p-adic Representations of the K-rational Geometric Fundamental Group

1. Introduction

Let K be a number field (or any fin. gen. field) C/K a (smooth...) curve of genus g $F = \kappa(C) \text{ its function field } (\Rightarrow F/K \text{ regular})$ $P \in C(K) \text{ a } K\text{-rational point}$

Definition Let $F_{nr,P}$ be the field generated by the finite unramified Galois extensions F'/F such that P splits completely in F'. Then its Galois group

2. Some Results about $\pi_1(C, P)$

-joint work with G. Frey and H. Völklein

Note:
$$g = 0 \Rightarrow \pi_1(C, P) = \pi_1(C_{\bar{K}}, P) = \{1\}.$$

Theorem 1 (Merel) There is c_K such that for all elliptic curves E/K and $P \in E(K)$ we have

$$|\pi_1(E,P)| \le c_K.$$

Mazur: $c_{\mathbb{O}} = 12$.

Proposition 1: $\pi_1(C, P)^{ab}$ is always finite.

Theorem 2: Let $K \supset \mathbb{Q}(i)$ (or $K \supset \mathbb{F}_p(i)$). Then for every $g \geq 3$ there exist (many!) curves C/K of genus g with a point $P \in C(K)$ such that $\pi_1(C, P)$ is infinite.

Remark: The above situation for $\pi_1(C, P)$ is very similar to that of the fundamental group $\pi_1(K)$ of a number field K:

 $\pi_1(K) = \{1\}$ for some K's $(K = \mathbb{Q}, \mathbb{Q}(i), \text{ etc.})$ $|\pi_1(K)^{ab}| = h(K)$ is always finite. $\pi_1(K)$ is often infinite $(\to \text{Class field towers: e.g.}$ $K = \mathbb{Q}(\sqrt{-30030}).)$

3. p-adic Representations

So far, the theory for $\pi_1(C, P)$ and for $\pi_1(K)$ seem to be very similar. (\rightarrow M. Rosen (Hilbert class fields).) However, this picture changes if we look at p-adic representations, particularly in view of the Fontaine-Mazur Conjecture:

Fontaine-Mazur Conjecture (1993): Any *p*-adic representation

$$\rho: \pi_1(K) \to \mathrm{GL}_n(\mathbb{Q}_p)$$

factors through a finite quotient group.

In particular:

Any quotient group of $\pi_1(K)^{(p)}$, which is a *p*-adic analytic group, is finite.

Remark: The above conjecture is actually only a special case of a more general conjecture (also due to Fontaine and Mazur):

The Main F-M Conjecture: Every irreducible padic representation on G_K which is potentially semistable (at all v|p) comes from algebraic geometry,
i.e. is isomorphic to a subquotient of an étale cohomology group $H^q(X_{\overline{K}}, \mathbb{Q}_p(r))$, for some projective
smooth variety X/K.

The analogues of these conjectures for $\pi_1(C, P)$ are false, as the following theorem and its corollary show¹:

Theorem 2': Let $b \in K^{\times}$, $b^4 \neq \pm 1$, and put $c = 1 + b^4$ and $a = \frac{2b^2}{c}$. (As before, $\sqrt{-1} \in K$). Let C/K be the curve defined by the equation

$$s^4 = ct(t^2 - 1)(t - a)g(t),$$

where $g(t) \in K[t]$ is any polynomial with

$$g(a) = 1$$
 and $g(0)g(1)g(-1) \neq 0$,

and put $P = (a, 0) \in C(K)$. Then the K-rational geometric fundamental group $\pi_1(C, P)$ is infinite; more precisely, for every prime $p \equiv 5 \pmod{12}$ (with $p \neq \operatorname{char}(K)$), the group $\operatorname{PSL}_3(\mathbb{Z}_p)$ is a factor of $\pi_1(C, P)$, i.e. there is a surjection

$$\rho: \pi_1(C, P) \to \mathrm{PSL}_3(\mathbb{Z}_p).$$

Corollary. In the above situation, let C_p denote the finite cover of C corresponding to a pro-p-Sylow subgroup U_p of $\mathrm{PSL}_3(\mathbb{Z}_p)$. Then for any point P' over P, the fundametal group $\pi_1(C_p, P')$ has a quotient which is isomorphic to the p-adic analytic group U_p .

¹This also shows that J. Holden's generalization of the Fontaine-Mazur Conjecture to curves over finite fields is false as well.

