = f_{\alpha_p}$, where $\alpha_p = \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix}$.

2) It follows from the example below that $\mathcal{M} \subset \mathbb{E}^\prime := \text{End}^0_{K_N}(X_\Gamma)$, where $K_N = \mathbb{Q}(\zeta_N)$.

Thus, the group $(\mathbb{Z}/N\mathbb{Z})^\times \simeq \text{Gal}(K_N/\mathbb{Q})$ induces a natural Galois action on \mathbb{E}^\prime and on \mathcal{M} via

$$ \tau_a(f) = \tilde{\tau}_a \circ f \circ \tilde{\tau}_a^{-1}, \quad a \in (\mathbb{Z}/N\mathbb{Z})^\times, $$

where $\tilde{\tau}_a$ is the lift of $\tau_a \in \text{Gal}(K_N/\mathbb{Q})$ to $J \otimes K_N$.

Example: Let $\Gamma = \Gamma(N)$. Then

(2) $\mathcal{M} = \langle T, G_N \rangle_{\mathbb{Q}}$, where $G_N = \text{SL}_2(\mathbb{Z}/N\mathbb{Z})/\{\pm 1\}$, viewed as acting as a group of automorphims on $X(N)$ and hence on $J(N)$. Moreover, the Galois action on \mathcal{M} is given by

$$ \tau_a(T) = T, \quad \text{if } T \in \mathbb{T}, $$

$$ \tau_a(g) = \bar{\beta}_a^{-1} g \bar{\beta}_a, \quad \text{if } g \in G_N, $$

where $\bar{\beta}_a = \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \in \text{GL}_2(\mathbb{Z}/N\mathbb{Z})$.
Observation: In the above situation ($\Gamma = \Gamma(N)$) we have

$$Tg = \tau_\varepsilon(g)T, \quad \text{for all } T \in \mathbb{T}_\varepsilon, g \in G_N.$$

(3)

Theorem 6: If $\Gamma = \Gamma(p)$, where p is prime, then

$$\mathcal{M} = \langle \mathbb{T}, G_p \rangle_\mathbb{Q} \overset{!}{=} \langle \mathbb{T}', G_p \rangle_\mathbb{Q}.$$

Proof. Combine equations (1) and (2) of the two examples.

Notation: Let

$$\rho : \mathcal{M}_\mathbb{C} := \mathcal{M} \otimes \mathbb{C} \to \text{End}_\mathbb{C}(S)^{op}$$

be the representation afforded by $S = S_2(\Gamma)$ (viewed as a right $\mathcal{M}_\mathbb{C}$-module), and put

$$\text{End}_{\mathcal{M}_\varepsilon}(S)$$

$$= \{ f \in \text{End}(S) : \rho(x) \circ f = f \circ \rho(\tau_\varepsilon(x)), \forall x \in \mathcal{M} \}.$$

Theorem 7: $\rho(\mathbb{T}_\varepsilon \otimes \mathbb{C}) = \text{End}_{\mathcal{M}_\varepsilon}(S).$

Remark: This gives an intrinsic interpretation of the space \mathbb{T}_ε.
5. Application to $NS(Z_{N,\varepsilon})$

Definition: The modular diagonal quotient surface of type (N, ε) is the quotient surface

$$Z_{N,\varepsilon}/\mathbb{C} = (X(N)/\mathbb{C} \times X(N)/\mathbb{C})/\Delta_{N,\varepsilon}$$

where $\Delta_{N,\varepsilon} = \{(g, \tau_{\varepsilon}(g)) : g \in \Gamma_N \leq G_N \times G_N\}$.

Note: $Z_{N,\varepsilon}/\mathbb{C}$ has a canonical model $Z_{N,\varepsilon}$ over \mathbb{Q}, even though the automorphism group is only defined over $K_N = \mathbb{Q}(\zeta_N)$. In addition, the quotient map

$$\Psi : X(N) \times X(N) \to Z_{N,\varepsilon}$$

is defined over \mathbb{Q}.

Remark: The MDQS $Z_{N,\varepsilon}$ has a natural modular interpretation: the open subset

$$Z'_{N,\varepsilon} = Z_{N,\varepsilon} \setminus \cup\{\text{cuspidal divisors}\}$$

classifies isomorphisms (of determinant ε) of mod N Galois representations of elliptic curves.

Note: $\varepsilon = -1 \leadsto$ Hurwitz spaces and Humbert surfaces.

Key Open Question: If $N = p > 19$, is every curve $C \subset Z_{N,\varepsilon}$ of genus ≤ 1 a modular curve, i.e. of the form $C = T_{a,n}$? - via Lang’s Conjecture, this would have interesting Diophantine consequences.

Simpler Question: Up to (algebraic) equivalence, are all the $(\mathbb{Q}\text{-rational})$ curves/divisors on $Z_{N,\varepsilon}$ modular?
Notation: Let $NS^0(Z_{N,\varepsilon}) = NS(Z_{N,\varepsilon}) \otimes \mathbb{Q}$, where $NS(Z_{N,\varepsilon})$ denotes the Neron-Severi group of $Z_{N,\varepsilon}$, i.e.

$$NS(Z_{N,\varepsilon}) = \text{Div}(Z_{N,\varepsilon})/(\text{algebraic equivalence}).$$

In addition, we write

$$\overline{NS}^0(Z_{N,\varepsilon}) = NS^0(Z_{N,\varepsilon})/\langle \text{cl}(\Psi(P \times X)), \text{cl}(\Psi(X \times P)) \rangle,$$

where $X = X(N)$ and $P \in X(\mathbb{Q})$, and, as above, Ψ denotes the quotient map $\Psi : X \times X \to Z_{N,\varepsilon}$.

Proposition: We have a canonical identification

$$\overline{NS}^0(Z_{N,\varepsilon}) \simeq \text{End}^0_{G_{N,\varepsilon}}(J(N)),$$

where

$$\text{End}_{G_{N,\varepsilon}}(J(N)) = \{ f \in \text{End}^0_{\mathbb{Q}}(J(N)) : gf = f \tau_{\varepsilon}(g), \forall g \in G_N \}.$$

Corollary: For any (N, ε) we have a natural embedding

$$\mathbb{T}_{\varepsilon-1} \subset \overline{NS}^0(Z_{N,\varepsilon}).$$

Theorem 8: If $N = p$ is prime, then

$$\overline{NS}^0(Z_{p,\varepsilon}) \simeq \mathbb{T}_{\varepsilon-1}.$$

Proof (Sketch) Use Theorem 6 and Theorem 7.

Conclusion: Thus, up to algebraic equivalence, all divisors in $Z_{p,\varepsilon}$ are modular, i.e. they are \mathbb{Q}-linear combinations of the divisors $\Psi(T_{a,n})$ with $a^2n \equiv \varepsilon(N)$, together with the two curves $\Psi(P \times X)$ and $\Psi(X \times P)$.
Corollary: We have

\[\text{rk } NS(Z_p, \varepsilon) = 2 + \frac{1}{24}(p - 1)(p - 5) + \frac{1}{2} \left(\frac{\varepsilon}{p} \right) h(p), \]

where \(\left(\frac{\varepsilon}{p} \right) \) denotes the Legendre symbol and

\[h(p) = \begin{cases}
 h(Q(\sqrt{-p})) & \text{if } p \equiv 3(4) \\
 0 & \text{if } p \equiv 1(4)
\end{cases} \]

Proof. Use Theorem 5 (and Theorem 8).