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1 Introduction

Let K be an arbitrary field, and let E1, . . . , En be isogenous CM elliptic curves over K.
The basic problem considered in this paper is to find suitable criteria for determining
whether or not a given abelian variety A′ is isomorphic to the product variety A =
E1 × . . . × En. A special case of this problem is to determine this in the case that
A′ = E ′

1 × . . .× E ′
n is also a product variety.

In the case that K = C and n = 2, Shioda and Mitani[27] presented a solution
of this subproblem in terms of the period lattices Li and L′i of the elliptic curves
Ei = C/Li and E ′

i = C/L′i, and a similar criterion is implicit in the work of Schoen[24]
for arbitrary n.

In this paper we present a criterion that is partially similar to the complex-analytic
approach but has the advantage that it works over an arbitrary ground field. Here the
role of the (isomorphism class) of the lattice Li is replaced by the ideal class

IE(Ei) := Hom(Ei, E)πi,
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where E is a fixed suitable elliptic curve which is isogenous to Ei and πi : E → Ei is
any isogeny. It is immediate that IE(Ei) is an End(E)-ideal whose ideal class does not
depend on the choice of the isogeny πi. Here, “suitable” means that the endomorphism
ring conductor (or e-conductor) fE = fEnd(E) of E is a multiple of those of Ei and
E ′

i for all i. Note that Proposition 29 below guarantees that such a “suitable” elliptic
curve E always exists. We then have:

Theorem 1 Let E/K be a CM-elliptic curve and let E1, . . . , En, E
′
1, . . . , E

′
n be elliptic

curves which are isogenous to E and which satisfy the conditions fEi
|fE and fE′

i
|fE,

for 1 ≤ i ≤ n. Then

E1 × . . .×En ' E ′
1 × . . .×E ′

n ⇔ IE(E1)⊕ . . .⊕ IE(En) ' IE(E ′
1)⊕ . . .⊕ IE(E ′

n)

as End(E)-modules.

Note that in view of Theorem 20 below, this result is actually a special case of a
very general result about isomorphisms of product abelian varieties; cf. Theorem 46.

At first sight, the criterion of Theorem 1 does not seem to specialize to that
of [27], Proposition 4.5. However, by using results due to Steinitz[29] and/or to
Borevich/Faddeev[1] on the structure of R-modules when R is a quadratic order,
one can easily deduce their result from that of Theorem 1; cf. subsection 4.4.

The following result shows that the general isomorphism problem can be reduced,
at least in principle, to the previously considered subproblem.

Theorem 2 If A/K is an abelian variety which is isogenous to En, where E/K is
a CM elliptic curve, then there exist CM elliptic curves E1/K, . . . , En/K such that
A ' E1 × . . .× En.

In the case that K = C, this theorem was proved by Shioda and Mitani[27] when
n = 2 (see also Ruppert[23]), and their work was extended to the general case by
Lange[21]. Moreover, Schoen[24] gave a beautiful analysis of this theorem; cf. Remark
59 below. Here we give a variant of Schoen’s proof and show how to deduce the general
case from the case K = C; cf. §4.3.

Note that if we combine Theorem 2 with Theorem 1, then we get an indirect
solution of the isomorphism problem mentioned at the beginning. However, in order
to obtain a more intrinsic solution in terms of the ideal class IEn(A) = Hom(A,En)πA

of End(En) 'Mn(End(E)), considerable further work is necessary.
Such a solution is presented in the following theorem (see also Theorem 63 below),

which can be viewed as a generalization of Theorem 1. To state it in a compact form,
we use here the concept of the central conductor fA = fEnd(A) which is the conductor
of the centre Z(End(A)) as an order in the imaginary quadratic field F = Z(End0(A));
cf. §4.3.
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Theorem 3 Let E1/K, . . . , En/K be a set of pairwise isogenous CM elliptic curves,
and let A/K be an abelian variety which is isogenous to En

1 . Then there exists an
elliptic curve E/K which is isogenous to E1 such that fE|fA and fE|fEi

, for 1 ≤ i ≤ n.
Moreover, for any such E we have that

A ' E1 × . . .× En ⇔ Hom(En, E)⊗End(En) IEn(A) ' IE(E1)⊕ . . .⊕ IE(En)

as End(E)-modules.

In the case that n = 2 and K = C, Shioda and Mitani[27] also showed that one
can classify the abelian surfaces A with A ∼ E2 by equivalence classes of binary
quadratic forms. While their theorem does not directly carry over to an arbitrary
ground field, the following refinement of their result is true in general. To state it,
it is useful to employ the following terminology. If E/K is a CM elliptic curve, then
its endomorphism ring discriminant (or e-discriminant) is the discriminant ∆E =
∆(End(E)) of the order End(E); thus ∆E = f 2

E∆F , where ∆F is the discriminant of
the imaginary quadratic field F = End0(E). Moreover, if A/K is an abelian surface,
then its discriminant ∆(A/K) is the discriminant of its Néron-Severi group NS(A)
(with respect to the intersection pairing). We then have the following result:

Theorem 4 Let E/K be a CM elliptic curve with e-discriminant ∆ = ∆E. Then
there is a bijection between:

(i) the set of proper equivalence classes of positive definite binary quadratic forms
q with discriminant ∆(q) = ∆;

(ii) the set of isomorphism classes of abelian surfaces A/K with A ∼ E2 and
discriminant ∆(A/K) = −∆.

Note that in the above bijection, the binary quadratic forms q need not be primi-
tive, i.e. their content cont(q) need not be equal to 1.

The above Theorem 4 will be deduced in §4.4 from the following (partial) general-
ization to abelian varieties of arbitrary dimension n.

Theorem 5 Let E/K be a CM elliptic curve with e-discriminant ∆E = f 2
E∆F . If

n ≥ 2, then there are natural bijections between the following sets:

(i) The set of sequences (E ′; f1, . . . , fn−2) where E ′ ∼ E is an isomorphism class
of elliptic curves with fE′|fE and the fi’s are positive integers with fE′|f1| . . . |fn−2|fE.

(ii) the set of sequences (I; f1, . . . , fn−2) where I is an isomorphism class of non-
zero End(E)-ideals whose associated order R(I) has conductor fR(I)|f1| . . . |fn−2|fE.

(iii) the set of sequences (q; c1, . . . , cn−2) where q is a proper equivalence class of
positive binary quadratic forms of discriminant ∆ and c1| . . . |cn−2|cont(q).
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(iv) the set of isomorphism classes of End(E)-submodules M of End(E)n of rank
n with (M : M)F := {f ∈ F : fM ⊂M} = End(E);

(v) the set of isomorphism classes of abelian varieties A ∼ En with central con-
ductor fA = fE.

Note that the above theorem can easily be extended to classify the isomorphism
classes of abelian varieties A ∼ En with fA|fE; cf. Remark 64(b) below.

The basic technique for proving these theorems is the method of Deuring[10],
Shimura and Taniyama[26], and Waterhouse[30] of constructing isogenies: for a given
left ideal I of End(A), this method defines a finite subgroup scheme H(I) of A and
hence an isogeny πI : A → A/H(I). This theory, together with some extensions, is
presented in some detail in §2.

In order to be able to apply this theory, it is essential to know which finite subgroup
schemes H of A are of the form H = H(I) for some ideal I of End(A); such subgroup
schemes are called ideal subgroups in this paper. The key result is the following
theorem (see also Theorem 57 below) which classifies the ideal subgroups of A = En.

Theorem 6 Let E/K be a CM elliptic curve, and let H be a finite subgroup scheme
of En. Then H = H(I) for some left ideal I of End(En) if and only if the central
conductor fEn/H of the quotient En/H divides the e-conductor fE of E.

Note that the above theorem, which can be considered to be the main (technical)
result of this paper, is already interesting in the case that n = 1; in this case it is
essentially Theorem 20(b) below.

This paper is organized as follows. In §2 we review and extend the theory of
Deuring, Shimura/Taniyama and Waterhouse. This is then worked out in detail in §3
for the case of a CM elliptic curve. Here Theorem 20, Corollary 21 and Proposition
29 are basic tools for the rest of paper. In §4 we study products of abelian vari-
eties: the general case is analyzed in §4.1 and then applied to products of CM elliptic
curves in §4.3. To this end we also review and extend the results of Steinitz and of
Borevich/Faddeev[1] in §4.2. Finally, in §4.4 we consider the case of abelian surfaces
and show how the present results are related to those of Shioda and Mitani[27].

Acknowledgements. This research was partially supported by a Discovery Grant
from the Natural Sciences and Engineering Research Council of Canada (NSERC), and
also by the Graduiertenkolleg of the Institute of Experimental Mathematics (IEM) of
the University of Duisburg/Essen. I would like to express my appreciation to Gerd
Frey and to the IEM for their hospitality, and to thank him for helpful comments on
this paper.
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2 Isogenies, subgroups and ideals

2.1 Kernel ideals and ideal subgroups

In this section we review and augment the method of constructing isogenies of via
ideals; cf. Waterhouse[30], §3.2. This method is due to Deuring[10] in the case of
elliptic curves, and was generalized to abelian varieties by Shimura and Taniyama[26],
§7.

Throughout this paper, K is an arbitrary field, and A/K is an abelian variety. All
morphisms are tacitly K-morphisms, and all subvarieties are K-subvarieties.

We first review some basic facts about finite subgroup schemes. If H is finite
subgroup scheme of A, then the quotient variety AH = A/H with quotient morphism

πH : A → AH := A/H

exists by [22], p. 111, and is again an abelian variety. Thus, (AH , πH) is characterized
by the universal property that for any H-invariant morphism f : A → X there is a
unique morphism fH : AH → X such that f = fH ◦ πH . Note that πH is an isogeny of
degree deg(πH) = |H|, where |H| denotes the rank of the finite subgroup scheme H.

Conversely, if π : A → A′ is an isogeny of abelian varieties, then Ker(π) is a
finite subgroup scheme of rank |Ker(π)| = deg(π). Since π is faithfully flat (use [11],
Ex.III.9.3(a) or [4], 7.3/1), it follows that π : A → A′ is a quotient of A, i.e. there
is an isomorphism ϕ : A′

∼→ AKer(π) such that πKer(π) = ϕ ◦ π. Thus, we have a
bijection between finite subgroup schemes H of A and isogenies π : A → A′, modulo
isomorphisms.

If H1 and H2 are any two (not necessarily finite) subgroup schemes of A, then we
write H1 ≤ H2 if the canonical inclusion morphism jH1 : H1 ↪→ A of H1 factors over
that of H2, i.e. if jH1 = jH2 ◦ h, for some h : H1 → H2 (necessarily an immersion).
Since a homomorphism h : A → A′ of abelian varieties is H1-invariant if and only if
Ker(h1) ≤ Ker(h), it follows from the universal property of quotients that if H1 and
H2 are finite, then the condition H1 ≤ H2 is equivalent to the existence of a morphism
(necessarily an isogeny) πH1,H2 := (πH2)H1 : AH1 → AH2 such that πH2 = πH1,H2 ◦ πH1 .
In particular, we see that |H1| = deg(πH1) | deg(πH2) = |H2| in this case. From this it
follows that the relation ≤ is a partial order on the set of finite subgroup schemes of A;
in particular, H1 ≤ H2 and H2 ≤ H1 ⇒ H1 = H2 (because πH1,H2 is an isomorphism
if |H1| = |H2|).

For any finite collection H1, . . . , Hn of subgroup schemes of A, their intersection
H1 ∩ . . . ∩ Hn := H1 ×A . . . ×A Hn is a subgroup scheme of A, which is the greatest
lower bound of H1, . . . , Hn with respect to the partial order ≤. Note that ∩Hi is finite
if at least one of the Hi is finite. We can thus extend the definition of ∩Hi to an
infinite collection {Hi}i∈I of subgroup schemes provided that at least one of the Hi

is finite, because then the definition reduces to a finite subcollection (since the finite
subgroup schemes satisfy the descending chain condition (d.c.c.)).
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We now present the Deuring/Shimura/Taniyama/Waterhouse method of construct-
ing finite subgroup schemes via left ideals. However, instead of fixing an identification
of End(A) with an abstract ring R (as in [26] and [30]), we shall work directly with

R = RA := End(A) and R̃ = R̃A := End0(A) = End(A)⊗Q

because A is usually fixed. Note that R is canonically embedded in R̃. Later in §2.3
we shall study what happens when we replace A by an isogenous variety A′.

Let I be a regular left ideal I of R = End(A), i.e. I is a left R-ideal which contains
an isogeny. Then as in [30], §3.2, we put

H(I) =
⋂
f∈I

Ker(f)

which is finite subgroup scheme of A. Note that I is finitely generated and that

H(I) = Ker(h1) ∩ . . . ∩ Ker(hr), if I =
r∑

i=1

Rhi,(1)

because for all f, g ∈ R we have

Ker(g) ≤ g−1(Ker(f)) = Ker(fg) and Ker(f) ∩ Ker(g) ≤ Ker(f + g).(2)

From (1) it follows immediately that for any two regular left R-ideals I1, I2 we have

H(I1 + I2) = H(I1) ∩H(I2)(3)

because I1 + I2 is generated by I1 ∪ I2.
Here we complement this construction by the following “dual construction”. Given

a finite subgroup scheme H of A, put

I(H) = Hom(AH , A)πH = {f ∈ R : H ≤ Ker(f)},

where the second equality follows from the universal property of (AH , πH). It is im-
mediate that I(H) is a left ideal of R. Moreover, I(H) is a regular ideal because
H ≤ Ker([nH ]A), where nH = |H| (and [n]A = n · 1A denotes the multiplication-by-n
map), and so [nH ]A ∈ I(H). For later reference we observe that it thus follows from
the above equality that there exists a unique π′H ∈ Hom(AH , A) such that

π′H ◦ πH = [nH ]A and that hence also πH ◦ π′H = [nH ]AH
.(4)

If I1, I2 and I are regular left R-ideals and H1, H2 and H are finite subgroup
schemes of A, then we have

I1 ⊂ I2 ⇒ H(I2) ≤ H(I1),(5)

H1 ≤ H2 ⇒ I(H2) ⊂ I(H1),(6)

I ⊂ I(H(I)),(7)

H ≤ H(I(H)).(8)
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Indeed, (5) and (6) are clear from the definitions. Moreover, if f ∈ I, then Ker(f) ≥
H(I) = ∩g∈IKer(g), so f ∈ I(H(I)) and hence I ⊂ I(H(I)), which proves (7).
Similarly, since H ≤ Ker(f), for all f ∈ I(H), we have that H ≤ ∩f∈I(H)Ker(f) =
H(I(H)), which yields (8).

From the above properties we see immediately that

H(I) = H(I(H(I))) and I(H) = I(H(I(H))).(9)

Indeed, by (8) (applied to H = H(I)) we have that H(I) ≤ H(I(H(I)). On the other
hand, since I ⊂ I(H(I)) by (7), it follows from (5) that H(I) ≥ H(I(H(I)), and so
the first equation of (9) follows. The second is proved similarly.

Definition. A regular leftR-ideal I is called a kernel ideal if we have that I = I(H(I)).
A finite subgroup scheme H of A is called an ideal subgroup (scheme) if we have
H = H(I(H)).

Remark 7 (a) Waterhouse[30], p. 533, calls an ideal I a kernel ideal if we have
I = {f ∈ R : fH(I) = 0}. Since fH(I) = 0 ⇔ H(I) ≤ Ker(f), it is clear that
{f ∈ R : fH(I) = 0} = I(H(I)), and so his definition of kernel ideals agrees with the
one above. (He does not define “ideal subgroups”.)

(b) It follows from the definition and (9) that I is a kernel ideal if and only if
I = I(H), for some finite subgroup scheme H of A. Similarly, we see that H is an
ideal subgroup if and only if H = H(I) for some regular left R-ideal I.

(c) If f ∈ R is an isogeny, then it clear that

H(Rf) = Ker(f) and I(Ker(f)) = Rf(10)

(the latter by the universal property the quotient map f : A → A), and so Rf is a
kernel ideal and Ker(f) is an ideal subgroup. More generally, we have for any regular
left R-ideal I, any finite subgroup scheme H of A, and any isogeny f ∈ R that

H(If) = f−1(H(I)) and I(f−1(H)) = I(H)f.(11)

Indeed, the first equality follows from the fact that intersections commute with inverse
images, and the second follows because the faithful flatness of f implies that

H ≤ Ker(g) ⇔ f−1(H) ≤ f−1(Ker(g)) = Ker(gf), ∀g ∈ R.(12)

From (11) it thus follows that

I(H(If)) = I(H(I))f and H(I(f−1(H))) = f−1(H(I(H))),(13)

and so we see that if I is a kernel ideal, then so is If . Similarly, if H is an ideal
subgroup, then so is f−1(H). In fact, the converses of these assertions are also true:

I is a kernel ideal ⇔ If is a kernel ideal;(14)

H is an ideal subgroup ⇔ f−1(H) is an ideal subgroup.(15)

7



Indeed, if If is a kernel ideal, then by the first part of (13) we have that I(H(I))f =
I(H(If)) = If , and so I(H(I)) = I because f is a unit in R̃ ⊃ R. Thus I is a
kernel ideal, which proves (14). Similarly, if f−1(H) is an ideal subgroup, then by the
second part of (13) we have that f−1(H(I(H))) = H(I(f−1(H))) = f−1(H), and so
H(I(H)) = H by the faithful flatness of f . Thus H is an ideal subgroup, which proves
(15).

(d) For any regular left R-ideal we have that

I(H(I)) ⊂ I∗ :=
⋂

Rf̃⊃I

Rf̃,(16)

where the intersection runs over all f̃ ∈ R̃ such that Rf̃ ⊃ I. Indeed, if f̃ = f/n with
f ∈ R and n ∈ N, then I ⊂ Rf̃ implies that In ⊂ Rf and so by (11), (5), (6) and (10)
we have that I(H(I))n = I(H(In)) ⊂ I(H(Rf)) = Rf , and hence I(H(I)) ⊂ Rf̃ .
This verifies (16).

