Hurwitz Spaces of Covers
of an Elliptic Curve

1. Introduction

Riemann’s Existence Theorem (RET) (1857):
Every compact Riemann surface X has a non-constant meromorphic function, i.e. X admits a non-constant holo. map to the Riemann sphere $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$.
Consequence: Every compact Riemann surface is a complex algebraic curve $X_{\mathbb{C}}$ defined by an equation

$$F(x, y) = 0, \quad \text{where } F \in \mathbb{C}[x, y],$$

and the (holomorphic) map $f : X \rightarrow \mathbb{C}_{\infty}$ corresponds to a morphism $f : X_{\mathbb{C}} \rightarrow \mathbb{P}^1_{\mathbb{C}}$ of complex curves of the same degree (and conversely):

$$
\begin{array}{cc}
X & X_{\mathbb{C}} \\
\downarrow f & \leftrightarrow \\
\mathbb{C}_{\infty} & \mathbb{P}^1_{\mathbb{C}}
\end{array}
$$

Properties of f:

1. $\deg(f) := \max_{y \in \mathbb{C}_{\infty}} (\#(f^{-1}(y))) < \infty.$
2. The set

$$R_f := \{ y \in \mathbb{C}_{\infty} : \#(f^{-1}(y)) < \deg(f) \}$$

of ramification points of f is finite:

$$w := \#R_f < \infty.$$
Problem (Hurwitz, 1891) Fix integers N and w, and put $Y = \mathbb{C}_\infty$.

1) Investigate the totality $H(Y, N, w)$ of all covers $f : X \to Y$ with $\text{deg}(f) = N$ and $\#R_f = w$.

2) Calculate the number $\#H(Y, N, R)$ of such covers with fixed ramification locus $R_f = R$.

Remarks: 1) A **cover** is a non-constant holomorphic map $f : X \to Y$. Throughout, we always consider equivalence classes of covers:

$$(X_1 \xrightarrow{f_1} Y) \sim (X_2 \xrightarrow{f_2} Y) \iff \exists \phi : X_1 \overset{\sim}{\to} X_2 \text{ with } f_2 \circ \phi = f_1.$$

2) As Hurwitz observed, it is useful to refine the above problems by fixing the **ramification type** of the cover. For example, we might want to classify (or count) all **simple covers**:

A cover $f : X \to Y$ is called **simple** if

$$\#(f^{-1}(y)) \geq \text{deg}(f) - 1, \quad \text{for all } y \in Y.$$
Theorem A (Hurwitz, 1891): If \(Y = \mathbb{C}_\infty \), then

(a) \(H(Y, N, w) \) is a “Riemannian space”.

(b) \(H^{simple}(Y, N, w) \) is a connected manifold of dimension \(w \) (provided that \(w \geq 2N - 2 \) and \(2 | w \)).

(c) The discriminant map

\[
\delta : H^{simple}(Y, N, w) \rightarrow Y^{(w)} \setminus \Delta_w
\]

is finite and unramified. Thus, \#\(H^{simple}(Y, N, R) \) depends only on \(w = \#R \).

Observation (Hurwitz): RET \(\Rightarrow \) the calculation of \#\(H(Y, N, R) \) is a purely group-theoretic problem, albeit one that is “highly complicated” (Hurwitz):

\[
H(Y, N, R) \overset{\sim}{\rightarrow} \text{Hom}'(\pi_1(Y \setminus R), S_N)/S_N.
\]

Hurwitz (1891/1901) found a “satisfactory solution” for calculating \(n_{N, w} := \#H^{simple}(\mathbb{C}_\infty, N, R) \):

\[
n_{2,w} = 1,
\]

\[
n_{3,w} = \frac{1}{3!}(3^{w-1} - 3),
\]

\[
n_{4,w} = \frac{1}{4!}(2^{w-2} - 4)(3^{w-1} - 3), \text{ etc.}
\]
Question 1: Is there an intrinsic description of the topology and/or complex structure of the Hurwitz spaces $H(Y, N, w)$?

Recall: 1) The points of $H(Y, N, w)$ correspond to covers $f : X \to Y$ of degree N with w ramification points.

2) The topology of $H^{simple}(Y, N, w)$ is induced by the discriminant map

$$\delta : H^{simple}(Y, N, w) \to Y^{(w)} \setminus \Delta_w.$$

Thus: a neighbourhood of a cover $f \in H(Y, N, w)$ consists (roughly) of those covers whose ramification loci are close to that of f.