4. The Basic Construction: Motivation

Basic Idea: Construct unramified extensions of F via (towers of) torsion points of abelian varieties $A/F = \kappa(C)$, i.e. look at the p-adic Galois representation

$$\rho_{A,p}: G_F = \operatorname{Gal}(\overline{F}/F) \to \operatorname{GL}(T_p(A)) \simeq \operatorname{GL}_{2g}(\mathbb{Z}_p).$$

Remark: In the language of Fontaine-Mazur this means that we are looking at p-adic representations that are subquotients of $H^1(X_{\overline{F}}, \mathbb{Q}_p(1))$, where X is some curve (or abelian variety) over F.

Want: A to have good reduction everywhere over C.

Criterion of Neron-Ogg-Shafarevich:

A/F has good reduction everywhere

- $\Leftrightarrow F(A[m])$ is unramified over $F, \forall m \geq 1$
- $\Leftrightarrow F(T_p(A)) = \bigcup F(A[p^n])$ is unramified over $F, \forall p$.

Assume this from now on.

Unfortunately: $F(A[m]) \not\subset F_{nr,P}$ for m >> 0, so in particular $F(T_p(A)) \not\subset F_{nr,P}$, fo all p.

For: $\zeta_m \in F(A[m]), \forall m \text{ but } \zeta_m \notin K \text{ (hence } \zeta_m \notin F_{nr,P}), \text{ for } m >> 0.$

1st Modification: In place of $\rho_{A,p}$, consider instead its associated projective representation:

$$\tilde{\rho}_{A,p}: G_F \to \mathrm{PGL}(T_p(A)) = \mathrm{Aut}(\mathbb{P}(T_p(A))),$$

i.e. consider the subfield

$$F(\mathbb{P}(T_p(A))) = F(T_p(A))^{Z(GL(T_p(A)))},$$

of $F(T_p(A))$ which is fixed by the centre Z of the group $GL(T_p(A))$.

Then we have: $F(\mathbb{P}(T_p(A))) \subset F_{nr,P}$

 $\stackrel{\text{def}}{\Leftrightarrow} P \in C(K) \text{ splits completely in } F(\mathbb{P}(T_p(A)))$

 $\Leftrightarrow G_K$ operates centrally (diagonally) on $T_p(\overline{A}_P)$,

 $\stackrel{\text{Tate}}{\Leftrightarrow} \operatorname{End}_K(\overline{A}_P) \otimes \mathbb{Q}_p = M_{2g}(\mathbb{Q}_p),$

where \overline{A}_P denotes the reduction of A at P.

Note: Here we have used the Tate Conjecture for endomorphisms of abelian varieties (which was proved by G. Faltings).

However: The theory of abelian varieties shows that this is impossible (in characteristic 0); i.e. there is no abelian variety of dimension $g \ge 1$ whose endomorphism ring is a full $2g \times 2g$ matrix algebra.

 2^{nd} Modification: Look for $\mathbb{Z}_p[G_F]$ -decompositions:

(1)
$$T_p(A) = \bigoplus_{i=1}^r S_i,$$

and let $\overline{S}_i = \text{image of } S_i \text{ in } T_p(\overline{A}_P).$

Then: $F(\mathbb{P}(S_i)) \subset F_{nr,P}$, for all i

 $\Leftrightarrow G_K$ operates centrally on each \overline{S}_i

 $\stackrel{\text{Tate}}{\Rightarrow} \overline{A}_P$ is of CM-Type.

Remark: If we assume the existence of a decomposition (1) and require the CM-type of \overline{A}_P to be compatible with the \overline{S}_i , then the converse to the last implication is also true.

Proposition: Let A/F be an abelian variety with good reduction everywhere. If p is a prime such that we have a decomposition (1) such that G_K acts centrally on each $\overline{S}_i \subset T_p(\overline{A}_P)$, then each projective p-adic subrepresentation

$$\tilde{\rho}_{S_i}: G_F \to \mathrm{PGL}(S_i) = \mathrm{Aut}(\mathbb{P}(S_i))$$

of $\tilde{\rho}_{A,p}$ factors over $\pi_1(C,P)$, i.e. induces a homomorphism

$$\tilde{\rho}_{S_i}: \pi_1(C, P) \to \mathrm{PGL}(S_i) = \mathrm{Aut}(\mathbb{P}(S_i)).$$

5. The Basic Construction: Some Details

Aim: For F = K(t, s) and P as in Theorem 2', construct an abelian variety A/F satisfying the hypotheses of the previous proposition.