In particular, if I = I∗, i.e. if I is a divisorial ideal (cf. [5], p. 476), then it follows
from (8) and (16) that I = I(H(I)). Thus every divisorial ideal is a kernel ideal. In
particular, if R is commutative, then every invertible R-ideal I is a kernel ideal by
[5], p. 118, 476. Thus, if R is a Dedekind domain, then all non-zero ideals are kernel
ideals.

(e) If K ′/K is any field extension, then we have an injective ring homomorphism

βK′/K = βA
K′/K : End(A) → End(A⊗K ′)

given by base-change f 7→ f ⊗K ′. If this is surjective (hence an isomorphism), then
it is clear from the definitions that for a finite subgroup scheme H of A and R-ideal I
we have

H(I)⊗K ′ = H(βK′/K(I)) and I(H ⊗K ′) = βK′/K(I(H))

because Ker(f ⊗ K ′) = Ker(f) ⊗ K ′, for all f ∈ End(A). Note, however, that in
general A′ := A⊗K ′ has more finite subgroup schemes than A, i.e. A′ may have finite
subgroup schemes which are not of the form H ⊗K ′.

2.2 The invariant IA(B)

Given an abelian variety B which is isogenous to A (notation: B ∼ A), we shall define
an “invariant” IA(B) which is an isomorphism class of left R-ideals, where, as before,
R = RA = End(A). This invariant is defined by the rule

IA(B) = Hom(B,A)π = I(Ker(π)) where π : A→ B is any isogeny.

As we shall see presently, the R-module isomorphism class of the right hand side does
not depend on the choice of the isogeny π : A → B; cf. (20) below. For this, we first
observe the following general rules concerning isomorphisms of quotients.
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As before, let H1 and H2 be two finite subgroup schemes of A and let I1 and I2
two regular left R-ideals. It is then easy to see (cf. [30], p. 532) that

AH1 ' AH2 ⇔ f−1(H1) = [n]−1(H2), for some f ∈ R ∩ R̃× and n ∈ N,(17)

I1 ' I2 ⇔ I1 = I2f̃ , for some f̃ ∈ R̃×.(18)

From this we see that
I1 ' I2 ⇒ AH(I1) ' AH(I2)(19)

because the hypothesis implies by (18) that I1 = I2f̃ , where f̃ = f/n with f ∈ R ∩ R̃
an isogeny, and so I1n = I2f . Thus, by (12) we have that [n]−1(H(I1)) = H(I1n) =
H(I2f) = f−1(H2), and hence AH(I1) ' AH(I2) by (17). This proves (19).

Similarly, we have that

AH1 ' AH2 ⇒ I(H1) ' I(H2).(20)

Indeed, by (17) the hypothesis implies that there exist f , n such that f−1(H1) =
[n]−1(H2), and so by (11) we have that I(H1)f = I(f−1(H1)) = I([n]−1(H2)) =
I(H2)n, so I(H2) = I(H1)f̃ with f̃ = f

n
, and hence I(H1) ' I(H2), which proves (20).

While the converses of (19) and (20) are false in general, we note that if I1 and I2
are kernel ideals, then it follows from (19) and (20) that the converse of (19) holds.
Similarly:

AH1 ' AH2 ⇔ I(H1) ' I(H2), if H1 and H2 are ideal subgroups.(21)

We now apply this to the invariant IA(B). It follows from (20) that the isomor-
phism class of IA(B) does not depend on the choice of the isogeny π : A → B, for
if π1 : A → B is another, then AKer(π) ' B ' AKer(π1), and so by (20) we have
I(Ker(π)) ' I(Ker(π1)), as asserted.

As was mentioned above, it can happen that IA(B1) ' IA(B1) yet B1 6' B2.
However, if B1 and B2 have the “ideal property” that there exist isogenies πi : A→ Bi

such that Ker(πi) is an ideal subgroup, then we have by the above discussion that

IA(B1) ' IA(B2) ⇔ B1 ' B2, provided that B1, B2 have the ideal property.

Remark 8 It is useful to observe that the “ideal property” of B can be decided by
considering a single isogeny π : A→ B because if H1 and H2 are two finite subgroup
schemes, then we have:

If AH1 ' AH2 , then H1 is an ideal subgroup ⇔ H2 is an ideal subgroup.(22)

Indeed, by (17) the hypothesis means that f−1(H1) = [n]−1(H2), for some isogeny
f ∈ R and n ∈ N and so the conclusion follows from (15).

Similarly, the property of being a kernel ideal is a property of the isomorphism
class: if I, J are two regular left R-ideals, then we have:

If I ' J , then I is a kernel ideal ⇔ J is a kernel ideal.(23)
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Indeed, by (18) we have I1f = I2n, for some isogeny f ∈ R and n ∈ N, and so the
conclusion follows from (14).

2.3 Homomorphisms

The discussion of the previous subsection drew attention to the importance of ideal
subgroups, and so it is of interest to classify them. Now while it is frequently the
case that all regular left R-ideals are kernel ideals (for example, if R is a Dedekind
domain; cf. Remark 7(d)), it rarely happens that all finite subgroups schemes of A are
ideal subgroups. The reason for this is that if H = H(I) is an ideal subgroup, then
End(AH) has additional properties which are not necessarily satisfied by End(AH) for
an arbitrary finite subgroup scheme H.

To explain this in more detail, let H1 and H2 be two finite subgroup schemes of
A, and consider the subset H(H1, H2) := Im(ΦH1,H2) ⊂ R̃ which is the image of the
map

ΦH1,H2 : Hom(AH1 , AH2) → R̃ = End0(A)

defined by the rule

ΦH1,H2(h) =
1

nH2

π′H2
◦ h ◦ πH1 , for h ∈ Hom(AH1 , AH2).(24)

Here, as before nH2 = deg(πH2) = |H2| and π′H2
is defined by (4).

Remark 9 (a) Note that Φ = ΦH1,H2 is injective because it follows from (4) that

πH2Φ(h)π′H1
= nH1h, for all h ∈ Hom(AH1 , AH2).(25)

Thus, Φ defines an isomorphism (of additive groups)

Φ : Hom(AH1 , AH2)
∼→ H(H1, H2)

which extends to an isomorphism

Φ0 : Hom0(AH1 , AH2) := Hom(AH1 , AH2)⊗Q ∼→ R̃.

(To see that Φ0 is surjective, note that if f̃ = f
n
∈ R̃ with f ∈ R, n ∈ N, then

h̃ = 1
nnH1

πH2fπ
′
H1
∈ Hom0(AH1 , AH2) and Φ0(h̃) = f̃ .) Thus, H(H1, H2) is a lattice of

R̃, i.e. it is an additive subgroup of R̃ which contains a Q-basis of R̃.
Note that the lattices H(H1, H2) can be viewed as a generalization of the I(H)-

construction. Indeed, if we take H2 = 0, then we have

H(H, 0) = Hom(AH , A)πH = I(H)(26)
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because ΦH,0(h) = hπH as here nH2 = 1, AH2 = A and πH2 = π′H2
= 1A.

(b) The map ΦH1,H2 is multiplicative in the sense that if H3 is another finite sub-
group scheme of A, then for hi ∈ Hom(AHi

, AHi+1
), i = 1, 2, we have that

ΦH2,H3(h2)ΦH1,H2(h1) = ΦH1,H3(h2 ◦ h1).(27)

Indeed, writing πi = πHi
, π′i = π′Hi

, and ni = nHi
, for i = 1, 2, 3, we have by using (4)

that ΦH2,H3(h2)ΦH1,H2(h1) = 1
d3
π′3h2π2

1
d2
π′2h1π1 = 1

d3
π′3h2h1π1 = ΦH1,H3(h2 ◦ h1).

In particular, if H1 = H2 = H, then ΦH = ΦH,H defines a ring isomorphism

ΦH : End(AH)
∼→ E(H) := H(H,H),

and so E(H) is a subring of R̃. (Note that ΦH(1AH
) = 1

nH
π′HπH = 1A.) We observe

that since ΦH(πHhπ
′
H) = nHh, ∀h ∈ R, we have the inclusions nHR ⊂ E(H) ⊂ 1

nH
R.

We also note that since Hom(AH1 , AH2) is an (End(EH2),End(EH1))-bimodule, it
follows from (27) that H(H1, H2) is an (E(H2), E(H1))-bimodule, i.e. we have that

E(H2)H(H1, H2)E(H1) = H(H1, H2).

(c) We have that 1A ∈ H(H1, H2) if and only if H1 ≤ H2. Indeed, if H1 ≤ H2,
then 1A = ΦH1,H2(πH1,H2) ∈ H(H1, H2) because ΦH1,H2(πH1,H2) = 1

nH2
π′H2

πH1,H2πH1 =
1

nH2
π′H2

πH2 = 1A. Conversely, if 1A ∈ H(H1, H2), then 1A = 1
nH2

π′H2
hπH1 , for some

h ∈ Hom(AH1 , AH2) and then πH2 = πH2

1
nH2

π′H2
hπH1 = hπH1 , so H1 ≤ H2.

In addition, we observe that if H1 ≥ H ′
1 and H2 ≤ H ′

2, then it follows from (27)
and the above identities ΦH′

1,H1
(πH′

1,H1
) = 1A = ΦH2,H′

2
(πH2,H′

2
) that

ΦH1,H2(h) = ΦH2,H′
2
(πH2,H′

2
)ΦH1,H2(h)ΦH′

1,H1
(πH′

1,H1
) = ΦH′

1,H′
2
(πH2,H′

2
◦ h ◦ πH′

1,H1
),

for all h ∈ Hom(AH1 , AH2), and so it follows that

H1 ≥ H ′
1, H2 ≤ H ′

2 ⇒ H(H1, H2) ⊂ H(H ′
1, H

′
2).(28)

(d) If H̄ ≤ AH is a finite subgroup scheme of AH , then we have that

ΦH(I(H̄)) = H(π−1
H (H̄), H).(29)

Indeed, if H1 = π−1
H (H̄), then we have that πH1 = πH̄πH , and (AH)H̄ = AH1 , and hence

ΦH(I(H̄)) = 1
nH
π′HI(H̄)πH = 1

nH
π′HHom((AH)H̄ , AH)πH̄πH = 1

nH
π′HHom(AH1 , AH)πH1 =

H(H1, H) = H(π−1
H (H̄), H).

We now want to describe H(H1, H2) in terms of the ideals I(Hi). For this, it is
useful to introduce the following notation. If S, T are subsets of R̃, put

(S : T ) := {f ∈ R̃ : Tf ⊂ S} = {f ∈ R̃ : tf ∈ S,∀t ∈ T}.

We then have the following description of H(H1, H2).
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Proposition 10 If H1, H2 are finite subgroup schemes of A and if I1, I2 are regular
left R-ideals, then

H(H1, H2) ⊂ (I(H1) : I(H2)),(30)

(I1 : I2) ⊂ H(H(I1), H(I2)).(31)

Moreover, if H2 is an ideal subgroup, then equality holds in (30), and if I1 is a kernel
ideal, then equality holds in (31).

Proof. To prove (30), let h ∈ Hom(AH1 , AH2) and f = f ′πH2 ∈ I(H2), where f ′ ∈
Hom(AH1 , A). Then by (4) we have fΦ(h) = f ′πH2

1
nH2

π′H2
hπH1 = f ′hπH1 ∈ I(H2),

and so the inclusion (30) follows.
In order to prove (31), we first observe that

H(H1, H2) =
{

f
n

: f ∈ R, n ∈ N and [n]−1(H1) ≤ f−1(H2)
}
.(32)

Indeed, if f̃ ∈ H(H1, H2), then f̃ = f
n
, where n = nH2 and f = π′H2

hπH1 , for some
h ∈ Hom(AH1 , AH2). Then πH2f = nhπH1 = h(nπH2), so f−1(H2) = Ker(πH2f) =
Ker(hnπH1) ≥ Ker(nπH1) = [n]−1(H1). Thus, the left hand side of (32) is contained
in the right hand side.

Conversely, suppose that f ∈ R and n ∈ N satisfy [n]−1(H2) ≤ f−1(H2), i.e.
Ker(nπH1) ≤ Ker(πH2f). Then by the universal property of quotients there exists
h ∈ Hom(AH1 , AH2) such that πH2f = hnπH1 = nhπH1 . Then nH2f = π′H2

πH2f =

π′H2
nhπH1 , so f = n

nH2
π′H2

hπH1 = nΦH1.H2(h). Thus f̃ := f
n

= ΦH1,H2(h) ∈ H(H1, H2),

and so we have verified that equality holds in (32).
Now we prove (31). For this, let f̃ = f

n
∈ (I1 : I2) with f ∈ R, n ∈ N, and write

Hi = H(Ii) and πi = πHi
for i = 1, 2. We first claim that

Ker(nπ1) ≤ Ker(αf), ∀α ∈ I2.

Indeed, since α
n
f = αf̃ =: β ∈ I1, we have αf = nβ. Since H1 = H(I1) ≤ Ker(β), we

thus have Ker(nπ1) ≤ Ker(nβ) = Ker(αf), which proves the above claim.
Now since H2 = H(I2) = ∩iKer(αi), if I2 =

∑
iRαi, we see that Ker(π2f) =

f−1(H2) = ∩if
−1(Ker(αi)) = ∩iKer(αif). It thus follows from the above claim that

Ker(nπ1) ≤ Ker(π2f), and hence f̃ ∈ H(H1, H2) by (32). This proves (31).
By combining (30) and (31) we obtain

H(H1, H2) ⊂ (I(H1) : I(H2)) ⊂ H(H(I(H1)), H(I(H2))) ⊂ H(H1, H(I(H2))),(33)

where the last inclusion follows from (28) (together with (8)). Thus, if H2 is an ideal
subgroup, i.e. if H2 = H(I(H2)), then equality holds throughout, and hence equality
holds in (30). Similarly, combining (30) and (31) yields

(I1 : I2) ⊂ H(H(I1), H(I2)) ⊂ (I(H(I1)) : I(H(I2))) ⊂ (I(H(I1)) : I2)(34)

and so equality holds throughout if I1 is a kernel subgroup.
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As an application, we can deduce the fact that an ideal subgroup H satisfies the
extra condition that Z(R) ⊂ Z(E(H)), where Z(R) = {z ∈ R : xz = zx,∀x ∈ R}
denotes the centre of R, and Z(E(H)) is defined similarly. This condition is usually
not true for arbitrary subgroup schemes of A, as we shall see in Remark 19(b) below.

Corollary 11 If H is an ideal subgroup of A, then Z(R) ⊂ Z(E(H)) = E(H)∩Z(R̃).

Proof. By hypothesis, H = H(I), for some regular left R-ideal I, and so (I : I) ⊂ E(H)
by (31). Since I is a left R-ideal, it follows that Z(R) ⊂ (I : I) (because z ∈ Z(R) ⇒
Iz = zI ⊂ I), and so Z(R) ⊂ E(H). Since R and E(H) are lattices in R̃, we have that
Z(R) = R ∩ Z(R̃) and Z(E(H)) = E(H) ∩ Z(R̃), and so the assertion follows.

The following result, which is a variant of a result of [30], p. 534, shows that the
subgroup scheme associated to a product of ideals has a natural interpretation in terms
of composition of maps.

Proposition 12 Let I be a regular left R-ideal and let J be a regular left R′-ideal,
where R′ = E(H(I)). Then IJ is a regular left R-ideal and

H(IJ) = Ker(πH(Φ−1
I (J)) ◦ πH(I)),(35)

where ΦI = ΦH(I) : End(AH(I))
∼→ R′ and πH(Φ−1

I (J)) : AH(I) → (AH(I))H(Φ−1
I (J)) is the

canonical quotient map.

Proof. Put H = H(I). Since J ⊂ E(H) ⊂ (I(H) : I(H)) by (30), we have IJ ⊂
I(H)J ⊂ I(H) ⊂ R, and hence IJ is an R-ideal. Moreover, IJ is regular because by
hypothesis there exist α ∈ I ∩ R̃× and β ∈ J ∩ R̃×, and so αβ ∈ IJ ∩ R̃×, which means
that IJ is regular.

To prove (35), note first that it follows from (25) that nΦ−1
I (J) = πJπ′, where

n = nH , π = πH , and π′ = π′H , and so Φ−1
I (J)π = πJ . From this it follows that

Ker(πf) = ∩g∈IKer(gf), ∀f ∈ J,(36)

where we view πf ∈ Hom(A,AH) since πf = f1π for some f1 ∈ Φ−1
I (J) ⊂ End(AH).

To verify (36), write f = f2/n with f2 ∈ R and n ∈ N. Then

[n]−1(Ker(πf)) = Ker(πf2) = f−1
2 (Ker(π)) = f−1

2 (∩g∈IKer(g))

= ∩g∈If
−1
2 (Ker(g)) = ∩g∈IKer(gf2) = [n]−1(∩g∈IKer(gf)),

the latter because gf2 = gfn and gf ∈ R, for all g ∈ I. From this, equation (36)
follows because [n] is faithfully flat.
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Using (36), we therefore obtain that

Ker(πH(Φ−1
I (J))π) = π−1(Ker(πH(Φ−1

I (J)))) = π−1(∩f∈Φ−1
I (J)Ker(f))

= ∩f∈Φ−1
I (J)Ker(fπ)) = ∩f ′∈Φ−1

I (J)πKer(f ′)) = ∩f ′∈πJKer(f ′))

= ∩f∈JKer(πf)) = ∩f∈Jf
−1(Ker(π)) = ∩f∈Jf

−1(∩g∈IKer(g))

= ∩f∈J ∩g∈I Ker(gf) = H(IJ),

which proves (35).

We conclude this subsection by observing that under suitable hypotheses, the H-
construction commutes with base-change; this generalizes the second formula of Re-
mark 7(e).

Proposition 13 Let K ′/K be a field extension, and suppose that dim End0(A) =
dim End0(A⊗K ′). Then the base-change maps

βK′/K : End(A)
∼→ End(A⊗K ′) and β0

K′/K : End0(A)
∼→ End0(A⊗K ′)

are isomorphisms, and we have for all finite subgroups H1, H2 ≤ A that

β0
K′/K(H(H1, H2)) = H(H1 ⊗K ′, H2 ⊗K ′).(37)

To prove this, we first verify the following general facts.