Question 2: Generalizations of Hurwitz spaces?

a) Construct $H(Y, N, w)$ for other Riemann surfaces/complex curves Y;

b) Study rationality conditions: over which ground fields $K \subset \mathbb{C}$ are the covers defined?
2. Intrinsic Description of Hurwitz Spaces

Key Observation (Grothendieck, 1960): A topological (complex) space H is uniquely characterized by the set of maps $\text{Hom}(T, H)$, as T runs over all topological (complex) spaces.

In other words: As a topological space, H is determined by the functor

$$F_H : \text{Top} \to \text{Sets}$$

which is given by $F_H(T) = \text{Hom}_{\text{top}}(T, H)$. (Similarly for complex spaces.)

Problem: For each complex space T, describe the holomorphic maps

$$T \to H = H^{\text{simple}}(Y, N, w).$$

Fulton (1969): Consider families of covers, i.e. covers of curve families $/T$:

$$f : \mathcal{X} \to Y_T = \mathbb{P}^1_T = \mathbb{P}^1 \times T.$$

Thus: For each $t \in T$, the fibre $f_t : \mathcal{X}_t \to (\mathbb{P}^1_T)_t = \mathbb{P}^1$ of f at t is a cover (of curves) in the previous sense, i.e. $f_t \in H(\ldots)$.
Expect: 1) For each family of covers $f : \mathcal{X} \rightarrow Y_T = \mathbb{P}_T^1$, the assignment $t \mapsto f_t$ defines (naturally) a holomorphic map $[f] : T \rightarrow H$.

2) Each holomorphic map $g : T \rightarrow H$ arises uniquely in this way, i.e. $g = [f]$, for a unique family of covers $f : \mathcal{X} \rightarrow Y_T$ (up to isomorphism).

Reformulation: Let

$$H^{simple}(Y_T/T, N, w) = \text{(set of families of simple covers over } T \text{ with } f_t \in H^{simple}(Y, N, w), \forall t)/\sim.$$

It is easy to see that the assignment $T \mapsto H^{simple}(Y_T/T, N, w)$ defines a functor

$$\mathcal{H}_{N,w} : \underline{\text{C} - \text{spaces}} \rightarrow \text{Sets},$$

and that

$$\text{Expectation } \Leftrightarrow \mathcal{H}_{N,w} \simeq F_H \quad \text{def} \quad H \text{ represents the functor } \mathcal{H}_{N,w}.$$
Theorem B (Fulton, 1969): If $N \geq 3$, then the Hurwitz space $H_{\text{simple}}(Y, N, w)$ (as defined by Hurwitz) represents the above functor $\mathcal{H}_{N,w}$.

This theorem generalizes to the algebraic setting by replacing complex spaces by schemes:

Theorem C (Fulton, 1969): If $N \geq 3$, then the functor

$$\mathcal{H}_{N,w} : \textbf{Sch} \rightarrow \textbf{Sets}$$

is representable by a scheme $H_{N,w}/\mathbb{Z}$ of finite type. In particular, for any field K we have

$$H_{N,w}(K) = H_{\text{simple}}(\mathbb{P}^1/K, N, w).$$

In addition, the restriction of the discriminant map to $H_{N,w} \otimes \mathbb{Z}[1/N!] \subset H_{N,w}$,

$$\delta : H_{N,w} \otimes \mathbb{Z}[1/N!] \rightarrow (\mathbb{P}_\mathbb{Z}[1/N!]^1)^{(w)} \setminus \Delta_w,$$

is finite and etale.

Remark: Little seems to be known about the geometric structure of $H_{N,w}$.

Aim: Study analogues of these results in the case that $Y = E$ is an elliptic curve (and $w = 2$).
Remark: In recent years, there have been an abundance of results and applications of Hurwitz spaces:

1) Inverse Galois theory: Fried, Völklein, . . .

- Fried, Völklein, Harbater, Debes, Wevers, . . .: studied moduli spaces of other types of covers $/\mathbb{P}^1$.

2) Moduli problems of curves: Fulton, Mumford and Harris, . . .

- used $H_{N,w}$ to study the geometry of M_g, the moduli space of curves of genus g.

3) String theory: Gromov/Witten, Dijkgraaf, . . .

also: Cordes/Moore/Ramgoolan, Kontsevich, . . .
3. The Case $Y = E$ and $w = 2$

Reference: IEM Preprint No. 9 (2001), IEM Essen.
(See also www.mast.queensu.ca/~kani)
– to appear in: Collectanea Mathematica

Let E/K **be an elliptic curve** over a field K ($\text{char} \neq 2$). Fix $N \geq 2$ prime to $\text{char}(K)$.