Consider: the cyclic covering $\phi: X \to \mathbb{P}^1_F$ defined by the equation

$$y^4 = x(x^2 - 1)(x - a)^3(x - t)^2.$$

- **Then:** 0) X has genus 4, $\exists \sigma \in \operatorname{Aut}(X)$ of order 4, and ϕ factors over the elliptic curve $E = X/\langle \sigma^2 \rangle$.
 - 1) The Jacobian $J_X \sim E \times A$, where $A = J^{new}$ is an abelian subvariety of J_X of dimension 3.
 - 2) σ acts on A and hence on $T_p(A)$, and if $p \equiv 1 \pmod{4}$, then we have the G_F -decomposition into σ -eigenspaces

$$T_p(A) = S_1 \oplus S_2$$
, where dim $S_i = 3$.

- 3) A/F has good reduction everywhere.
- 4) $\tilde{\rho}_{S_i}: G_F \to \mathrm{PGL}_3(\mathbb{Z}_p)$ is surjective if $p \equiv 5$ (12).
- 5) $\overline{A}_P \sim E_1 \times E_1 \times E_1$, where E_1/K is an elliptic curve with CM by $\mathbb{Q}(i)$, so $\tilde{\rho}_{S_i}$ factors over $\pi_1(C, P)$.

Proof Sketch: 0) - 2) Easy.

- 3) Note first that X, ϕ, A etc. are defined over $F_0 := K(t) \subset F$. By Völklein's theory of Thompson tuples, the ramification structure of $F_0(\mathbb{P}(S_i[p]))/F_0$ can be described precisely (for all $p \equiv 1$ (4)), and so it follows from the Serre-Tate criterion that A has potentially good reduction. By analyzing the Neron model of J_X more closely, it follows that A already has good reduction over F.
- 4) Völklein's theory of Thompson tuples shows that $\operatorname{Gal}(F(\mathbb{P}(S_i[p]))/F) \simeq \operatorname{PGL}_3(p)$. By an argument due to Serre, it follows that $\tilde{\rho}_{S_i}$ is surjective.
- 5) Here we work out the structure of the fibre C_P at P of the minimal model of C in some detail. It is here that the judicious choice of c and a become important.
- **Remark:** Most of the above program (i.e. steps 0)-4)) can be generalized to (almost arbitrary) cyclic coverings $\phi: X \to \mathbb{P}^1_{K(t)}$. In this case one works with what we call the new part J_X^{new} of the Jacobian J_X of X, i.e. the part of J_X that is orthogonal to the Jacobians of proper subcovers of ϕ .

Proof Sketch of 3):

- I. Völklein's theory of Thompson tuples + choice of F
 - \Rightarrow 1) $F(\mathbb{P}(S_i))/F$ is unramified
 - 2) $e_P(F(A[p])/F) \le N^r$, for $p \equiv 5(12)$ and some r (indep. of p)

II. The Serre-Tate Criterion:

A/F has potentially good reduction at P

 $\Leftrightarrow \exists c : e_P(F(A[m])/F) \leq c$, for all m

 $\Leftrightarrow \exists c : e_P(F(A[p])/F) \leq c$, for ∞ 'ly many pr.'s p.

III. A Good reduction criterion:

Show: F(A[p])/F is unramified (Ne-O-Sh).

Enough: $F(S_i[p])/F(\mathbb{P}(S_i[p]))$ is unramified (by I.)

- Criterion: $S_i^I \neq \{0\} \Rightarrow F(S_i[p])/F(\mathbb{P}(S_i[p]))$ is unramified. (I = inertia group.)
- **Recall** (Grothendieck, SGA 7_I): $T_p(A)^I \simeq T_p(\overline{A}_P^o)$, where $\overline{A}_P^o =$ connected component of the identity of the reduction of the Neron model at P.

(Thus: $T_p(A)^I = \{0\} \Leftrightarrow \overline{A}_P^o$ is unipotent, i.e. an extension of additive groups.)

Note: The above criterion applies to $A = J^{new}$ for \overline{A}_P^o has a large abelian part which meets each \overline{S}_i .

Reference: G. Frey, E. Kani, H. Völklein, Curves with infinite K-rational geometric fundamental group. In: Aspects of Galois Theory (H. Völklein et al., eds.), LMS Lecture Notes 256 (1999), 85–118.