Lemma 14 Let K ′/K be a field extension.

(a) If H1 and H2 are subgroup schemes of A/K, then

H1 ≤ H2 ⇔ H1 ⊗K ′ ≤ H2 ⊗K ′.(38)

(b) If B/K is another abelian variety, then the cokernel of the base-change map

βA,B
K′/K : Hom(A,B) → Hom(A⊗K ′, B ⊗K ′)

is torsion-free, and so βA,B
K′/K is surjective and hence is an isomorphism if and only if

Hom(A,B) and Hom(A⊗K ′, B ⊗K ′) have the same rank.

(c) If dim End0(A) = dim End0(A ⊗ K ′), then βA1,A2

K′/K is an isomorphism for all
abelian varieties A1 ∼ A2 ∼ A.

Proof. (a) If jHi
: Hi ↪→ A denotes the inclusion map, then jHi⊗K′ = jHi

⊗K ′. Thus, if
H1 ≤ H2, then jH1 = jH2 ◦h for some h and so jH1⊗K′ = jH2⊗K′ ◦h⊗K ′, which means
that H1 ⊗K ′ ≤ H2 ⊗K ′. Conversely, if this holds, then jH1⊗K′ = jH2⊗K′ ◦ h′ ⊗K ′,
for some h′ : H1 ⊗ K ′ → H2 ⊗ K ′. Since jH2 is a monomorphism, it follows that h′

14



satisfies the descent condition for K ′/K (cf. [4], p. 136) and so h′ = h⊗K ′, for some
h : H1 → H2. Thus H1 ≤ H2, as claimed.

(b) Let h′ ∈ Hom(AK′ , BK′), where AK′ = A ⊗ K ′ and BK′ = B ⊗ K ′, and
suppose that there exists n > 0 such that nh′ ∈ βK′/K(Hom(A,B)). Thus nh′ =
h ⊗ K ′ = hK′ , for some h ∈ Hom(A,B), and so A[n] ⊗ K ′ = AK′ [n] ≤ Ker(hK′) =
Ker(h) ⊗ K ′. By part (a) we have that A[n] ≤ Ker(h), and so h = ng, for some
g ∈ Hom(A,B). Thus nh′ = ngK′ , and hence h′ = gK′ because [n] is an isogeny.
Thus, h′ ∈ βK′/K(Hom(A,B), which shows that Coker(βK′/K) is torsionfree.

Now suppose that Hom(A,B) and Hom(AK′ , BK′) have the same rank. Since βK′/K

is injective and Hom(AK′ , BK′) is free of finite rank, it follows that Coker(βA,B
K′/K) is a

torsion group and hence equal to 0 by what was just shown. Thus βA,B
K′/K is surjective

and hence is an isomorphism.
(c) Since A1 ∼ A2 ∼ A, we see that Hom(A1, A2) has the same rank as End(A) and

hence rank(Hom(A1, A2)) = dim End0(A). Similarly, rank(Hom(A1⊗K ′, A2⊗K ′)) =
dim(End0(A⊗K ′)), and so the assertion follows from part (b).

Proof of Proposition 13. The first assertion follows from lemma 14(c). To verify (37),
we first observe that we have that

ΦH1⊗K′,H2⊗K′ ◦ βAH1
,AH2

K′/K = β0
K′/K ◦ ΦH1,H2 ;(39)

this follows immediately from the definition (24) and the fact that πHi⊗K′ = πHi
⊗K ′,

π′Hi⊗K′ = π′Hi
⊗K ′ and |Hi⊗K| = |Hi|. Since β

AH1
,AH2

K′/K is an isomorphism by Lemma

14(c), the formula (37) follows immediately from (39).

2.4 The quadratic case

We now specialize the discussion to the case that R̃ is a quadratic field F ⊃ Q. Since
R is finitely generated (as a Z-module), it follows that R is an order of F = R̃, i.e. R
is a subring of F which is lattice. We first recall some basic facts about such orders
and lattices (cf. [3], §II.7 or [6], ch. 7).

Every order R of F is contained in the maximal order OF , the ring of integers of F ,
and is uniquely determined by its conductor fR := [OF : R]. Indeed, if ∆(R) := f 2

R∆F ,
where ∆F = ∆(OF ) is the discriminant of F (or, more correctly, of OF ), then we have
that

R = R∆ := Z + Zω∆, where ω∆ =
1

2
(∆ +

√
∆).(40)

Thus, R is also uniquely determined by its discriminant ∆(R). Conversely, for each
integer f there is a unique order of conductor f . Moreover, if R1, R2 are orders in F
then we have that

R1 ⊂ R2 ⇔ fR2|fR1 and hence fR1R2 = (fR1 , fR2), fR1∩R2 = lcm(fR1 , fR2).(41)
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Let LatF denote the set of lattices of F , i.e. the set of finitely generated subgroups
L of F such that LF = F . If L ∈ LatF , then R(L) := (L : L) is an order of F , and
for a given order R, the set

Lat(R) = {L ∈ LatF : R(L) = R}

is the set of invertible R-submodules of F , and hence forms an abelian group under
the multiplication of lattices. Here the identity is R and the inverse of L is

L−1 = (R(L) : L) = σ(L)N(L)−1,(42)

where σ ∈ Gal(F/Q) is the unique nontrivial automorphism of F and N(L) ∈ Q× is
the norm of L. Moreover, the group

Pic(R) = Lat(R)/{fR : f ∈ F×}

is a finite abelian group whose order is denoted by h(R) = h(∆(R)).
For later reference we recall the following useful formulae (cf. [6], p. 151):

R(L1L2) = R(L1)R(L2) and N(L1L2) = N(L1)N(L2).(43)

In addition, we have the following formulae (44) and (45) which will be used several
times below. Since there does not seem to be a suitable reference, we provide a proof
of these identities. Note that (45) is stated without proof on p. 71 of [13].

Lemma 15 If L1, L2 ∈ LatF are any two lattices of F , then

(L1 : L2)L2 = (R(L1) : R(L2))L1.(44)

Thus, if fi = fR(Li) = [OF : R(Li)], for i = 1, 2, and if f = (f1, f2), then we have

(L1 : L2) = [R(L1)R(L1) : R(L1)]L1L
−1
2 =

f1

f
L1L

−1
2 .(45)

Proof. Put Ri = R(Li) and R0 = R1R2 = R(L1L2). Note that (L1 : L2) is an
R0-module, for if c ∈ (L1 : L2) and ri ∈ R(Li), then cr1r2 ∈ (L1 : L2) because
r1cr2L2 ⊂ r1cL2 ⊂ r1L1 ⊂ L1. In particular, (R1 : R2) is also an R0-module (because
R(Ri) = Ri).

Now let c ∈ (L1 : L2). Then (cL−1
1 L2)R2 = cL−1

1 L2 = cL2L
−1
1 ⊂ L1L

−1
1 = R1, so

cL2L
−1
1 ⊂ (R1 : R2), and hence (L1 : L2)L2L

−1
1 ⊂ (R1 : R2). Thus (L1 : L2)L2R1 =

(L1 : L2)L
−1
2 L1 ⊂ (R1 : R2)L1. But since (L1 : L2) is an R1-module (as R1 ⊂ R0), we

have that (L1 : L2)L2R1 = (L1 : L2)L2, and so the left hand side of (44) is contained
in the right hand side.
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To prove the other inclusion, let r ∈ (R1 : R2). Then (rL1L
−1
2 )L2 = rL1R2 =

rR2L2 ⊂ R1L1 = L1, so rl1L
−1
2 ⊂ (L1 : L2), and hence (R1 : R2)L1L

−1
2 ⊂ (L1 : L2).

Thus (R1 : R2)L1R2 = (R1 : R2)L1L
−1
2 L2 ⊂ (L1 : L2)L2, and so the other inclusion of

(44) holds because (R1 : R2)L1R2 = (R1 : R2)L1 (since (R1 : R2) is an R2-module).
This proves (44).

The formula (45) follows immediately from (44) once we have shown that

(R(L1) : R(L1)) =
f1

f
R(L1)R(L2) and

f1

f
= [R(L1)R(L2) : R(L1)].(46)

Indeed, multiplying (44) by L−1
2 , we obtain with (46) that (L1 : L2) = f1

f
R1R2L1L

−1
2 =

f1

f
L1L

−1
2 , where the last equality follows from the obvious fact that L±1

i is an Ri-
module, for i = 1, 2.

It thus remains to verify (46). For this, we first note that since f = fR0 by (43), we
have that [R0 : R1] = f1

f
, which is the second equality of (46). Thus, f1

f
R0 is largest

R0-module which is contained in R1, and hence (R1 : R2) ⊂ f1

f
R0 because (R1 : R2) is

an R0-module which is contained in R1. On the other hand, since f1

f
R2 ⊂ f1

f
R0 ⊂ R1,

we have the opposite inclusion f1

f
R0 ⊂ (R1 : R2), which proves (46).

Corollary 16 Every non-zero ideal of an order in F is a divisorial ideal.

Proof. Let R be an order of F and let I be a nonzero R-ideal. Then I ∈ LatF and
R ⊂ R(I). Applying (45) to L1 = R and L2 = I yields

(R : I) = [R(I) : R]I−1(47)

because here f2|f1, so f = f2 and f1

f
= [R(I) : R]. Next, apply (45) to L1 = R and

L2 = (R : I). Since R(L2) = R(I−1) = R(I) by (47), we see that in this case (45)
gives

(R : (R : I)) = [R(I) : R]((R : I))−1 = [R(I) : R][R(I) : R]−1(I−1)−1 = I

Since I∗ = (R : (R : I)) by [5], p. 476, we thus have that I = I∗, and so I is a divisorial
ideal in the sense of Remark 7(d).

We now apply the preceding results to abelian varieties.

Proposition 17 Let A/K be an abelian variety such that R̃ = End0(A) is a quadratic
field. Then every non-zero ideal of R = End(A) is a kernel ideal, and hence we have
for any two non-zero ideals I, J of R that ΦI,J := ΦH(I),H(J) defines an isomorphism

ΦI,J := ΦH(I),H(J) : Hom(AH(I), AH(J))
∼→ (I : J).(48)

Moreover, we have that AH(I) ' AH(J) ⇔ I ' J (as R-modules).
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Proof. Since R is an order of R̃ = F , we know by Corollary 16 that every non-zero
ideal of R is divisorial and hence is a kernel ideal by Remark 7(d). This proves the
first assertion, and hence the other assertions follow from Proposition 10 and from the
discussion after (20).

Corollary 18 In the above situation, let R′ be an order of R̃ with R ⊂ R′. Then there
exists an abelian variety A′/K which is isogenous to A/K such that End(A′) ' R′.

Proof. Take I = [R′ : R]R′ ⊂ R. Then I is a non-zero R-ideal with R(I) = R′. Thus
A′ := AH(I) is isogenous to A and End(A′) ' (I : I) = R(I) = R′ by (48).

Remark 19 (a) Note that if we drop the hypothesis that R ⊂ R′ in Corollary 18,
then the corresponding statement is in general no longer true; cf. §3.3 below.

(b) We can use the above Corollary 18 to construct an abelian variety A′ with a
finite subgroup scheme H ′ such that End(A′) = Z(End(A′)) 6⊂ E(H ′) = Z(E(H ′)). In
particular, H ′ is not an ideal subgroup by Corollary 11.

Indeed, suppose that A/K is an abelian variety such that End0(A) = F is a
quadratic field but R := End(A) 6= OF . (For example, we can take A = E to be a
CM elliptic curve over a sufficiently large ground field K; cf. §3.3.) Then by Corollary
18 there is an R-ideal I such that A′ := AH(I) satisfies End(A′) ' OF . Consider
H ′ = Ker(π′H(I)). Since π′H(I) : A′ → A is an isogeny, we have that (A′)H′ ' A, so

E(H ′) ' End(A) = R. Thus OF ' End(A′) 6⊂ E(H ′), as desired.

3 CM elliptic curves

3.1 Kernel ideals and ideal subgroups of CM elliptic curves

We now apply the theory of the previous section to the case that A = E is an elliptic
curve over K with complex multiplication. By this we mean that E/K is an elliptic
curve such that

End0(E) = End0(E ⊗K) = F

is an imaginary quadratic field F , where K denotes the algebraic closure of K. Note
that this definition agrees with that of Serre/Tate[25], §6, but is slightly more re-
strictive than that of Lang[20] or of Silverman[28] since we assume here that all K-
endomorphisms are already defined over K.

If E/K is a CM elliptic curve, then R = End(E) is an order in F . Thus, R
is uniquely characterized by its conductor fE := [OF : R] or by its discriminant
∆E := ∆(R), which we call the endomorphism ring conductor (or e-conductor) and
endomorphism ring discriminant (or e-discriminant) of E, respectively.

The main results about kernel ideals and ideal subgroups are summarized in the
following theorem which can be viewed as a refinement of results of Deuring[10] and
Waterhouse[30]. In particular, part (b) seems to be new.
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Theorem 20 Let E/K be a CM elliptic curve and R = End(E). Then:

(a) Every non-zero R-ideal I is a kernel ideal. Thus

ΦI1,I2 := ΦH(I1),H(I2) : Hom(EH(I1), EH(I2))
∼→ H(H(I1), H(I2)) = (I1 : I2)(49)

is an isomorphism for all non-zero ideals I1, I2 of R.

(b) If H be a finite subgroup scheme of E, then

H is an ideal subgroup ⇔ R ⊂ E(H) ⇔ fEH
|fE.(50)

Thus, if H1, H2 are finite subgroup schemes of E such that fEHi
|fE, for i = 1, 2, then

ΦH1,H2 : Hom(EH1 , EH2)
∼→ H(H1, H2) = (I(H1) : I(H2)),(51)

and we have
EH1 ' EH2 ⇔ I(H1) ' I(H2).(52)

Proof. (a) This is a special case of Proposition 17.
(b) We first observe that it is enough to verify (50), for then (51) follows immedi-

ately from Proposition 10 and (52) follows from (21).
To prove (50), note first that the second equivalence follows from (41) (because

E(H) ' End(EH)), and that one direction (⇒) of the first equivalence follows directly
from Corollary 11. Conversely, suppose that R ⊂ R′ := E(H). By (15) it is enough to
show that Hn := [n]−1(H) is an ideal subgroup, for some n ∈ N.

For this, put f = [R′ : R], I = fR′, and E ′ = EH(I). Then by (49) we have that
End(R′) ' (I : I) = R′. Moreover, if π := πH(I) : E → E ′ and n := deg(π), then by
(4) we have that πH [n] = πHπ

′π, where π′ = π′H(I), and so [n]−1(H) = Ker(πH [n]) =

π−1(H ′), where H ′ = Ker(πHπ
′) is a finite subgroup scheme of E ′.

Since πHπ
′ : E ′ → EH is an isogeny, it follows that (E ′)H′ ' EH , and hence

End((E ′)H′) ' End(EH) ' E(H) = R′ ' End(E ′). Thus, by the abovementioned
result of Deuring/Waterhouse (which is proved via `-adic representations; cf. [10] or
[30], p. 541), there is an ideal I ′ of End(E ′) such that H ′ = H(I ′). If Ĩ ′ = ΦI(I

′)
is the corresponding ideal of E(H(I)) = R′, then by Proposition 12 we have that
H(IĨ ′) = Ker(πH(I′) ◦ πH(I)) = π−1(H ′) = [n]−1(H). Thus, [n]−1(H) is an ideal
subgroup of E, and hence so is H (by what was said above).

We can apply the above results to obtain information about the following subset
Isog+(E/K) of the set Isog(E/K) of elliptic curves isogenous to E/K.

Notation. Let Isog(E/K) = {E ′/K : E ′ ∼ E}/' be the set of isomorphism classes
of elliptic curves E ′/K which are isogenous to E, and let

Isog+(E/K) = {E ′ ∈ Isog(E/K) : fE′|fE}.
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Corollary 21 If E/K is a CM elliptic curve, then the map E ′ 7→ IE(E ′) induces a
bijection

I+
E : Isog+(E/K)

∼→ Id(RE))/',
where Id(RE)/' denotes the set of isomorphism classes of non-zero ideals of RE =
End(E).

Proof. By the discussion of subsection 2.2 we know that the given rule defines a map
IE : Isog(E/K) → Id(R)/'. We denote its restriction to Isog+(E/K) by I+

E .
To show that I+

E is surjective, let I ∈ Id(R), and put E ′ = EH(I). Then by
(49) we have that End(E ′) ' (I : I) = R(I) ⊃ R, This means that fE′|fE, and so
E ′ ∈ Isog+(E/K). Moreover, IE(E ′) ' I(H(I)) = I, and hence I+

E is surjective.
To show that I+

E is injective, let E1, E2 ∈ Isog+(E/K) such that IE(Ei) ' IE(E2).
Thus, by definition, I(H1) ' I(H2), where Hi = Ker(πi) and πi : E → Ei are any two
isogenies, and we have fEi

|fE. Since Ei = EHi
, we have by (52) that E1 ' E2, and so

I+
E is injective.

Remark 22 It follows from (49) that for any R-ideal I we have that

End(EH(I)) ' (I : I) = R(I) and so fEH(I)
= fE/[R(I) : RE].(53)

Moreover, by (51) we have that

End(E ′) ' R(IE(E ′)) and fE′ = fR(IE(E′)), for all E ′ ∈ Isog+(E/K).(54)

From this we see that if we restrict the map I+
E to the subset

Isog∗(E/K) = {E ′ ∈ Isog(E/K) : fE′ = fE},

then we obtain the (well-known) bijection

Isog∗(E/K)
∼→ {I ∈ Id(RE) : R(I) = RE}/'

∼→ Pic(RE).(55)

Thus, Isog∗(E/K) is a finite set of cardinality h(∆E) := h(R∆E
). Moreover, since

Isog+(E/K) =
⋃̇
f |fE

{E ′ ∈ Isog(E/K) : fE′ = f} =
⋃̇
f |fE

Isog∗(Ef/K),

where Ef ∼ E is an elliptic curve with e-conductor f |fE (which exists by Corollary
18), we see that Isog+(E/K) is also finite set of cardinality

#(Isog+(E/K)) =
∑
f |fE

h(∆E/f
2).(56)

On the other hand, the set Isog(E/K) is often infinite; for example, this is the case
when K is algebraically closed; cf. Proposition 37 below.
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We can also give a “numerical criterion” to detect ideal subgroups; cf. Proposition
27 below. For this we first prove the following result which is also of independent
interest.