Note: If $(X \xrightarrow{f} E) \in H^{\text{simple}}(E/K, N, 2)$, then by the Riemann-Hurwitz relation

$$2g_X - 2 = N(2g_E - 2) + w = w = 2 \Rightarrow g_X = 2.$$

More generally: Study the set $H^{(2)}(E/K, N)$ of all genus 2 covers of degree N of E/K:

$$f : X \to E, \quad \deg(f) = N \text{ and } g_X = 2.$$

Similarly, study the set $H^{(2)}(E_T/T, N)$ of families of such covers:

$$f : \mathcal{X} \to E_T = E \times T, \quad f_t \in H^{(2)}(E_t/K(t), N).$$

As before, the assignment $T \mapsto H^{(2)}(E_T/T, N)$ defines a functor

$$\mathcal{H}^{(2)}_{E/K,N} : \text{Sch} \to \text{Sets}.$$
Theorem 1. If N is odd, then $\mathcal{H}_{E/K,N}^{(2)}$ is representable by a smooth, quasi-projective surface $H_{E/K,N}^{(2)}$ over K which has (over \overline{K})

$$\sum_{d|N} \sigma(d) - \sigma(N)$$

irreducible components. Thus $H_{E/K,N}^{(2)}$ is irreducible if and only if N is prime.

Remarks: 1) The above result does not extend to the case that N is even. However, a slightly weaker result is true in that case: the functor \mathcal{H} is coarsely representable by such a variety.

2) The reason that H breaks up into components is the following:

Each $X \xrightarrow{f} E$ factors as $X \xrightarrow{f'} E' \xrightarrow{u_f} E$, where $u_f : E' \to E$ is the max. unramified subcover of f.

Thus: $H_{E/K,N}^{(2)}$ is a union of components which are indexed by subgroups $G \leq E$ with $\#G|N$ (and $\#G \neq N$); explicitly, $G = \text{Ker}(\hat{u}_f)$.
Definition: A cover $f : X \to E$ is called minimal if $\text{deg}(u_f) = 1$.

Theorem 2. For every $N \geq 3$ (prime to $\text{char}(K)$), the functor $\mathcal{H}_{E/K,N}^{(\text{min})}$ which classifies minimal genus 2 covers is representable by a smooth, irreducible quasi-projective surface $H_{E/K,N}^{(\text{min})}$ over K.

More precisely, we have

$$H_{E/K,N}^{(\text{min})} \otimes_K \overline{K} \cong E \times H_{E/K,N}^{(\text{min})}$$

where $H_{E/K,N} \subset X(N)$ is an open subvariety (curve) of the modular curve $X(N)$ of (full) level N.

Remarks:
1) If $K = \mathbb{C}$, then $X(N) = \Gamma(N) \backslash \mathcal{H}^*$, which is a Galois cover of $X(1) \cong \mathbb{P}^1$ of degree

$$\overline{sl}(N) := |\text{SL}_2(\mathbb{Z}/N\mathbb{Z})|/\{\pm 1\}|.$$

2) The reason that E appears as a factor of $\mathcal{H}_{E/K,N}^{(\text{min})}$ is due to the fact that the group $E(K)$ acts on E and hence on $H_{E/K,N}^{(2)}$ etc. via translation: $f \mapsto T_x \circ f$.

Thus: introduce and study normalized covers.
Definition: A cover \(f : X \to E \) with \(g_X = 2 \) is called normalized if it is minimal and if

\[
f(W) \subset E[2] \text{ and } #(f^{-1}(0_E) \cap W) = \begin{cases} 3 & N \text{ odd} \\ 0 & \text{else} \end{cases}
\]

where \(W = \text{Fix}(\sigma_X) \) denotes the set of 6 Weierstrass points of \(X \). (Here: \(\sigma_X \) is the hyperelliptic involution of \(X \)).

Notes:
1) If \(f : X \to E \) is minimal, then \(\exists! y \in E(K) \) such that \(T_y \circ f : X \to E \) is normalized.
2) If \(f \) is normalized, then \(f \circ \sigma_X = [-1]_E \circ f \).
Thus \(\text{Disc}(f) \) is symmetric with respect to \([-1]_E \), i.e. \([[-1]^*_E \text{Disc}(f) = \text{Disc}(f)\).