Proposition 23 If I is a non-zero ideal of R = End(E), then

|H(I)| = [R : I].(57)

Remark 24 If I is not invertible (i.e. if R(I) 6= R), then the above formula (57)
contradicts the formula on p. 211 of Deuring[10], who asserts that |H(I)| = [R(I) : I]
in place of |H(I)| = [R : I].

In fact, Deuring’s proof of his statement contains an error. While his proof in the
case that R(I) = R is correct, his proof of the general case is not. To be precise, on
p. 218 he uses a result of W. Weber incorrectly because that result only applies to
invertible ideals (and is, in fact, false otherwise).

The proof of Proposition 23 is based on the following simple fact.

Lemma 25 If H1, H2 ≤ E are two subgroup schemes, then we have that

H(H2, H1) =
|H2|N(H(H1, H2))

|H1|
H(H1, H2)

−1.(58)

In particular, for any subgroup scheme H ≤ E we have that

H(0, H) =
N(I(H))

|H|
I(H)−1.(59)

Proof. In view of (42) we see that (58) is equivalent to the formula

n1H(H2, H1) = n2σ(H(H1, H2)),(60)

where ni := |Hi|. To prove this, we shall use the fact that for h ∈ End(E) we have
that σ(h) = ĥ, where the dual isogeny ĥ is as in [28], §III.6, and that π′i = π̂i, where
πi = πHi

. Thus, if h̃ = 1
n2
π′2hπ1 ∈ H(H1, H2), where h ∈ Hom(EH1 , EH2), then

n2σ(h̃) = σ(π′2hπ1) = π̂1ĥ(π
′
2)
∧ = π′1ĥπ2 ∈ n1H(H2, H1) because ĥ ∈ Hom(EH2 , EH1).

This proves that n2σ(H(H1, H2)) ⊂ n1H(H2, H1). By reversing the roles of H1 and H2

we also have that n1σ(H(H2, H1)) ⊂ n2H(H1, H2), and hence by applying σ to both
sides we obtain the opposite inclusion. This proves (60) and hence also (58). Finally,
(59) follows immediately from (58) (and (26)) by taking H2 = 0 and H1 = H in (58).

Proof of Proposition 23. Since I is a kernel ideal by Theorem 20(a), we have by (49)
that (R : I) = H(H(R), H(I)) = H(0, H(I)). Since I(H(I)) = I, it thus follows
from (47) and (59) that n[R(I) : R]I−1 = n(R : I) = nH(0, H(I)) = [R(I) : I]I−1,
where n = |H(I)|, and so nI−1 = [R : I]I−1. Thus, by taking norms, we obtain that
n2 = [R : I]2, and so (57) follows.

As an application of (57), we prove the following formulae which will be used below.
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Corollary 26 Let H1 and H2 be two ideal subgroups of E and put fi = fEHi
. Then

the norms of the ideals I(Hi) and of the lattice H(H1, H2) are given by

N(I(Hi)) =
fE

fi

|Hi| and N(H(H1, H2)) =
lcm(f1, f1)

gcd(f1, f2)

|H1|
|H2|

.(61)

Proof. Put ni = |Hi| = |H(I(Hi))| and Li = I(Hi). Since R(Li) = E(Hi) ⊃ R by (50)
and (51), we have that [R(Li) : R] = fE/fi, and so N(Li) = [R(Li) : Li] = fE

fi
[R :

I(Hi)] = fE

fi
ni by (57). This proves the first equality of (61).

Now by (51) and (45) we have H(H1, H2)) = (L1 : L2) = f1

f
L1L

−1
2 , where f =

gcd(f1, f2). Thus, using the first equality of (61), we obtain

N(H(H1, H2)) =
f 2

1

f 2

N(L1)

N(L2)
=
f 2

1

f 2

(fE/f1)n1

(fE/f2)n2

=
f1f2

f 2

n1

n2

,

which proves the second equation of (61) because lcm(f1, f2) = f1f2

f
.

We now come to the following numerical criterion of ideal subgroups.

Proposition 27 For any finite subgroup scheme H ≤ E we have that

[R : I(H)] = [R(I(H)) : E(H)]|H|,(62)

and hence H is an ideal subgroup if and only if [R : I(H)] = |H|.

Remark 28 Note that formula (57) is a special case of (62). Indeed, since H := H(I)
is an ideal subgroup, we have that R(I(H)) = E(H) by (51), so [R : I(H(I))] = |H(I)|
by (62). Since I(H(I)) = I by Theorem 20(a), we see that this yields equation (57).

Proof of Proposition 27. Since H ′ := H(I(H)) is an ideal subgroup and since I(H ′) =
I(H) by (9), it follows from Proposition 10 that

E(H ′) = (I(H) : I(H)) =: R(I(H)) = H(H,H ′).(63)

Since H ≤ H ′, we have that πH′ = π0πH , where π0 = πH,H′ , and so H ′ = π−1
H (H0),

where H0 = Ker(π0) ≤ EH . We thus obtain from (29), (60) and (63) that

ΦH(I(H0)) = H(H ′, H) = n0σ(H(H,H ′)) = n0σ(R(I(H))) = n0R(I(H)),(64)

where n0 := |H′|
|H| = |H0|. Since (EH)H0 ' EH′ , it follows from this and (63) that

E(H0) ' E(H ′) = R(I(H)). On the other hand, since I(H) is an E(H)-module by
Remark 9(b), we have that

End(EH) ' E(H) ⊂ E(H)R ⊂ R(I(H)),(65)
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and so End(EH) ⊂ E(H0) ' R(I(H)). It thus follows from the criterion (50) that
H0 is an ideal subgroup of EH . Thus H(I(H0)) = H0 and so by (57) we obtain that
n0 = [End(EH) : I(H0)] = [E(H) : ΦH(I(H0))]. This, together with (64), yields that
[R(I(H)) : E(H)]n0 = [R(I(H)) : ΦH(I(H0))] = [R(I(H)) : n0R(I(H))] = n2

0, and
hence [R(I(H)) : E(H)] = n0. We thus obtain from (57) that [R : I(H)] = |H ′| =
n0|H| = [R(I(H)) : E(H)]|H|, which proves (62).

It remains to prove the last statement. If H is an ideal subgroup, then H(I(H)) =
H, and hence [R : I(H)] = |H| by (57). Conversely, if [R : I(H)] = |H|, then
R(I(H)) = E(H) by (62), and so also E(H) = E(H)R by (65). Thus R ⊂ E(H), and
hence H is an ideal subgroup by (50).

We can use the above numerical criterion to prove following existence result which
plays an important role in the study of products of CM elliptic curves; cf. §4.3.

Proposition 29 Let E/K be a CM elliptic curve. If E1, . . . , En ∈ Isog(E/K), then
there is an elliptic curve E ′ ∼ E such that fE′ = lcm(fE1 , . . . , fEn).

To prove this, we shall use the following (technical) facts.

Lemma 30 (a) If H is a finite subgroup of E, then ΦH(I(Ker(π′H))) = σ(I(H)), and
hence R(I(Ker(π′H))) ' R(I(H)).

(b) If E(H) ⊂ R, then R(I(H)) = R.

(c) If H1 and H2 are two finite subgroups of E with (|H1|, |H2|) = 1 and E(Hi) ⊂ R,
for i = 1, 2, then E(H1 +H2) = E(H1) ∩ E(H2).

Proof. (a) Put H̄ = Ker(π′H). Since π′HπH = [n]E, where n = |H|, we have that
π−1

H (H̄) = E[n], and so ΦH(I(H̄)) = H(E[n], H) = nσ(H(H,E[n])) by (29) and
(60). Since E[n] = H(Rn) is an ideal subgroup, we have by Proposition 10 that
H(H,E[n]) = (I(H) : Rn) = 1

n
I(H), and so the first assertion follows. Moreover,

since Φ0
H is an isomorphism, we have that R(I(H̄)) ' R(ΦH(I(H̄))) = R(σ(I(H))) =

R(I(H)), and so the second assertion follows.
(b) Again, put H̄ = Ker(π′H). Since (EH)H̄ ' E, we have that E(H̄) ' R ⊃

E(H) ' End(EH), and so H̄ is an ideal subgroup of EH by (50). Thus E(H̄) =
R(I(H̄)) by (51), and so by part (a) we obtain that R(I(H)) ' R(I(H̄)) = E(H̄) ' R,
and hence the assertion follows.

(c) First note that for any two finite subgroups H1, H2 of E we have that

I(H1)I(H2) ⊂ I(H1 +H2) ⊂ I(H1) ∩ I(H2).(66)

Indeed, since Hi ≤ H1+H2, we have that I(H1+H2) ⊂ I(Hi) by (6) and so the second
inclusion of (66) follows. To prove the first inclusion, let fi ∈ I(Hi), so Hi ≤ Ker(fi).
Since f1f2 = f2f1, we have thatHi ≤ Ker(fi) ≤ Ker(f1f2) and soH1+H2 ≤ Ker(f1f2).
Thus f1f2 ∈ I(H1 +H2), and so the first inclusion of (66) holds.
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Put ni = |Hi|, Ni = [R : I(Hi)], and ei = [R : E(Hi)] = [R(I(Hi)) : E(Hi)], the
latter by part (b). Thus, Ni = eini by (62). Since Hi ≤ Ker([ni]), we have that
ni ∈ I(Hi), and so Rni ⊂ I(Hi), which implies that Ni = [R : I(Hi)] | [R : Rni] = n2

i .
Thus, since (n1, n2) = 1, we see that also (N1, N2) = 1 and hence that (e1, e2) = 1.

Next we observe that I(H1) + I(H2) = R because ni ∈ I(Hi) and (n1, n2) = 1.
Thus, by elementary ideal theory we have that I(H1)I(H2) = I(H1) ∩ I(H2), and so
equality holds throughout in (66). Using (65) and (43), we obtain for H := H1 +H2

that E(H) ⊂ R(I(H)) = R(I(H1)I(H2)) = R(I(H1))R(I(H2)) = R · R = R, where
the second last equality follows from part (b). Thus E(H) ⊂ R.

Next we note thatH1∩H2 = 0 (because |H1∩H2| | (n1, n2) = 1), and so |H| = n1n2.
Moreover, since I(H) = I(H1)∩I(H2), we see that [R : I(H)] = [R : I(H1)∩I(H2)] =
N1N2, the latter because I(H1)+I(H2) = R. Thus, by (62) and part (b) we obtain that
N1N2 = [R(I(H)) : E(H)]n1n2 = [R : E(H)]n1n2, and so [R : E(H)] = N1N2

n1n2
= e1e2.

Thus, if f = fR, then E(H) has conductor fe1e2 = lcm(fe1, fe2) because (e1, e2) = 1.
Since fE(Hi) = fei, it thus follows from (41) that E(H) = E(H1)∩ E(H2), as claimed.

Proof of Proposition 29. By induction, it is clearly enough to verify the case n = 2.
Since Ei ∼ E, we can view Ri := End(Ei) as a subring of F = End0(E) which

is uniquely determined by the condition that [OF : Ri] = fEi
. Put R′ = R1R2 and

fi = [R′ : Ri]. Since R′ has conductor f = (fE1 , fE2) by (41), we see that (f1, f2) = 1.
Next, consider the Ri-ideal Ii = fiR

′ and put πi = πH(Ii) : Ei → E ′
i = (Ei)H(Ii).

Since by (49) we have E(H(Ii)) = R(Ii) = R(fiR
′) = R′, it follows from Remark

22 that there is an invertible R′-ideal I such that (E ′
1)H(I) ' E ′

2. Furthermore, by
replacing I by cI if necessary (where c ∈ F× is chosen suitably), we can assume that
(N(I), f1) = 1; cf. [7], p. 142, 143.

Put H1 = Ker(π′1) and H2 = Ker(π′2 ◦ πH(I)). Clearly (E ′
1)Hi

' Ei, and so
E(Hi) ' Ri ⊂ R′ ' End(E ′

1). Furthermore, since |H1| = deg(π′1) = deg(π1) = f1,
and since |H2| = deg(π′2) deg(πH(I)) = f2N(I), we see that (|H1|, |H2|) = 1. Thus,
by Lemma 30(c) we have that E(H1 + H2) = E(H1) ∩ E(H2) = R1 ∩ R2, which has
conductor lcm(fE1 , fE2) by (41). Thus (E ′

1)H1+H2 has e-conductor lcm(fE1 , fE2), and
so the assertion follows because E ∼ E ′

1 ∼ (E ′
1)H1+H2 .

We can use the above result to give the following useful description of the ring
R(I(H)).

Proposition 31 For any finite subgroup H of E we have that R(I(H)) = E(H)R.

Proof. By Proposition 29 there is an elliptic curve E ′ ∼ E with fE′ = lcm(fE, fEH
).

Fix an isogeny π : E ′ → E, and put H0 = Ker(π) and H1 = π−1(H). Since E ′
H0
' E

and E ′
H1
' EH , we have that E(H0) ' End(E) = R and E(H1) ' End(EH) ' E(H),

and so by (50) we see that H0 and H1 are ideal subgroups of E ′ (because fE′
H0

=

fE|fE′ and fE′
H1

= fEH
|fE′). It thus follows from (29) and (51) that ΦH0(I(H)) =
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H(H1, H0) = (I(H1) : I(H0)), and hence R(I(H)) ' R(ΦH0(I(H))) = R((I(H1) :
I(H0)) = R(I(H0))R(I(H1)), the latter by (45) and (43). Since the Hi are ideal
subgroups, we have by (51) that R(I(Hi)) = E(Hi), so R(I(H)) ' E(H0)E(H1) '
RE(H), and hence the assertion follows.

Remark 32 In view of Proposition 31, we can re-write the formula (62) as

[R : I(H)] = [RE(H) : E(H)]|H|.(67)

In the preprint [18], this formula, as well as Propositions 23 and 31, were derived
(under an extra hypothesis) by a more complicated proof which used the complex
theory (cf. Remark 35) and a specialization technique (not presented here).

It is interesting to note that the formula (67) implies immediately the non-trivial
part of the criterion (50). Indeed, suppose that H ≤ E satisfies R ⊂ E(H), and
put H ′ = H(I(H)). Since H ′ is an ideal subgroup, we also have that R ⊂ E(H ′) by
Corollary 11. Since I(H ′) = I(H) by (9), it follows from (67) applied to H and H ′

that |H| = [R : I(H)] = |H ′|, and so H = H ′ is an ideal subgroup.

3.2 The case K = C
In the case that K = C, every elliptic curve E/C has an analytic description, i.e. there
exists a lattice L ⊂ C and an isomorphism of compact Riemann surfaces EC ' C/L,
where EC denotes the compact Riemann surface associated to the (algebraic) curve
E. As we shall see, it is very illuminating to relate the previous constructions to the
lattices appearing in the complex theory.

To make this analytic description more precise, recall first that if L ⊂ C is any
lattice, then the existence of the Weierstrass ℘-function ℘L shows that the Riemann
surface C/L can be identified with a unique elliptic curve EL ⊂ P2(C) (given by the
Weierstrass equation y2 = 4x3 − g2(L)x− g2(L)) and that we have an isomorphism

ρL : C/L ∼→ EL(C) given by z + L 7→ (℘L(z) : ℘′L(z) : 1) ∈ P2(C).

Conversely, given any E/C, then E is isomorphic to a Weierstrass curve E ′ ⊂ P2(C),
and for each such E ′ : y2 = 4x3−ax−b there is a unique lattice L such that g2(L) = a
and g2(L) = b; cf. Cox[7], p. 224. In particular, EL = E ′ ' E.

Via this isomorphism we have a natural identification

ΨL : (L : L)C = {λ ∈ C : λL ⊂ L} ∼→ End(EL)(68)

given by λ 7→ πλ, where πλ = πL
λ ∈ End(EL) is defined by πλ(ρL(z+L)) = ρL(λz+L);

cf. [20], §1.4.
From this one sees easily that EL is a CM elliptic curve if and only if (L : L)C 6= Z.

If this is the case, then (L : L)C is an order in some (unique) imaginary quadratic field
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F ⊂ C and L = λL0, for some lattice L0 ⊂ F and λ ∈ C×. Since EL ' EL0 , we can
and will henceforth assume that L = L0 ∈ LatF .

If EL is CM elliptic curve with L ∈ LatF , then its finite subgroup schemes H can
be identified with lattices LH ⊃ L, as we shall see now. Via this identification we can
determine I(H) and H(I) as follows.

Proposition 33 Let L ∈ LatF , where F is an imaginary quadratic field. For every
lattice L′ ∈ LatF with L ⊂ L′, the group HL′ = ρL(L′/L) is a finite subgroup scheme
of EL, and conversely every finite subgroups scheme H of EL is of the form H = HLH

,
for a unique lattice LH ∈ LatF with L ⊂ LH . Moreover,

(EL)H ' ELH
, E(H) ' R(LH) and |H| = [LH : L].(69)

In addition, if I is a non-zero ideal of End(EL), then we have

I(H) = ΨL((L : LH)),(70)

H(I) = ρL((L : ΨL(I))/L).(71)

Proof. Since every finite subgroup scheme of EL is reduced (and etale), we can identify
them with the (abstract) finite subgroups of EL(C) ' C/L. Thus, if L′ ∈ LatF with
L ≤ L′, then [L′ : L] < ∞ and so L′/L is a finite subgroup of C/L. Clearly, every
finite subgroup H of C/L has the form H = LH/L, for a unique subgroup LH with
L ≤ LH ≤ C. Since LH ⊂ 1

n
L, where n = |H|, it follows that LH ∈ LatF .