Example: Let

\[
E : \quad y^2 = (x - a)(x - b)(x - c), \quad abc \neq 0
\]

\[
X : \quad s^2 = (t^2 - a)(t^2 - b)(t^2 - c).
\]

Then the cover \(f : X \to E \), given by \(f^*x = t^2, f^*y = s \), is normalized and of degree 2.

Theorem 3. For every \(N \geq 3 \) (as above), the functor \(\mathcal{H}_{E/K,N} \) which classifies normalized genus 2 covers is representable by a smooth, irreducible affine curve \(H_{E/K,N}/K \) such that \(H_{E/K,N} \otimes \overline{K} \subset X(N) \).
Theorem 4: Let

\[D_{E/K,N} = X(N)/\overline{K} \setminus (H_{E/K,N} \otimes \overline{K}) \]

denote the degeneracy locus. Then

\[\#D_{E/K,N} \leq \frac{1}{12N}(5N + 6)s\overline{l}(N), \]

and equality holds if and only if \(\text{char}(K) \nmid N! \).

Theorem 5: The assignment \((X \xrightarrow{f} E) \mapsto \text{Disc}(f)\) is represented by a quasi-finite morphism

\[\delta = \delta_{E/K,N} : H_{E/K,N} \to \mathbb{P}^1_K \simeq (E^{(2)})_{\text{sym}}. \]

Furthermore, if \(\text{char}(K) \nmid N! \), then \(\delta \) is finite and unramified outside of \(\pi_E(E[2]) \subset \mathbb{P}^1 \).

Theorem 6: If \(\text{char}(K) \nmid N! \), then

\[\deg(\delta_{E/K,N}) = \frac{1}{6}(N - 1)s\overline{l}(N). \]

Remarks:
1) This degree can be viewed as a measure of non-rigidity of coverings (\(\to \) Völklein).
2) H. Völklein proved Theorem 6 for \(N = 3, 5, 7 \) by using group theory (and a computer).
4. Some applications

(a) **Rationality Questions** (K a number field)

Since $g_X(N) \geq 2$ for $N \geq 7$, we have by Faltings’ theorem (= Mordell’s Conjecture):

Corollary 1: $\# \mathcal{H}_{E/K,N}(K) < \infty$, if $N \geq 7$.

Question: Is $\mathcal{H}_{E/K,N}(K) = \emptyset$, for $N \gg 0$?

This is false (even for N prime), for there exist curves X/K with ∞’ly many $f_N : X \to E$ for which $N = \deg(f_N)$ is prime.

Conjecture ()** For each E/K there exist only finitely many genus 2 curves X/K which have a (minimal) morphism $f : X \to E$ of degree $N \geq 7$.

Remark: ABC conj. \Rightarrow Asym. Fermat \Rightarrow Conj. (*). Moreover, the converse: Conj. (*) \Rightarrow Asym. Fermat is “almost true”: it implies a slightly weaker version of Frey’s Conjecture 5 (which by Frey and Wiles is equivalent to the Asymptotic Fermat Conjecture (for $K = \mathbb{Q}$).)**
(b) Moduli

Question: For which curves Y/K does there exist a (minimal) morphism $f : Y \to E$ of degree N?

Corollary 2: For every N there exists a morphism

$$\mu_N : H_{E(N)/X'(N), N} \to M_2$$

to the moduli space of curves of genus 2. Moreover:

a) $\text{Im}(\mu_N) = \text{Humbert surface with Inv. } \Delta = N^2$;

b) $\text{deg}(\mu_N) = 2s\ell(N)$; more precisely,

$$\text{Im}(\mu_N) \sim Z^{sym}_{N,-1} := (X(N) \times X(N))/\langle \Delta_{N,-1}, \tau \rangle,$$

where $\tau(x, y) = (y, x)$ and

$$\Delta_{N,-1} = \{(g, \alpha_{-1}(g)) : g \in \text{SL}_2(\mathbb{Z}/N\mathbb{Z})/\{\pm 1\}\},$$

where $\alpha_{-1}(g) = Q_{-1}gQ_{-1}^{-1}$ with $Q_{-1} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$.

In particular, the normalization (and compactification) of the Humbert surface $\text{Im}(\mu_N)$ is the symmetric Diagonal Quotient Surface $Z^{sym}_{N,-1}$.
(c) **Counting Covers:** \((K = \overline{K})\)

Corollary 3: If \(N \geq 2\) and \(\text{char}(K) \nmid N\), then for every \(R \subset E\) with \(#R = 2\) we have

\[
c_N := \sum_{f \in H^s(E/K,N,R)} \frac{1}{|\text{Aut}(f)|} = \frac{1}{3} (N \sigma_3(N) - N^2 \sigma_1(N)),
\]

where \(\sigma_k(N) = \sum_{d|N} d^k\). Thus, if \(\text{char}(K) = 0\), then \(F_2(q) := \sum c_N q^N\) is a quasi-modular form of weight 6; explicitly we have

\[
F_2(q) = \frac{1}{51840} (10E_2^3 - 6E_2E_4 - 4E_6),
\]

where \(E_k = 1 + b_k \sum_{n \geq 1} \sigma_{k-1}(n)q^n\) with \(b_2 = -24, b_4 = 240\) and \(b_6 = -504\).

Remarks:
1) The identity (1) was first proven by R. Dijkgraaf (1995) by using the methods of mirror symmetry (→ B. Mazur).

2) Theorem 6 \(\Rightarrow\) Corollary 3 by using the identities

\[
\sum_{n|N} \sigma_1(n)sl(N/n) = \sigma_3(N),
\]

\[
\sum_{n|N} n\sigma_1(n)sl(N/n) = N^2 \sigma_1(N).
\]
(d) Curves with minimal degeneration:

Let \(H = H_{E/K,N} \subset X = X(N) \) be the moduli space,
\(f : Y_N \to E_H = E \times H \) the universal cover,
\(p : \overline{Y}_N \to X \) the minimal model of \(Y_N \) over \(X \),
\(h_{\overline{Y}_N/X} = \deg_X(p_\ast \omega_{Y_N/X}^0) \) its modular height.

Corollary 4: The curve \(\overline{Y}_N/X(N) \) is semi-stable and has bad reduction at \(X \setminus H \). Furthermore, its Jacobian \(J = J_N \) has bad reduction at \(X(N)_\infty := X(N) \setminus X'(N) \), and its modular height is
\[
h_{\overline{Y}_N/X} = h_{J/X} = \frac{1}{2}(2g_{X(N)} - 2 + \#X(N)_\infty).
\]

In particular, for \(N = 3 \) one thus obtains a semi-stable family \(p : \overline{Y}_3 \to \mathbb{P}^1 \) whose Jacobian has precisely 4 places of bad reduction.

Remarks:
1) By a theorem of Faltings it follows (in \(\text{char} = 0 \)) that for any such curve we have the inequality
\[
h_{\overline{Y}_N/X} = h_{J/X} \leq \frac{1}{2}(2g_{X(N)} - 2 + \#X(N)_\infty).
\]

2) In a recent preprint E. Viehweg and K. Zuo study the structure of families of abelian varieties with such “minimal degeneration”.
5. The Basic Construction

Reference: Frey/K., Curves of genus 2 covering elliptic curves . . . (Texel Conference, 1989)

Given:

\[
\begin{array}{c}
X \\
\downarrow f \sim \\
E \\
\end{array}
\quad
\begin{array}{c}
X \\
\downarrow \\
E \\
\end{array}
\quad
\begin{array}{c}
\sim \\
\downarrow \psi : E[N] \sim E^\perp[N]. \\
E^\perp \\
\end{array}
\]

(via the duality theory of \(J_X \).)

Conversely: given anti-isometry \(\psi : E[N] \to E'[N] \), one can recover a (normalized) genus 2 cover

\[
f_\psi : X_\psi \to E.
\]

However: the curve \(X_\psi \) may be reducible!

\[\Rightarrow H_{E/K,N} \subset X_{E/K,N,-1}. \]

Note:

1) The moduli space \(X_{E/K,N,-1} \) classifies pairs \((E', \psi) \), where \(\psi : E[N] \to E'[N] \) is an anti-isometry.

2) This construction also works for families! (Cf. IEM Preprint, op. cit.): \(\Rightarrow \) Theorem 3 \(\Rightarrow \) Theorem 2 \(\Rightarrow \) Theorem 1.
6. Proof of Theorem 6 (Overview)

Remark: The proof of Theorem 6 uses the methods of Arithmetic Algebraic Geometry. More precisely, it uses:

- a study of degenerations of the universal cover

\[f_{\text{univ}} : X_H \rightarrow E \times H; \]

In other words:

1) study the degeneration of the minimal model \(M(X_H) \) of \(X_H \); this uses the modular height of relative curves.