Since the inclusion L ⊂ LH defines a surjective analytic homomorphism π : C/L→
C/LH with kernel LH/L, it follows that (EL)H ' ELH

and |H| = |LH/L| = [LH :
L]. Thus E(H) = ΦH(End((EL)H)) ' End((EL)H) ' End(ELH

) = ΨLH
(R(LH)) '

R(LH), which proves (69).
Let 0 6= λ ∈ R(L). Since Ker(πλ) = ρL(( 1

λ
L)/L), we see that λ ∈ Ψ−1

L (I(H)) ⇔
ρL(LH/L) ≤ Ker(πλ) ⇔ LH ≤ 1

λ
L⇔ LHλ ≤ L⇔ λ ∈ (L : LH), which proves (70).

To prove (71), put I ′ = Ψ−1
L (I). Then by definition

H(I) =
⋂
λ∈I′

Ker(πλ) =
⋂

0 6=λ∈I′

ρL((λ−1L)/L) = ρL(H̃(I ′)/L), where H̃(I ′) =
⋂

0 6=λ∈I′

λ−1L.

Now H̃(I ′) = (L : I ′) because x ∈ (L : I ′) ⇔ xλ ∈ L, ∀λ ∈ I ′, λ 6= 0 ⇔ x ∈
∩0 6=λ∈I′λ

−1L, and so (71) follows.

Corollary 34 If L,L′ ∈ LatF are two lattices, then IEL
(EL′) ' L(L′)−1.

Proof. Since EL ' EnL and L(L′)−1 ' nL(L′)−1, for any n ∈ N, we may assume
without loss of generality that L ⊂ L′. Put H = ρL(L′/L). Since (EL)H ' EL′ ,
we have that IEL

(EL′) ' I(H) = ψL((L : L′)) ' (L : L′) by (70). This proves the
assertion because (L : L′) ' L(L′)−1 by (45).
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Remark 35 (a) We can use the above Proposition 33 to give quick proofs of Propo-
sitions 23, 27 and 31 in the case that K = C. For example, since E ' EL, for
some lattice L ∈ LatF and some imaginary quadratic field F , and H = ρL(LH/L),
for some LH ∈ LatF with L ⊂ LH , we have by (70), (45), (43) and (69) that
R(I(H)) = Ψ0

L(R((L : LH)) = Ψ0
L(R(L)R(LH)) = RE(H), which proves Proposi-

tion 31. (Here Ψ0
L : F

∼→ End0(EL) is the canonical extension of ΨL to F .) The other
results are proved similarly; cf. [18].

(b) The above formula (70) can be generalized to give a similar interpretation of
the lattice H(H1, H2). Indeed, if L ∈ LatF , where F is an imaginary quadratic field,
and if Hi = ρL(LHi

/L) are two finite subgroups of EL, then we have that

H(H1, H2) = Ψ0
L((LH2 : LH1));(72)

cf. [18], where this and other similar formulae are proved.

3.3 Endomorphism rings

In the sequel it is sometimes useful to know which orders of an imaginary quadratic
field F can be endomorphism rings of CM elliptic curves E/K or, more precisely, to
describe the set of e-conductors fE′ for E ′ ∈ Isog(E/K). Note that the answer for the
corresponding question for the subset Isog+(E/K) follows from Corollary 21: an order
R of F = End0(E) is the endomorphism ring of some E ′ ∈ Isog+(E/K) if and only if
we have fR|fE. However, the characterization of the set of e-conductors in Isog(E/K)
is more delicate and depends on the nature of the ground field K.

We begin with the case that K is algebraically closed. Here the set of CM curves
in Isog(E/K) can be characterized as follows.

Proposition 36 Let K be an algebraically closed field, and let E1/K and E2/K be
two CM curves. Then E1 ∼ E2 if and only if End0(E1) ' End0(E2).

Proof. Clearly, if E1 ∼ E2, then End0(E1) ' End0(E2). To prove the converse, suppose
first thatK = C. If End0(E1) ' End0(E2) =: F , then by the discussion of the previous
section we know that Ei ' ELi

, for some Li ∈ LatF , and then Hom(E1, E2) ' (L2 :
L1) 6= 0. Thus E1 ∼ E2.

From this, the assertion follows for an arbitrary field K of characteristic 0. Indeed,
any two CM curves over K are defined over Q (cf. [20], p. 40), i.e. Ei = E0

i ⊗K for
some E0

i /Q. Since F = End(Ei) = End(E0
i ) = End(E0

i ⊗ C), and Hom(E0
1 , E

0
2) =

Hom(E0
1 ⊗ C, E0

2 ⊗ C), we conclude from what was just proved that E0
1 ∼ E0

2 and
hence also E1 ∼ E2.

Now suppose that char(K) = p 6= 0. Then Ei = E0
i ⊗ K, for some CM curves

E0
i /Fpr (and some r ≥ 1); cf. [20], p. 184. By the Deuring Lifting Theorem ([20], p.

184), there exists a number field L and CM elliptic curves Ẽi/L whose reduction is E0
i
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and such that End0(Ẽi) = End0(E0
i ). By the characteristic 0 result, there is a finite

extension L′/L such that Ẽ1⊗L′ ∼ Ẽ2⊗L′, and hence E0
1 ⊗Fp ∼ E0

2 ⊗Fp, and hence
also E1 ∼ E2.

In view of the previous result, the following result (due to Deuring[10]) classifies the
possible e-conductors of elliptic curves in Isog(E/K) when K is algebraically closed.

Proposition 37 Let K be an algebraically closed field and let ∆ < 0 be a discrimi-
nant.

(a) If char(K) = 0, then there exists a CM elliptic curve E/K with ∆E = ∆.

(b) If char(K) = p 6= 0, then there exists a CM elliptic curve E/K with ∆E = ∆
if and only if (∆

p
) = 1.

Proof. (a) This follows easily from the complex theory (together with the reduction
steps as in the proof of Proposition 36); cf. Deuring[10], p. 263.

(b) Deuring[10], p. 263. Note that the condition (∆
p
) = 1 is equivalent to the

following two conditions: (i) p splits in F = Q(
√

∆) and (ii) p - fR∆
.

On the other hand, for arithmetic fields we have the following situation.

Proposition 38 If K is a finitely generated field, then the set of e-discriminants ∆E

of all CM elliptic curves E/K is finite. In particular, Isog(E/K) is a finite set, and
hence there is a unique integer fmin

E/K ≥ 1 with the property that for any f ≥ 1, there

is an elliptic curve E ′ ∼ E with fE′ = f if and only if f | fmin
E/K.

Proof. To prove the first assertion, let K0 be the algebraic closure of the prime subfield
of K in K. Suppose first that char(K) 6= 0; then K0 ' Fq is a finite field. If E/K
is a CM elliptic curve, then its j-invariant jE ∈ K ∩ K0 = K0, and so there are at
most q such jE’s. Thus, there are only finitely many K-isomorphism classes of CM-
elliptic curves over K, and hence only finitely many endomorphism rings (because
End(E) = End(E ⊗K)). This proves the first assertion when char(K) 6= 0.

Now suppose that char(K) = 0. Then K0 is a number field and we may assume
without loss of generality that K ⊂ C. If E/K is a CM elliptic curve, then as before
jE ∈ K ∩K0 = K0. By §3.2 we know that E ⊗ C ' EL, for some lattice L (of some
quadratic field F ), and so jE = j(L) (where j denotes the j-function on the upper
half-plane). Moreover, we have that End(E) ' End(EL) ' R(L) by (69), and so
∆E = ∆(R(L)). By the theory of complex multiplication (cf. [7], Theorem 11.1) we
have that [j(L) : Q] = h(∆(R(L))), and so it follows that h(∆E) ≤ [K0 : Q]. Since
there are only finitely many discriminants ∆ with a given class number h(∆) = h
(Heilbronn[12]), the first assertion follows.

Since the set of e-conductors in Isog(E/K) is finite (by what was just proved), and
since the set of isomorphism classes with given e-conductor is finite by (55), it follows
that Isog(E/K) is finite.
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Put fmin
E/K = lcm{fE′ : E ′ ∈ Isog(E/K)}. Then by definition we have that fE′|fmin

E/K ,

for all E ′ ∈ Isog(E/K), and that fmin
E/K is the smallest number with this property.

Moreover, if f |fmin
E/K , then there is an elliptic curve E ′ ∈ Isog(E/K) such that fE′ = f .

To see this, we first use Proposition 29 to construct an E0 ∈ Isog(E/K) with fE0 =
fmin

E/K , and then apply Corollary 18 to A = E0 to find an elliptic curve E ′ ∈ Isog(E/K)
such that fE′ = f . This proves the last statement.

Remark 39 If E/K is a CM curve over a finite field K = Fq, then it follows from
Theorem 4.2 of Waterhouse[30] that we have that (fmin

E/K)2∆F = a2
E/K − 4q, where

aE/K = 1 + q − |E(Fq)| and F = Q(
√
a2

E/K − 4q); cf. [18]. In particular, we see that

|∆E| ≤ (fmin
E/K)2|∆F | = |a2

E/K − 4q| ≤ 4q.

3.4 The quadratic form qE1,E2

Let E1/K and E2/K be any two isogenous elliptic curves, and put

qE1,E2(f) = deg(f), for f ∈ Hom(E1, E2).

Since deg is a positive definite quadratic form on Hom(E1, E2) ' Zr, where r =
rank(Hom(E1, E2)) = dimQ(End0(Ei)) (cf. [28], p. 88), we see that by fixing a basis
of Hom(E1, E2), we obtain an explicit positive definite quadratic form in r variables.
Thus, by varying over all bases of Hom(E1, E2), we obtain a GLr(Z)-equivalence class
of quadratic forms in r variables.

In the case that Ei is a CM elliptic curve, we have that r = [F : Q] = 2, so
qE1,E2 defines an equivalence class of positive binary quadratic forms, i.e. qE1,E2 ∼
ax2 + bxy + cy =: q, for some a, b, c ∈ Z with ∆(q) = b2 − 4ac < 0. Note that
the discriminant ∆(q) and the content cont(q) = gcd(a, b, c) are invariants of the
GL2(Z)-equivalence class of q.

In order to determine qE1,E2 , we introduce the following notation. Given a lattice
L ∈ LatF , where F is an imaginary quadratic field, put

qL(λ) =
N(λ)

N(L)
, for λ ∈ L,

where, as before, N(λ) = NF/Q(λ) denotes the field norm. Note that qL(λ) ∈ Z; cf.
[3], §II.7. Thus, by choosing a basis {α, β} of L = Zα + Zβ, the map qL defines an
integral binary quadratic form

qL,α,β(x, y) = qL(xα + yβ), for x, y ∈ Z,

and hence qL defines an equivalence class of positive binary quadratic forms. Moreover,
we have by [3], §II.7 that

∆(qL) = ∆(R(L)) and cont(qL) = 1.(73)
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We now prove:

Proposition 40 If E/K is a CM elliptic curve and E1, E2 ∈ Isog+(E), then

qE1,E2 ∼ cqL, where L = IE(E1)IE(E2)
−1 and c =

lcm(f1, f2)

gcd(f1, f2)
,(74)

where fi := fEi
. In particular, c = cont(qE1,E2) and

∆(qE1,E2) = −lcm(|∆E1|, |∆E2|) = lcm(f1, f2)
2∆F , where F = End0(E).(75)

Proof. Let πi : E → Ei be an isogeny and put Hi = Ker(πi) and ni = deg(πi).
Moreover, put Φ = ΦH1,H2 and H = H(H1, H2). We first show that

qE1,E2(h) = cqH(Φ(h)), for all h ∈ Hom(E1, E2);(76)

here we used the identification Ei = EHi
.

Since theHi’s are ideal subgroups by (50), we have by (61) that N(L) = cn1

n2
. More-

over, since we have by (57) that deg(f) = [R : Rf ] = N(f), for all f ∈ R = End(E),
we see from the definition of Φ that N(Φ(h)) = N( 1

n2
π2hπ1) = 1

n2
2
deg(π2hπ1) =

1
n2

2
deg(π2) deg(h) deg(π1) = n1

n2
deg(h), and so

qE1,E2(h) = deg(h) =
n2

n1

N(Φ(h)) = c
N(Φ(h))

N(H)
, for h ∈ Hom(E1, E2).

This proves (76) and hence also (74) because by (51) and (45) we have that H =
(I(H1) : I(H2)) = f1

f
I(H1)I(H2)

−1 = f1

f
L, and so qH ∼ qL.

Since qL is primitive by (73), we have from (74) that cont(qE1,E2) = c · cont(qL) =
c. Moreover, by (73) we have that ∆(qL) = ∆(R(L)). Now since R(I(Hi)) =
E(Hi) ' End(Ei) has conductor fi, it follows from (43) and (41) that R(L) =
R(I(H1))R(I(H2)) has conductor f = (f1, f2), and so ∆(qL) = f 2∆F . Thus we
see that ∆(qE1,E2) = c2∆(qL) = (cf)2∆(f) = lcm(f1, f2)

2∆F , and so (75) follows.

Remark 41 If L ∈ LatF is any lattice, then we had seen above that qL naturally
defines a GL2(Z)-equivalence class of positive binary quadratic forms. As is well-
known, one can also associate to L an SL2(Z)-equivalence class of forms by restricting
the set {qL,α,β} to those forms that arise from oriented bases {α, β} of L, i.e. those for
which Im(β/α) > 0 (where we view F ⊂ C). Thus, if we write cq+

L = {cqL,α,β : L =
Zα + Zβ, Im(β/α) > 0}, for c ∈ N and L ∈ LatF , then it is well-known that the rule
I 7→ q̃+

I := [R(I) : R∆]q+
I induces a bijection

q∆ : Id(R∆)/' ∼→ Q∆/SL2(Z)
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between the set of isomorphism classes of non-zero ideals of the order R∆ of discrim-
inant ∆ < 0 and the set of proper equivalence classes of positive binary quadratic
forms of discriminant ∆.

Now if we combine this bijection with the bijection I+
E defined in Corollary 21,

then we obtain a bijection

q+
E : Isog+(E/K)

∼→ Id(End(E))/' ∼→ Q∆E
/SL2(Z)

which is given by the formula

q+
E,E′ := q+

E(E ′) = q∆E
(IE(E ′)) = [R(IE(E ′)) : RE]q+

IE(E′) =
fE

fE′
q+
IE(E′),(77)

where the last equality follows from the second equation of (54).
On the other hand, if fE′|fE, then equation (74) tells us that

qE,E′ ∼ qE′,E ∼ fE

fE′
qIE(E′) and ∆(qE′,E) = ∆E.

Comparing this with (77), we therefore obtain the important relation that

qE,E′ ∼ q+
E,E′ , for E ′ ∈ Isog+(E/K),(78)

where, as before, the symbol∼ (for quadratic forms) means GL2(Z)-equivalence. Note,
however, that q+

E,E′ denotes a proper (or SL2(Z))-equivalence class of quadratic forms
and hence is a finer invariant than the GL2(Z)-equivalence class qE,E′ . In fact, it
follows from the above that if E ′, E ′′ ∈ Isog+(E/K), then we have that

qE,E′ ∼ qE,E′′ ⇔ IE(E ′′) ' IE(E ′) or IE(E ′′) ' IE(E ′)−1,

and so there are two non-isomorphic elliptic curves in Isog+(E/K) which have the
same form q, except when q is ambiguous, i.e. when IE(E ′) ' IE(E ′)−1. (Here and
above, IE(E ′)−1 denotes the inverse of the lattice IE(E ′).)

Corollary 42 Let E1/K and E2/K be two isogenous a CM elliptic curves with
End0(Ei) ' F . If fi = fEi

, then

∆(qE1,E2) = lcm(f1, f2)
2∆F and cont(qE1,E2) =

lcm(f1, f2)

gcd(f1, f2)
.(79)

Proof. By Proposition 29 there is a CM elliptic curve E such that E ∼ Ei and fEi
|fE,

for i = 1, 2. Thus Ei ∈ Isog+(E), for i = 1, 2, and so the assertion follows from
Proposition 40.
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4 Product abelian varieties

4.1 Kernel ideals and ideal subgroups of An

Let A = A1×A2× . . .×An be the product of the abelian varieties A1, . . . , An/K, and
let pA

i : A→ Ai denote the ith projection and eA
j : Aj → A be the jth inclusion map.

If A′ = A′1×A′2× . . .×A′m is another product abelian variety, then (as is well-known)
the group Hom(A,A′) can be identified with a set of m×n “matrices”. More precisely,
we have the isomorphism

TA,A′ : Hom(A,A′)
∼→ M(A,A′) :=

m⊕
i=1

n⊕
j=1

Hom(Aj, A
′
i)

given by the rule TA,A′(h) = (hij), where hij = pA′
i ◦ h ◦ eA

j ∈ Hom(Aj, A
′
i). We

shall refer to the elements of M(A,A′) as “matrices”. Note that this identification is
multiplicative in the sense that if A′′ = A′′1× . . .×A′′t is another abelian product, then
we have the rule

TA,A′′(h′ ◦ h) = TA′,A′′(h′) · TA,A′(h), if h ∈ Hom(A,A′), h′ ∈ Hom(A′, A′′),(80)

where the product on the right hand side is the product of “matrices” which is defined
by the rule (h′ik)(hkj) = (h′′ij), where h′′ij =

∑
k h

′
ik ◦ hkj. This follows easily from

the identity
∑n

k=1 e
A′

k p
A′

k = 1A′ . In particular, if A = An
1 , then TA,A defines a ring

isomorphism

TA1,n = TA,A : End(An
1 )

∼→ M(An
1 , A

n
1 ) = Mn(End(A1))

between End(An
1 ) and the ring of n×n matrices with coefficients in the ring End(A1).

In order to study abelian varieties which are isogenous to A = An
1 , we shall use

the theory of kernel ideals and ideal subgroups of section 2. For this, we need to
understand the ideals of Mn(R), where R = End(A1). To construct such ideals, we
shall use the following notation.

Notation. Let R be a ring. If α = (αij) ∈ Mn(R) is an n × n matrix, then we let
αi = (αi1, . . . , αin) ∈ Rn denote the ith row of α. Moreover, if M is subset of Rn, then
we put

In(M) = IR,n(M) = {α ∈Mn(R) : αi ∈M, for 1 ≤ i ≤ n}.