2) study whether or not \(f_{\text{univ}} \) extends to a cover

\[f : M(X_H) \rightarrow E \times X(N). \]

- intersection theory on \(M(X_H) \).
7. Study of Degenerations

Let $H = H_{E/\overline{K},N}$ denote the moduli space,
$f_H : Y_H \to E_H = E \times_{\overline{K}} H$ the universal cover,
$X = X(N) \supset H$ the natural compactification,
\overline{Y}/X the minimal model of the generic fibre of Y_H.

Facts. 1) The fibres of \overline{Y}/X are semi-stable.

2) f_H extends to a morphism $f = f_X : \overline{Y} \to E_X$ which is finite if and only if $\text{char}(K) \nmid N!$.

Theorem 7: Suppose $\text{char}(K) \nmid N!$. Then:

(a) The fibres \overline{Y}_x of \overline{Y}/X are stable curves with at most one singularity.

(b) \overline{Y}_x is singular if and only if $x \in D_{E/\overline{K},N} = X_\infty \cup X_1$, where X_∞ is the set of cusps of X.
(Note that $\#X_\infty = \overline{sl}(N)/N$.)

(c) If $x \in X_\infty$, then \overline{Y}_x is an irreducible curve whose normalization is a curve of genus 1.

(d) If $x \in X_1$, then $\overline{Y}_x = E_{x,1} \cup E_{x,2}$ is the union of two curves of genus 1 which meet transversely in a unique point P_x.
8. Calculation of Intersection Numbers

Let \(F = \kappa(X) \) denote the function field of \(X = X(N) \),
\[f_F : Y_F \rightarrow E_F \] the generic cover over \(F \),
\[D_F = \text{Diff}(f_F) \] the different divisor of \(f_F \),
\[W_{C_F} \in \text{Div}(Y_F) \] the hyperelliptic divisor of \(Y_F \),
\(D \) and \(W \) their respective closures in \(\overline{Y} \),
\[\omega^0_{Y/X} \] the relative dualizing sheaf of \(p_{\overline{Y}} : \overline{Y} \rightarrow X \).

Theorem 8: The modular height of \(\overline{Y}/X \) is

\[h_{\overline{Y}/X} := \deg((p_{\overline{Y}})_*(\omega^0_{Y/X})) = \frac{1}{12} s\ell(N), \]

and the self-intersection number of \(\omega^0_{Y/X} \) is

\[(\omega^0_{Y/X})^2 = \frac{7}{5} \#X_1 + \frac{1}{5} \#X_\infty = \frac{1}{12N}(7N - 6) s\ell(N). \]

Remark: The proof uses Theorem 4, the Noether formula and Mumford’s formula (which holds if \(g = 2 \)):

\[h = \omega^2 + \delta_0 + \delta_1 \quad \text{and} \quad 5\omega^2 = \delta_0 + 7\delta_1, \]

where \(h = h_{\overline{Y}/X}, \omega = \omega^0_{Y/X} \), and \(\delta_0 \) (respect. \(\delta_1 \))
is the number of singular points of all fibres which do not (respect. do) disconnect the fibre.
Theorem 9: (a) D is an irreducible curve on \overline{Y} which represents the dualizing sheaf: $\omega^0_{\overline{Y}/X} \sim D$.

(b) If $q_1 = pr_1 \circ f|_D : D \rightarrow E$ and $q_2 = pr_2 \circ f|_D : D \rightarrow X$, then $\pi_E \circ q_1 = \overline{\delta}_{E,N} \circ q_2$, where $\overline{\delta} : X \rightarrow \mathbb{P}^1$ is the unique extension of $\delta : H \rightarrow \mathbb{P}^1$. Thus

$$\deg(\overline{\delta}) = \deg(q_1) = (\omega^0_{\overline{Y}/X} \cdot f^*(P \times X)).$$

(c) We have $6D \sim 2W + f^*(E \times A)$, for some $A \in \text{Div}(X)$, and hence

$$\deg(q_1) = \frac{N}{6} \deg(A) = \frac{N}{36}(9(\omega^0_{\overline{Y}/X})^2 - W^2).$$

(d) The self-intersection number of W is

$$W^2 = \frac{6}{7} \#X_1 - \frac{9}{7} \omega^2 = -\frac{3}{4N}(N - 2)\overline{sl}(N).$$

Remark: To compute W^2, consider the pullback W^* of W to (the desingularization of) $\overline{Y} \times_X X(2N)$, and observe that $W^* = W_1 + \ldots + W_6 + B$, where the W_i’s are 6 disjoint sections and B is a fibral divisor supported on the fibres over $X(2N)_\infty$.