Proposition 43 The rule M 7→ In(M) induces an inclusion preserving bijection be-
tween the set of left R-submodules of Rn and the set of left ideals of Mn(R). Further-
more, if M1 and M2 are two R-submodules of Rn, then

M1 ' M2 as R-modules ⇔ In(M1) ' In(M2) as Mn(R)-modules.(81)
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Similarly, the rule I 7→ M(I) := Rn⊗Mn(R) I induces an inclusion preserving bijection
between the set of left ideals of Mn(R) and the set of left R-submodules of Rn, and for
any two left Mn(R)-ideals I1, I2 we have that

I1 ' I2 as Mn(R)-modules ⇔ M(I1) ' M(I2) as R-modules.(82)

In addition, these rules are inverse to each other in the sense that

M(In(M)) ' M and In(M(I)) ' I.(83)

Proof. This follows almost immediately from the fact that {R,Mn(R), Rn, (Rn)∗} is a
Morita context ; cf. Curtis-Reiner[8], p. 64. Indeed, if P = Rn, with standard basis
x = {x1, . . . , xn}, then we have (as in [8]) the identification τx : EndR(P )op ∼→Mn(R)
(which is given by τx(α) = (αij), where xiα = αi =

∑
j αijxj). Furthermore, by Morita

(or otherwise) we have the canonical identification θ : P ∗⊗R P
∼→ EndR(P )op which is

defined by θ(x∗ ⊗ y)z = x∗(z)y for x∗ ∈ P ∗ = HomR(P,R) and y, z ∈ P . Now if {x∗i }
denotes the dual basis of P ∗ (with respect to the basis {xi}), then θ(x∗i ⊗ xj) = εij,
where εij = (δikδjl)kl denotes the matrix whose (i, j)-th entry is 1 and is 0 otherwise.
From this it is immediate that

τxθ(P
∗ ⊗R M) = In(M),

and so all the assertions (and more) follow from the Morita Theorem ([8], p. 60).

We now apply this to study kernel ideals associated to the product abelian variety
An, where A is a fixed abelian variety. Recall from above that we have a canonical
identification

TA,n : End(An)
∼→ Mn(R), where R := End(A).

For what follows, it is useful to introduce the following abbreviation. If I1, . . . , In are
left End(A)-ideals, then we write

(I1| . . . |In) := T−1
A,n(In(I1 ⊕ . . .⊕ In)),

which is a left End(An)-ideal. Note that we have that

TA,n((I1|I2| . . . |In)) = {(αij) ∈Mn(R) : αij ∈ Ij, for 1 ≤ i, j ≤ n}.(84)

Proposition 44 If H1, . . . , Hn are finite subgroup schemes of A, then

I(H1 ×H2 × . . .×Hn) = (I(H1)|I(H2)| . . . |I(Hn)).(85)

Thus, if I1, . . . , In are kernel ideals, then (I1| . . . |In) is also a kernel ideal.
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Proof. Write πi = πHi
: A→ Ai := AHi

and π = π1 × . . .× πn : An → A1 × . . .× An.
Since Ker(π) = H := H1 × . . .×Hn, we can identify πH1×...×Hn with π. Thus I(H) =
Hom(An

H , A
n)π.

Write T = TA,n, T ′ = TAn,An
H

and T ′′ = TAn
H ,An . Since T ′(π) = diag(π1, . . . , πn)

is the diagonal “matrix” with entries πi ∈ Hom(A,Ai), we see that if f ∈ End(An),
then f ∈ I(H) ⇔ f = f ′π, for some f ′ ∈ Hom(An

H , A
n) ⇔ T (f) = T ′′(f ′)T ′(π),

for some T ′′(f ′) ∈ M(An
H , A

n). Thus, if we write T (f) = (αij) with αij ∈ End(A),
then h ∈ I(H) ⇔ (αij) = (βij)diag(π1, . . . , πn), for some βij ∈ Hom(Aj, A). Since the
(i, j)-th entry of (βij)diag(π1, . . . , πn) is βijπj, we see that f ∈ I(H) ⇔ T (f) = (αij)
with αij = βijπj ∈ Hom(Aj, A)πj = I(Hj), and so the first assertion follows; cf. (84).

The second assertion clearly follows from the first. Indeed, if the Ij’s are kernel
ideals, then Ij = I(Hj), for some finite group scheme Hj, and so by the first assertion
we have that (I1| . . . |In) = I(H1 × . . .×Hn) is a kernel ideal; cf. Remark 7(b).

We also have the following result which is partially dual to Proposition 44.

Proposition 45 If I1, . . . , In are left ideals of End(A), then

H((I1|I2| . . . |In)) ≤ H(I1)×H(I2)× . . .×H(In),(86)

and equality holds if I1, . . . , In are kernel ideals. Thus, if H1, . . . , Hn are ideal sub-
groups of A, then H1 × . . .×Hn is an ideal subgroup of An.

Proof. Let fi ∈ Ii, where i = 1, . . . , n. Since TA,n(f1 × . . .× fn) = diag(f1, . . . , fn), we
see that f1 × . . .× fn ∈ (I1| . . . |In). Thus

H((I1| . . . |In)) ≤
⋂

1≤i≤n

⋂
fi∈Ii

Ker(f1×. . .×fn) =

( ⋂
f1∈I1

Ker(f1)

)
×. . .×

( ⋂
fn∈In

Ker(fn)

)
.

Since the right hand side equals H(I1)× . . .×H(In), the first assertion follows.
To prove the second assertion, put Hi = H(Ii), so I(Hi) = Ii by hypothesis. Thus,

by (86), (8), and (85) we obtain that H((I1| . . . |In)) ≤ H1 × . . . × Hn ≤ H(I(H1 ×
. . . × Hn)) = H((I(H1)| . . . |I(Hn))) = H((I1| . . . |In)), and so we must have equality
throughout. This proves the second assertion, and from this the last assertion follows
immediately. Indeed, since each Ii := I(Hi) is a kernel ideal, we obtain from (85) that
H(I1| . . . |In) = H(I1)× . . .×H(In) = H1× . . .×Hn, the latter because each Hi is an
ideal subgroup. But this means that H1 × . . .×Hn is an ideal subgroup; cf. Remark
7(b).

We can now put together what we proved so far to deduce the following result
which (in view of (50)) generalizes Theorem 1 of the introduction.

Theorem 46 Let H1, . . . , Hn and H ′
1, . . . , H

′
n be ideal subgroups of A. Then

AH1 × . . .× AHn ' AH′
1
× . . .× AH′

n
⇔ I(H1)⊕ . . .⊕ I(Hn) ' I(H ′

1)⊕ . . .⊕ I(H ′
n).
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Proof. Since H := H1 × . . . × Hn and H ′ := H ′
1 × . . . × H ′

n are ideal subgroups of
An by Proposition 45, we have by (21) that An

H ' An
H′ ⇔ I(H) ' I(H ′). Now by

(85) we have that I(H) = (I1| . . . |In) and I(H ′) = (I ′1| . . . |I ′n), where Ii = I(Hi)
and I ′i = I(H ′

i). Thus, since T := TA,n is an isomorphism, and since T (I(H)) =
T ((I1| . . . |In)) = In(I1 ⊕ . . . ⊕ In) and T (I(H ′)) = In(I ′1 ⊕ . . . ⊕ I ′n), we see that
I(H) ' I(H ′) (as End(An)-modules) ⇔ In(I1 ⊕ . . . ⊕ In) ' In(I ′1 ⊕ . . . ⊕ I ′n) (as
Mn(End(A))-modules) ⇔ I1⊕ . . .⊕ In ' I ′1⊕ . . .⊕ I ′n (as End(A)-modules), the latter
by Proposition 43. This proves the assertion.

Note that Theorem 1 follows easily from this and the results of section 3, as we
shall now see.

Proof of Theorem 1. Let πi : E → Ei and π′i : E → E ′
i be isogenies. Since fEi

|fE and
fE′

i
|fE, we know by (50) that Hi = Ker(πi) and H ′

i = Ker(πi) are ideal subgroups,
and so the assertion follows from Theorem 46 because Ei ' EHi

, E ′
i ' EH′

i
and

IE(Ei) ' I(Hi) and IE(E ′
i) ' I(H ′

i).

4.2 The theorems of Steinitz and of Borevich and Faddeev

In order to derive further properties about abelian varieties which are isogenous to a
product An, we shall use the results due to Steinitz[29] and to Borevich and Faddeev[1]
about the R-module structure of the submodules of Rn.

Theorem 47 (Steinitz) If R is a Dedekind domain, then every submodule of Rn

is isomorphic to a direct sum of R-ideals. Moreover, if I1, . . . , In and J1, . . . Jm are
R-ideals, then

I1 ⊕ . . .⊕ In ' J1 ⊕ . . .⊕ Jm ⇔ m = n and I1 · · · In ' J1 · · · Jm.

Proof. See [8], p. 85.

This theorem does not generalize to arbitrary orders in a number field F , for already
the first assertion of theorem may be false. As Borevich and Faddeev[2] observed, one
needs the extra condition that the order R has a cyclic index in the sense that OF/R is
a cyclic R-module. In their papers, they prove the following generalization of Steinitz’s
theorem.

Theorem 48 (Borevich/Faddeev) Let R be an order in a Dedekind domain O.
Then:

(a) The order R has cyclic index if and only if for all n ≥ 1 we have that every
R-submodule of Rn is isomorphic to a direct sum of R-ideals.
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(b) Let R be an order which has cyclic index, and let M be an R-submodule of Rn

of rank n. Then there exist R-ideals I1, . . . , In such that

M ' I1 ⊕ . . .⊕ In and R(I1) ⊂ R(I2) ⊂ . . . R(In),(87)

and the orders R(I1) ⊂ . . . ⊂ R(In) and the ideal class of the product I1 · · · In are
uniquely determined by the isomorphism class of M . More precisely, if J1, . . . , Jm are
R-ideals with R(J1) ⊂ . . . ⊂ R(Jm), then we have

I1 ⊕ . . .⊕ In ' J1 ⊕ . . .⊕ Jm ⇔ n = m and R(Ik) = R(Jk), for 1 ≤ k ≤ n,(88)

and I1 · · · In ' J1 · · · Jm.

Proof. (a) This is the main theorem of Borevich/Faddeev[2].
(b) The existence of the I1, . . . , In satisfying (87) is proven in [1], Theorem 3. The

uniqueness of the orders R(I1), . . . , R(In) and of the product I1 · · · In is proven in
Theorems 5 and 6 of [1], and the assertion (88) is the content of [1], Theorem 7.

Remark 49 (a) Since a Dedekind domain trivially has cyclic index, it is clear that
Theorem 48 generalizes Theorem 47.

(b) Every order R∆ = Z + Zω∆ in a quadratic field F = Q(
√

∆) has cyclic index
because OF = Z + Zω∆F

= R∆ + R∆ω∆F
. Thus, Theorem 48(b) applies to all orders

in quadratic fields.

(c) It follows from the above Theorem 48(b) (cf. [1], Theorem 8) that the rule

(R1, . . . , Rn; I) 7→ R1 ⊕ . . .⊕Rn−1 ⊕ I

induces a bijection between the following sets:

(i) the set of lists (R1, . . . , Rn; I) where R ⊂ R1 ⊂ . . . ⊂ Rn ⊂ OF are orders
containing R and I ∈ Pic(Rn) is a class of invertible Rn-ideals;

(ii) the set of isomorphism classes of finitely generated torsion-free R-modules of
rank n.

Corollary 50 Let V be an n-dimensional F -vector space, where F ⊃ Q is a quadratic
field, and let L be a lattice in V , i.e. L ⊂ V is a finitely generated subgroup which
contains a basis of V . Then RF (L) := (L : L)F = {x ∈ F : xL ⊂ L} is an order
of F , and L is an RF (L)-module. Furthermore, there exists a sequence of orders
R1 = RF (L) ⊂ R2 ⊂ . . . ⊂ Rn, an invertible Rn-ideal I, and a basis x1, . . . , xn of V
such that

L = R1x1 +R2x2 + . . .+Rn−1xn−1 + Ixn.(89)
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Proof. Since L is finitely generated, it follows easily that RF (L) is a subring of OF .
Thus, RF (L) is order of F provided that dOF ⊂ RF (L), for some d. To see this, fix
a basis {x1, . . . , xn} of V , and put L0 =

∑
OFxi. By the usual argument there is a

n ∈ N such that nL ⊂ L0 and d := [L0 : nL] is finite. Since RF (L0) = OF , we see
that dOF ⊂ (nL : nL)F = RF (L), as claimed.

Put R = RF (L), so clearly L is an R-module. By Remark 49(b), (c) we see that
there exist orders R1 ⊂ . . . ⊂ Rn and an invertible Rn-ideal I such that L ' L′ :=
R1y1 + . . . + Rn−1yn−1 + Iyn (as R-modules), where {y1, . . . , yn} is any basis of V .
But any such isomorphism extends to an isomorphism of FL = V to FL′ = V and
hence is given by g ∈ AutF (L). Thus, L has the form (89) with respect to the basis
x1 = g−1(y1), . . . , xn = g−1(yn).

Finally, we observe that if L has the form (89), then RF (L) = R1 ∩ . . . ∩ Rn−1 ∩
R(I) = R1, which proves the assertion that RF (L) = R1.

For later applications we note the following variant of the bijection mentioned in
Remark 49(c).

Corollary 51 Let R be an order in quadratic field F and assume that n ≥ 2. If I
is a non-zero R-ideal and if f1, . . . fn−2 are positive integers with fR(I)|f1| . . . |fn−2|fR,
and if Ri denotes the unique order of F of conductor fi, then

M(I; f1, . . . , fn−2) := I ⊕ fRR1 ⊕ . . .⊕ fRRn−2 ⊕R

is an R-submodule of Rn with RF (M) = R. Moreover, the map µR,n : (I; f1, . . . , fn−2) 7→
M(I; f1, . . . , fn−2) induces a bijection between:

(i) the set of sequences (I; f1, . . . , fn−2) where I is an isomorphism class of non-zero
R-ideals and fR(I)|f1| . . . |fn−2|fR;

(ii) the set of isomorphism classes of R-submodules M of Rn of rank n with
RF (M) = R.

Proof. If (I; f1, . . . , fn−2) is a tuple as in (i), put Ik = fRRi, for 1 ≤ k ≤ n − 2.
Clearly R(Ik) = Rk, for 1 ≤ k ≤ n − 2, and so R(I) ⊃ R(I1) ⊃ . . . ⊃ R(In−2) ⊃ R.
Furthermore, since [Ri : R]|fR = [OF : R], we see that Ik ⊂ R, and hence each Ik is
an R-ideal. Thus M := M(I; f1, . . . , fn−2) is an R-submodule of Rn. Furthermore,
since (M : M)F = R(I) ∩ R(I1) ∩ . . . ∩ R(In−2) ∩ R = R, we see that µR,n defines a
map from the set described in (i) to the set described in (ii).

To see that µR,n is injective, suppose that M(I; f1, . . . , fn−2) 'M(I ′; f ′1, . . . , f
′
n−2),

and put I0 = I, Ik = fRRk, for 1 ≤ k ≤ n− 2, and In−1 = R, and define I ′k similarly
using (I ′; f ′1, . . . , f

′
n−2). Since R = R(In−1) ⊂ R(In−2) ⊂ . . . ⊂ R(I0) and R =

R(I ′n−1) ⊂ R(I ′n−2) ⊂ . . . ⊂ R(I ′0) are linearly ordered, if follows from Theorem 48(b)
that R(k) = R(I ′k) for 0 ≤ k ≤ n− 1 and that I0 · · · In−1 ' I ′0 · · · I ′n−1. Thus fk = f ′k,
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for k = 1, . . . , n − 2. Moreover, since I0 · · · In−1 = fn−2
R I and I ′0 · · · I ′n−1 = fn−2

R I ′, we
see that I ' I ′, and so µR,n is injective.

To see that µR,n is surjective, let M be an R-submodule of Rn of rank n with
(M : M)F = R. Then by Corollary 50 we know that M ' R1⊕ . . .⊕Rn−1⊕ I, where
R1 ⊂ . . . ⊂ Rn are orders and I is an invertible Rn-ideal and that R1 = R because
(M : M)F = R by hypothesis. Put fi = fRn−1−i

, for 1 ≤ i ≤ n− 2. Then clearly
fRI ⊂ fRRn, so fRI is an R-ideal which is isomorphic to I, and so it is clear that
M(fRI; f1, . . . , fn−2) ' I ⊕Rn−2 ⊕ . . .⊕R1 ⊕R 'M . Thus µR,n is surjective.

One of the disadvantages of Theorem 48 is that it does not give a recipe for
determining the orders Rk and ideals Ik such that (87) holds when M is given. To
remedy this, we prove the following result (which is similar to Lemma 8 of [1], but
without the restrictive hypothesis that R1 ⊂ R2).

Proposition 52 Let L1 and L2 ∈ LatF be lattices in a quadratic field F , and put
R = R(L1) ∩R(L2). Then there is an R-module isomorphism

L1 ⊕ L2 ' R ⊕ (L1L2).(90)

Proof. Put Ri := R(Li) and fi := [Ri : R]. Then (f1, f2) = 1 by (41). We first claim:

∃λ1, λ2 ∈ F× such that λ1L1 + λ2L2 = R.(91)

Indeed, by replacing Li by niLi (for some ni ∈ N), we may assume that the Li’s are
R-ideals, and so Li ⊂ fiR. Then L′i := 1

fi
Li ⊂ Ri is an invertible Ri-ideal, and so there

exists λ2 ∈ F× such that λ2L
′
2 +f1R2 = R2 (cf. [20], p. 93) and hence (N(λ2L

′
2), f1) =

1; cf. [7], p. 143. Put L′′2 := λ2L2 = λ2f2L
′
2 ⊂ f2R2 ⊂ R; thus N(L′′2) = f 2

2N(λ2L
′
2)

and hence (N(L′′2), f1) = 1. Moreover, since m2 := [R : L′′2] = 1
f2

[R2 : L′′2] = 1
f2
N(L′′2),

we have that (m2, f1) = 1. Next choose λ1 ∈ F× such that λ1L
′
1 +m2R1 = R1 and put

L′′1 = λ1L1 = f1λ1L
′
1 ⊂ f1R1 ⊂ R. Then m1 := [R : L′′1] = 1

f1
[R1 : L′′1] = f1N(λ1L

′
1)

and so (m1,m2) = 1. From this it follows that L′′1 + L′′2 = R, which proves (91).
To prove (90), we may assume in view of (91) that L1 +L2 = R because L1⊕L2 '

λ1L1 ⊕ λ2L2. Thus, there exist αi ∈ Li such that α1 − α2 = 1. Define the map

β : L1 ⊕ L2 → R⊕ L1L2 by β(λ1, λ2) = (λ1 + λ2, α2λ1 + α1λ2)

Clearly, β is R-module homomorphism with β(L1 ⊕ L2) ⊂ R ⊕ L1L2. It is clear that
β is injective because det(

(
1 1

α2 α1

)
) = α1 − α2 = 1. Moreover, β is surjective because

if r ∈ R, λ ∈ L1L2 ⊂ L1 ∩ L2, then β(α1r − λ, λ − α2r) = (r, λ). Thus β is an
isomorphism, which proves (90).

Remark 53 It follows from the above result by induction that if L1, . . . , Ln ∈ LatF

and R = ∩iR(Li), then there is an R-module isomorphism

L1⊕. . .⊕Ln ' R1⊕. . .⊕Rn−1⊕(L1 · · ·Ln) where Rk = R(L1 · · ·Lk)∩R(Lk+1) if k < n.
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For later applications we also want to explain the connection between the (conduc-
tor of) the order RF (L) defined above and the so-called central conductor of a suitable
order in the matrix ring Mn(F ). This central conductor is defined as follows.

Definition. Let R be an order in Mn(F ), i.e. R ⊂Mn(F ) is a subring which is finitely
generated as a Z-module and which contains an F -basis of Mn(F ). For convenience,
assume that F ⊃ Q is a quadratic field. Then the centre Z(R) of R is an order of
F = Z(Mn(F )), and hence is uniquely determined by its conductor

fR := fZ(R) = [OF : Z(R)],

which we call the central conductor of R. Clearly, this is an invariant of the isomor-
phism class of R. Note that this term is closely related to that of [8], p. 604: there
the central conductor is defined as the ideal fROF .

Proposition 54 Let R be an order in a quadratic field F and let M be an R-submodule
of Rn of rank n. Put

R(M) := (In(M) : In(M)) = {g ∈Mn(F ) : In(M)g ⊂ In(M)}.

Then we have R-ring isomorphisms

End(M)op ∼→ R(M) and RF (M)
∼→ Z(R(M))(92)

and hence the central conductor of R(M) equals the conductor of RF (M), i.e. fR(M) =
fRF (M).

Proof. Put M := Mn(R), and view M as a left M-module. Then (as for any ring)
we have the canonical identification ρM : M ∼→ EndM(M) given by g 7→ ρg, where
ρg(g

′) = g′g denotes the right multiplication map. Combining this with the identifica-
tion τx : EndR(Rn)op ∼→M defined in the proof of Proposition 43, we thus obtain an

isomorphism ρ := ρM ◦ τx : EndR(Rn)op ∼→ EndM(M), which extends to an isomor-

phism ρ̃ : EndF (F n)op ∼→ EndM̃(M̃), where M̃ = Mn(F ).
Since M is a lattice in F n, every f ∈ EndR(M)op extends uniquely to f̃ ∈ E :=

EndF (F n)op, and so we can identify EndR(M)op with the subring (M : M)E = {f ∈
E : Mf ⊂M} of E . It is then immediate from the definition of In(M) that

ρ̃((M : M)E) = (In(M) : In(M)) = R(M).

This proves this first isomorphism of (92), and from this the second follows because
Z((M : M)E) = (M : M)E ∩ Z(E) = (M : M)F = RF (M).
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4.3 Products of CM elliptic curves

We now apply the results of the previous subsections to the case that A = E is a CM
elliptic curve (in the sense of §3.1). The first result is the following.

Proposition 55 Let E/K be a CM elliptic curve and let I be a regular ideal of
End(En), where n ≥ 1. Then I is a kernel ideal and there exist non-zero ideals
I1, . . . , In of End(E) such that I ' (I1| . . . |In). Furthermore,

En
H(I) ' EH(I1) × . . .× EH(In) and E(H(I)) ' EndR(I1 ⊕ . . .⊕ In)op.(93)

Proof. Let I be an ideal of End(En), and put R = End(E). Since T = TE,n :
End(En)

∼→Mn(R) is an isomorphism, it follows from Proposition 43 that I = In(M),
for some R-submodule M ⊂ Rn. Moreover, since I is regular, we see that M has
finite index in Rn. Since F = End0(E) is an (imaginary) quadratic field, we have by
Corollary 50 that there exist orders Ri with R ⊂ R1 ⊂ . . . ⊂ Rn of R, an ideal I of
Rn, and a basis {xi} of F n such that M has the form (89). Put f = [Rn : R]. Then
fRi ⊂ R is an R-ideal for all i, and so

I = I1x
′
1 + I2x

′
2 + . . .+ Inx

′
n,

where Ii = fRi for 1 ≤ i < n and In = fI and x′i = 1
f
xi. Thus, if g ∈ Mn(F ) is the

matrix that takes the standard basis of F n to the basis {x′i}, then we see that

I = (I1| . . . |In)h,(94)

where h = TE,n(g)−1 ∈ End0(En) and I1, . . . , In are non-zero R-ideals. Thus I ' I ′ :=
(I1| . . . |In). Since each Ik is a kernel ideal of End(E) by Theorem 20, we have by
Proposition 44 that I ′ is a kernel ideal, and hence so is I by Remark 7(c). This proves
the first two assertions.

Since the Ik’s are kernel ideals, we have thatH((I1| . . . |In)) = H(I1)×. . .×H(In) by
Proposition 45. Thus, by (19) we have that En

H(I) ' En
H((I1|...|In)) = EH(I1)×...×H(In) '

EH(I1) × . . .× EH(In), which proves the first isomorphism of (93).
To prove the second, note first that since I ' I ′ are kernel ideals of End(En),

we have by (19) and Proposition 10 that E(H(I)) ' E(H(I ′)) = (I ′ : I ′). On the
other hand, since I ′ = T−1

E,n(In(I1 ⊕ . . . ⊕ In)) by definition, it follows from (92) that
(I ′ : I ′) ' EndR(I1 ⊕ . . .⊕ In)op, and so the second isomorphism of (93) follows.

This leads to the following (partial) characterization of the ideal subgroups of En.

Corollary 56 Let H be a finite subgroup scheme of En, where E/K is a CM elliptic
curve. Then H is an ideal subgroup of En if and only if

AH ' E1 × . . .× En, where Ei ∈ Isog+(E/K), for 1 ≤ i ≤ n.(95)
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Proof. Suppose first that H = H(I) is an ideal subgroup. Then by (93) we have that
En

H ' E1 × . . . × En, where Ei = EH(Ii). Since H(Ii) is an ideal subgroup of E, we
have by (50) that fEi

|fE, i.e. that Ei ∈ Isog+(E/K).
Conversely, suppose that (95) holds, and fix an isogeny πi : E → Ei for 1 ≤

i ≤ n. Then by (50) we know that Hi := Ker(πi) is an ideal subgroup of E, so
H ′ := H1 × . . . ×Hn is an ideal subgroup of En by Proposition 45. Since Ei ' EHi

,
we have by the hypothesis (95) that En

H ' EH1 × . . . × EHn ' En
H′ , and so it follows

from (22) that H is also an ideal subgroup of En.

The above result represents only a first step towards an (intrinsic) characterization
of ideal subgroups H of En in terms of the structure of End(AH) and/or of its centre
Z(End(AH)) ⊂ OF , where F = End0(E). This centre is determined by the central
conductor fA of the abelian variety A = AH , which is defined as follows.

Definition. If A ∼ En is any abelian variety which is isogenous to En, then its central
conductor is the central conductor fA := fEnd(A) of the order End(A) in End0(A) '
End0(En) = Mn(F ). (Recall that fEnd(A) was defined in §4.2).

The following characterization of the ideal subgroups of En shows that the nec-
essary condition of Corollary 11 is also sufficient. Moreover, this result can also be
viewed as a generalization of the criterion (50) of Theorem 20.

Theorem 57 Let E/K is a CM elliptic curve, and let H be a finite subgroup scheme
of En. Then:

H is an ideal subgroup of En ⇔ Z(End(En)) ⊂ Z(E(H)) ⇔ fE(H) | fE.(96)

This theorem follows easily from Corollary 56 and Theorem 2 of the introduction,
as we shall see now.

Proof of Theorem 57 (using Theorem 2). First note that the second equivalence of
(96) follows from (41) and that the one direction (⇒) of the first equivalence of (96)
is true by Corollary 11. It thus remains to prove the other direction.

Thus, suppose that fE|fAH
. By Theorem 2 there exist elliptic curves Ei/K such

that AH ' E1 × . . . × En; in particular, Ei ∼ E. By Lemma 58 below we have that
fAH

|fEi
, and so Ei ∈ Isog+(E/K). Thus H satisfies condition (95) and hence H is an

ideal subgroup of En by Corollary 56.

In the above proof we had used the following simple fact.

Lemma 58 If E1, . . . , En ∈ Isog(E/K), then fE1×...×En = lcm(fE1 , . . . , fEn).

Proof. By Proposition 29 there is anE0 ∈ Isog(E/K) such that fE0 = lcm(fE1 , . . . , fEn).
Thus, if πi : E0 → Ei is an isogeny, then Hi = Ker(πi) is an ideal subgroup of E0 by
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(50) (because fEi
|fE0 by construction). Thus, Hi = H(Ii), for some R0-ideal Ii, where

R0 = End(E0). Note that by (49) we have that End(Ei) ' E(Hi) = (Ii : Ii) = R(Ii),
and so fEi

= fR(Ii).
Put H = H1 × . . .×Hn. Then En

H ' EH1 × . . .× EHn ' E1 × . . .× En =: A. By
Proposition 44 we have that H = H(I), where I = (I1| . . . |In). Thus, by (93) we have
that End(A) ' End(En

H) ' E(H) ' EndR0(M)op, where M = I1 ⊕ . . . ⊕ In ⊂ Rn
0 ,

and so Z(End(A)) ' Z(EndR0(M)op) = (M : M)F = RF (M) by (92). Now clearly
(M : M)F = R(I1)∩ . . .∩R(In). Since the latter has conductor lcm(fR(I1), . . . , fR(In))
by (41), the assertion follows.

To finish the proof of Theorem 57, it remains to prove Theorem 2 of the introduc-
tion. Before giving the proof, we insert here the following remark.

Remark 59 In the case that K = C, Theorem 2 was first proven by Lange[21], using
the results of Shioda and Mitani[27] (who proved the case n = 2). A different proof of
this was given by Schoen; cf. [24], Satz 2.4. His proof is based on the above Theorem
48(b) of Borevich and Faddeev[1] and hence is closely related to the one given below
(in the case K = C).

In his paper, Schoen[24] also proves the following interesting “converse” to Theorem
2 in the case that K = C. Suppose that A/C is an abelian variety with the property
that if B ∼ A, then B ' A1 × . . . × An, for some simple abelian varieties Ai. Then
either A is simple or A ∼ En, where E/C is a CM elliptic curve.

Proof of Theorem 2. We shall divide the proof into several cases.

Case 1. K = C.

Here E ' EL, where L ∈ LatF is a lattice in F = End0(E); cf. §3.2. Thus En ' Cn/Ln,
where Ln = L⊕ . . .⊕ L ⊂ F n. Let π : En → A be an isogeny. Then Ker(π) = L′/Ln,
for some subgroup L′ ⊂ Cn. Since [L′ : Ln] = deg(π) <∞, it follows that L′ is a lattice
in F n (in particular, L′ ⊂ F n) and hence by Corollary 50 we know that L′ has the form
(89). Put L′′ = L′1 ⊕ . . .⊕ L′n ⊂ F n, where L′i = Ri for 1 ≤ i ≤ n− 1 and L′n = I and
the Ri’s and I are given by (89). Thus L′ = L′′g, for some g ∈ AutF (F n) ⊂ AutC(Cn),
and so A ' Cn/L′ ' Cn/L′′ ' C/L′1× . . .×C/L′n, and so the assertion follows because
L′i ∈ LatF (and hence C/L′i ∼ EL).

Case 2. char(K) = 0.

First note that there exists a finitely generated subfield K0 ⊂ K such that there is a
CM elliptic curve E0/K0 with E0⊗K ' E, an abelian variety A0/K0 with A0⊗K ' A
and A0 ∼ En

0 . Fix an embedding K0 ⊂ C. Then by Case 1 and Lemma 60 below,
there exist elliptic curves E0,i/K0 with A0 ' E0,1×. . .×E0,n, and so A ' E1×. . .×En,
where Ei = E0,i ⊗K.

Case 3. K = Fp.
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Let K# denote the quotient field of the ring W (K) of Witt-vectors over K. For
any ordinary abelian variety A/K, its Serre-Tate lift A#/K# exists and is uniquely
characterized by the property that all endomorphisms of A/K lift to A#; cf. [9],
p. 238, or [14], p. 2368, and the references therein. Since E and hence A ∼ En

are ordinary abelian varieties, their Serre-Tate lifts exist; note that (E#)n ' (En)#.
Since Hom((En)#, A#) = Hom(En, A), it thus follows that A# ∼ (E#)n. By Case 2
we know that there exist elliptic curves E ′

1, . . . , E
′
n/K

# such that A# ' E ′
1× . . .×E ′

n.
Since each E ′

i ∼ E# has good reduction Ei/K, we obtain that A ' E1 × . . . × En

because A# has reduction A.

Case 4. char(K) = p 6= 0.

By Lemma 60 below we may assume without loss of generality that K is algebraically
closed. Then there is a CM elliptic curve E0/Fp such that E0 ⊗K ' E; cf. the proof
of Proposition 36. Furthermore, if π : En → A is an isogeny with kernel H, then by
Lemma 61 below, there is a subgroup scheme H0 of En

0 such that H0 ⊗K = H, and
so A0 = (En

0 )H0 is an abelian variety over Q with A0 ⊗K ' A. By Case 3 there exist
E1, . . . , En ∼ E0 such that A0 ' E1× . . .×En, and then A ' A0⊗K ' E ′

1× . . .×E ′
n,

where E ′
i = Ei ⊗K ∼ E, as desired.

In the above proof we made use of the following two “descent” facts.

Lemma 60 Let A/K be an abelian variety with A ∼ En, where E/K is a CM elliptic
curve, and suppose that there is a field extension K ′/K such that A⊗K ′ ' E ′

1×. . .×E ′
n

for some elliptic curves E ′
i/K

′. Then A ' E1×. . .×En, where each Ei/K is an elliptic
curve with Ei ⊗K ′ ' E ′

i.

Proof. Fix an isomorphism ϕ : A ⊗ K ′ ∼→ B′ := E ′
1 × . . . × E ′

n, and consider h′i =
ϕ−1 ◦ eB′

i ◦ pB′
i ◦ ϕ ∈ End(A ⊗ K ′). Since the base-change map βK′/K : End(A) →

End(A ⊗ K ′) is an isomorphism by Lemma 14(c) (because dim End0(En) = 2n2 =
dim End0(En ⊗ K ′)), we have that h′i = hi ⊗ K ′, for some hi ∈ End(A). Then
Ei := Im(hi) is an abelian subvariety of A/K such that Ei⊗K ′ ' Im(h′i) ' E ′

i. Thus,
Ei/K is an elliptic curve on A ∼ En, and hence Ei ∼ E (by Poincaré’s reducibility
theorem). Put B := E1 × . . . × En ∼ En. By hypothesis, there is an isomorphism
ψ′ : A ⊗ K ′ ∼→ B ⊗ K ′, and by Lemma 14(c) we have that ψ′ = ψ ⊗ K ′ for some
ψ ∈ Hom(A,B). Since ψ′ is an isomorphism, so is ψ, and hence A ' B, as claimed.

Lemma 61 Let E/K be a CM elliptic curve where K is an algebraically closed field,
and let n ≥ 1. Then En has only finitely many subgroup schemes H of fixed rank N .
Thus, if K ′/K is any extension field, then every finite subgroup scheme of En⊗K ′ is
of the form H ⊗K ′, where H is a finite subgroup scheme of En.

Proof. If char(K) = 0, then every finite subgroup scheme is etale and the assertion is
trivial. Thus, assume that char(K) = p 6= 0. Since E is ordinary, we have for any r ≥ 1
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that E[pr] := Ker([pr]E) ' Z/prZ× µpr , and hence that En[pr] ' (Z/prZ)n × (µpr)n.
Thus En does not contain any local-local subgroup scheme (in the sense of [22], p. 136),
and so by the structure of finite commutative group schemes ([22], p. 137) we have
that any finite subgroup scheme H of En is isomorphic to Het× (Z/pr1Z)t1 × (µpr2 )t2 ,
where Het is an etale subgroup scheme of rank prime to p and ri, ti ≥ 0 are integers.
Thus, there are only finitely many (isomorphism classes of) finite subgroup schemes
of fixed rank N which are embeddable in En.

Now letH/K be a fixed finite subgroup scheme of rank N = prN ′ with p - N ′ which
is embeddable in En. Then Hom(H,En) = Hom(H,En[N ]), and so Hom(H,En) =
Hom(Het, E[N ′]) ⊕ Hom((Z/pr1)t1 , (Z/prZ)n) ⊕ Hom((µpr2 )t2 , (µpr)n) is finite (since
each piece of the decomposition is finite). In particular, there are only finitely many
embeddings of H into En, and so it follows from the above that there are only finitely
many finite subgroup schemes of fixed rank N .

To prove the last assertion, note that since A/K is projective, it follows from
the theory of Hilbert schemes that the set of subgroup schemes of fixed rank N is
represented by a quasi-projective scheme HN . By what was just shown above, HN(K)
is finite, and so it follows that dimHN = 0. Thus HN(K ′) = HN(K), for all K ′/K,
which yields the last assertion.

Remark 62 As the above proof shows, the assertions of Lemma 61 are true for any
ordinary abelian variety A/K (in place of En/K). On the other hand, both statements
are false for non-ordinary abelian varieties. In particular, if E is a supersingular elliptic
curve, then already E2 has infinitely many subgroup schemes which are isomorphic
to αp, and their cardinality equals the cardinality of K (and hence increases when we
enlarge K).

This concludes the proof of Theorem 2 and hence also of Theorem 57, as was
explained above. We now turn to some applications of Theorem 57. The first of these
is the following refinement of Theorem 3 of the introduction.

Theorem 63 Let E/K be a CM elliptic curve and E1, . . . , En ∈ Isog+(E/K). If
A ∼ En is an abelian variety isogenous to En, then the following conditions are
equivalent:

A ' E1 × . . .× En;(97)

IEn(A) ' (IE(E1)| . . . |IE(En)) and fA|fE;(98)

Hom(En, E)⊗End(En) IEn(A) ' IE(E1)⊕ . . .⊕ IE(En) and fA|fE.(99)

Proof. Fix isogenies π : En → A and πi : E → Ei, for 1 ≤ i ≤ n, and put H = Ker(π)
and Hi = Ker(πi). Also, put A′ = E1 × . . . × En. Since fEi

|fE by hypothesis, we
know by (50) that Hi = H(I(Hi)) is an ideal subgroup of E, so H ′ := H1 × . . .×Hn
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is an ideal subgroup of En by Proposition 45. Furthermore, we have that IEn(A′) '
I(H ′) = (I(H1)| . . . |I(Hn)) ' (IE(E1)| . . . |IE(En)) by (85).

Now suppose that (97) holds. Then by Lemma 58 we have that fA = fE1×...×En =
lcm(fE1 , . . . , fEn)|fE. Moreover, IEn(A) ' IEn(A′) ' (IE(E1)| . . . |IE(En)), and so
(98) holds. Conversely, if (98) holds, then H is an ideal subgroup of En by Theorem
57, and so A ' A′ by (21). Thus, conditions (97) and (98) are equivalent.

To prove the equivalence of conditions (98) and (99), note first that Hom(En, E) is
naturally an (End(E),End(En))-bimodule, and that the rule h 7→ (h◦eEn

1 , . . . , h◦eEn

n )
defines a bijection e∗ : Hom(En, E)

∼→ End(E)n which, via the identification
TE,n : End(En)

∼→ Mn(R), carries the (End(E),End(En))-bimodule structure on
Hom(En, E) into the (R,Mn(R))-bimodule structure on Rn, where R = End(E).
Thus, for any left ideal I of End(En), we have an R-module identification

e∗(Hom(En, E)⊗End(En) I) = Rn ⊗Mn(R) TE,n(I)) =: M(TE,n(I)),

and hence it follows from (83) and the definition of (I1| . . . |In) that for any R-ideals
I1, . . . In we have an R-module isomorphism

Hom(En, E)⊗End(En) (I1| . . . |In) ' I1 ⊕ . . .⊕ In.

In view of these identifications, it is clear from (82) that conditions (98) and (99) are
equivalent.

Proof of Theorem 3. By Theorem 2 we know that there exist elliptic curves E ′
i ∼ E1

such that A ' E ′
1×. . .×E ′

n, and so by Lemma 58 we have that fA = lcm(fE′
1
, . . . , fE′

n
).

Now by Proposition 29 there exists an elliptic curve E ∼ E1 such that fE = lcm(fE1 , . . .,
fEn , fE′

1
, . . . , fE′

n
), and so the first statement follows. The second is a special case of

Theorem 63.

We now turn to the proof of Theorem 5 of the introduction.

Proof of Theorem 5. We will construct bijections between the various sets defined by
the conditions (i) – (v).

(i) ↔ (ii): Let (E ′; f1, . . . , fn−2) be a tuple as in (i), and put ϕ1(E
′; f1, . . . , fn) =

(IE(E ′); f1, . . . , fn−2). Since fE′|fE, we know by (50) that if π : E → E ′ is any
isogeny, then Ker(π) = H(I) for some ideal I of End(E). Thus IE(E ′) ' I because I
is a kernel ideal by Theorem 20(a) and also End(E ′) ' End(EH(I)) ' R(I) by (53).
Thus fE′ = fR(I), and so (IE(E ′); f1, . . . , fn−2) is in the set described by condition (ii).
By Corollary 21 we thus see that ϕ1 defines a bijection between sets (i) and (ii).

(ii) ↔ (iii): If (I; f1, . . . , fn−2) is a tuple as in (ii), and put ϕ2(I; f1, . . . , fn−2) =
(q∆(I); f1/fI , . . . , fn−2/fI), where q∆ is the bijection constructed in Remark 41 and
fI = fR(I). Here R∆ ' End(E) (because E has e-discriminant ∆). By construc-
tion, q∆(I) has content cont(q∆(I)) = [R(I) : R∆] = fE/fR(I), and so we see that

45



(q∆(I); f1/fI , . . . , fn−2/fI) is in the set described by condition (iii) and that ϕ2 is a
bijection.

(ii) ↔ (iv): This is Corollary 51.
(iv) ↔ (v): For an R-module M as in (iv), put ϕ4(M) = T−1

E,n(In(M)), which is
a regular left End(En)-ideal. By Proposition 43 and Proposition 54 we know that ϕ4

induces a bijection between the set described by (iv) and the following set:

(iv′) the set of isomorphism classes of regular left ideals I of End(En) ' Mn(R)
with Z((I : I)) = R.

Now if I is an ideal as in (iv′), then put ϕ5(I) = AI := En
H(I). Since I is a

kernel ideal by Proposition 55, we have that End(AI) ' (I : I) by (31), and so
Z(End(AI)) ' Z((I : I)) = R = End(E), which means that fAI

= fE. Thus the
isomorphism class of AI is an element of the set described by (v). By (19) and the
sentence before (21) we know that ϕ5 defines an injection from the set described by
(iv′) into the set (v). Finally, this map is surjective. Indeed, if A ∼ En with fA = fE,
and if π : En → A is any isogeny, then by Theorem 57 we know that H is an ideal
subgroup, so Ker(π) = H(I) for some regular left ideal I of End(En). Thus A ' En

H(I),

and so I is in the set defined by condition (iv′) because the above computation shows
that Z((I : I)) = R.

Remark 64 (a) It is sometimes useful to have a direct description of the bijection
between the sets defined by conditions (i) and (v) of Theorem 5. Indeed, if we unravel
the bijections constructed in the proof of Theorem 5, then we obtain that this bijection
is given by the rule (E ′; f1, . . . , fn−2) 7→ A(E ′; f1, . . . , fn−2;E), where

A(E ′; f1, . . . , fn−2;E) := E ′ × E1 × . . .× En−2 × E,(100)

where Ei = EH(fERi) and fRi
= fi. To verify this, note first that the bijection

is given by ϕ5 ◦ ϕ4 ◦ µR,n ◦ ϕ1 in the notation of the proof of Theorem 5. Thus,
if we put I1 = IE(E ′), Ii+1 = fERi, for i = 1, . . . , n − 2, and In = R, then
µR,n(ϕ1ϕ1(E

′, f1, . . . , fn−2) = I1⊕ . . .⊕ In. On the other hand, ϕ5(ϕ4(I1⊕ . . .⊕ In)) =
ϕ5((I1| . . . |In)) = EH(I1)× . . .×EH(In) by Proposition 44, and so the assertion follows.

(b) The bijections of Theorem 5 yield immediately a classification of all abelian
varieties A ∼ En with fA|fE. More precisely, we have natural bijections between the
following sets:

(i) The set of sequences (E ′; f1, . . . , fn−1) where E ′ ∼ E is an isomorphism class
of elliptic curves with fE′|fE and the fi’s are positive integers with fE′|f1| . . . |fn−1|fE.

(ii) the set of sequences (I; f1, . . . , fn−1) where I is an isomorphism class of non-
zero End(E)-ideals whose order R(I) has conductor fR(I)|f1| . . . |fn−1|fE.

(iii) the set of sequences (q; c1, . . . , cn−2) where q is a proper equivalence class of
positive binary quadratic forms of discriminant ∆(q) = ∆/m2, for some m ∈ N, and
c1| . . . |cn−2|cont(q).
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(iv) the set of isomorphism classes of End(E)-submodules M of End(E)n of rank
n;

(v) the set of isomorphism classes of abelian varieties A ∼ En with central con-
ductor fA|fE.

4.4 Abelian product surfaces

We now specialize the previous results to the case of abelian surfaces, i.e. to the case
n = 2. In particular, we shall prove Theorem 4 and show how the results of Shioda
and Mitani[27] follow from the above theorems.

We begin with the following refinement of Theorem 1 (in the case n = 2) which is
closely related to Proposition 4.5 of [27].

Proposition 65 Let E1, E2, E
′
1, E

′
2 ∈ Isog+(E/K), where E/K is a CM elliptic curve,

and put fi = fEi
and f ′i = fE′

i
. Then E1 × E2 ' E ′

1 × E ′
2 if and only if

lcm(f1, f2) = lcm(f ′1, f
′
2) and IE(E1)IE(E2) ' IE(E ′

1)IE(E ′
2).

Proof. To prove this, we shall use the criterion of Theorem 1. Now by Proposition
52 we have that IE(E1) ⊕ IE(E2) ' IE(E ′

1) ⊕ IE(E ′
2) ⇔ R ⊕ IE(E1)IE(E2) ' R′ ⊕

IE(E ′
1)IE(E ′

2), where R = R(IE(E1)) ∩ R(IE(E2)) and R′ = R(IE(E ′
1)) ∩ R(IE(E ′

2)).
Moreover, by Theorem 48 these modules are isomorphic if and only R = R′ and
IE(E1)IE(E2) ' IE(E ′

1)IE(E ′
2). Since R(IE(Ei)) has conductor fi by (54), we see

that R has conductor fR = lcm(f1, f2) by (41), and similarly fR′ = lcm(f ′1, f
′
2). Thus

R = R′ if and only if lcm(f1, f2) = lcm(f ′1, f
′
2), and so the assertion follows from

Theorem 1.

If K = C, then above result can be restated in the following form which is essen-
tially Proposition 4.5 of [27].

Corollary 66 Let L1, L2, L
′
1, L

′
2 ∈ LatF be lattices in a quadratic field F and let

fi = fR(Li) and f ′i = fR(L′
i)

be the conductors of their associated orders. Then

EL1 × EL2 ' EL′
1
× EL′

2
⇔ L1L2 ' L′1L

′
2 and lcm(f1, f2) = lcm(f ′1, f

′
2).

Proof. Put Ei = ELi
and E ′

i = EL′
i
. Since End(ELi

) ' R(Li) by (68), we have
fEi

= fi and similarly fE′
i

= f ′i . Let R = R(L1) ∩ R(L2) ∩ R(L′1) ∩ R(L′2), and
choose n ∈ N such that L := nR ⊂ Li ∩ L′i, for i = 1, 2. Put E = EL. Since
End(E) ' R ⊂ R(Li) ' End(ELi

), we see that Ei ∈ Isog+(E/C) and similarly E ′
i ∈

Isog+(E/C). By Corollary 34 we have that IE(Ei) ' L−1
i L and IE(E ′

i) ' (L′i)
−1L.

Thus IE(E1)IE(E2) ' IE(E ′
1)IE(E ′

2) ⇔ L−1
1 L−1

2 L ' (L′1)
−1(L′2)

−1L ⇔ (L1L2)
−1 '

(L′1L
′
2)
−1, the latter because R(L) ⊂ R(L−1

1 ) ∩ R((L′1)
−1). Thus IE(E1)IE(E2) '
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IE(E ′
1)IE(E ′

2) ⇔ L1L2 ' L′1L
′
2, and hence it is clear that the corollary follows from

Proposition 65.

We next prove Theorem 4, which is clearly a special case of the following more
precise result. Recall from the introduction that the discriminant ∆(A/K) of an
abelian surface A/K is the discriminant of the intersection form qA on the Néron-
Severi group NS(A) of A/K.

Theorem 67 Let E/K be a CM elliptic curve with e-discriminant ∆ = ∆E. Then
there exist bijections between the following sets:

(i) the set Isog+(E/K) of isomorphism classes of elliptic curves E ′/K with E ′ ∼ E
and fE′|fE;

(ii) the set of non-zero ideal classes of End(E);

(iii) the set Q∆/SL2(Z) of proper equivalence classes of positive definite binary
quadratic forms q with discriminant ∆(q) = ∆;

(iv) the set of End(R)-submodules M of End(E)2 of rank 2 with RF (M) = R;

(v) the set of isomorphism classes of abelian surfaces A/K with A ∼ E2 and central
conductor fA = fE;

(vi) the set of isomorphism classes of abelian surfaces A/K with A ∼ E2 and
discriminant ∆(A/K) = −∆.

More precisely, the bijection between (i) and (ii) is given by the map I+
E of Corollary

21, the bijection between (ii) and (iii) is the map q∆ of Remark 41, the bijection between
(iv) and (v) is given by the rule M 7→ (E2)H(T−1

E,2(In(M))), and the sets (v) and (vi) are

identical. In addition, the bijection between (i) and (v) and (vi) is induced by the rule
E ′ 7→ E × E ′.

Remark 68 Note that the bijection between the sets described by conditions (iii)
and (vi) of Theorem 67 (which is the same as that between the sets (i) and (ii) of
Theorem 4) is not given explicitly. However, it can be described as follows: given
q ∈ Q∆E

/SL2(Z), let E ′
q = E ′

E,q ∈ Isog+(E/K) be such that q+
E,E′

q
= q, where q+

E,E′ is

as in Remark 41. Then the map q 7→ Aq = E × E ′
q induces the bijection between the

sets (iii) and (vi).

Proof. The equivalence of conditions (i) – (v) is just a restatement of Theorem 5 in the
case n = 2. Moreover, by the proof of that theorem and by Remark 64(a) we know
that the bijections are as indicated. On the other hand, the fact that the sets (v) and
(vi) are identical follows immediately from the following general fact of Proposition
69 because ∆E = f 2

E∆F .

Proposition 69 Let E/K be a CM elliptic curve, and let F = End0(E). If A/K is an
abelian surface which is isogenous to E2, then its discriminant is ∆(A/K) = −f 2

A∆F .
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Proof. By Theorem 2 we know that that A ' E1×E2, for some CM elliptic curves Ei/K
which are isogenous to E/K. Then by [17], Proposition 22, we have NS(A ⊗ K) '
Z2⊕Hom(E1, E2), where Ei = Ei⊗K. Moreover, since Hom(E1, E2) = Hom(E1, E2),
by Lemma 14(c), the explicit isomorphism shows that NS(A) = NS(A ⊗K); cf. [19],
(proof of) Lemma 63. Let qA be the intersection form on NS(A), i.e. qA(D) = 1

2
(D.D),

where (D.D) denotes the self-intersection number of a divisor (class) D ∈ NS(A).
Then by [17], Proposition 22, or by [19], equation (6), we have that

qA ∼ xy ⊥ qE1,E2 ,(101)

where xy denotes the quadratic form associated to the hyperbolic plane and qE1,E2 is
as in §3.4. From (101) it follows immediately that

∆(qA) = −∆(qE1,E2) = −lcm(fE1 , fE2)
2∆F = −f 2

E1×E2
∆F ,(102)

where the last two equations follow from equation (75) and Lemma 58, respectively.
This proves the asserted formula.

In view of the close relationship (101) that exists between the quadratic form qA
defined by the intersection pairing on NS(A) and the form q+

E,E′ which defines one of
the bijections of Theorem 67 (cf. Remark 68), it might be tempting to try to use qA
in place of q+

E,E′ in order to classify the abelian surfaces A/K with A ∼ E2. This,
however, does not lead to a bijection because several non-isomorphic abelian surfaces
may have equivalent forms qA, as the following result shows.

Corollary 70 Let E/K be a CM elliptic curve with e-discriminant ∆ = ∆E, and let
q ∈ Q∆ be a positive binary quadratic form of discriminant ∆ and content c. Then
the number

Nq := #({A ∼ E × E : qA ∼ xy ⊥ (−q)}/')

of isomorphism classes of abelian surfaces A/K which are isogenous to E2 and whose
intersection form qA is equivalent to xy ⊥ (−q) is equal to the number of primitive
forms in the principal genus of primitive forms of discriminant ∆′ = ∆/c2. Thus, if
g(∆′) denotes the number of genera of discriminant ∆′, then we have

Nq =
h(∆′)

g(D′)
, where ∆′ = ∆(q)/cont(q)2.(103)

Proof. Let qA denote the (proper) equivalence class of binary forms of discriminant
∆ which corresponds to A/K via the bijection of Theorem 67. Then by (101) and
(78) we have that qA ∼ xy ⊥ (−qA). Thus, qA ∼ xy ⊥ (−q) ⇔ xy ⊥ (−qA) ∼ xy ⊥
(−q) ⇔ qA and q are in the same genus, the latter by Remark 27 of [19]. Since the
number of such forms qA equals the number of forms in the principal genus (and is
given by the formula of (103)), the assertion follows.
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From the above Theorem 4 (or from Theorem 67) we can deduce the following
result which is essentially the same as Theorem 3.1 of [27]:

Theorem 71 Let K be an algebraically closed field of characteristic 0. Then there is
a bijection between the following sets:

(i) the set Q/SL2(Z) of proper equivalence classes of positive definite binary quadratic
forms;

(ii) the set of isomorphism classes of abelian surfaces A/K with Picard number
ρ(A) := rank(NS(A)) = 4.

Remark 72 In the paper [27], the abelian surfaces A/C with ρ(A) = 4 are called
singular abelian surfaces ; cf. [27], p. 459. This terminology unfortunately conflicts
with classical terminology of singular abelian varieties used in the 19th century: these
are abelian varieties with the property that End(A) 6= Z; cf. Hurwitz[16], p. 167, 187
(and the references therein) and Humbert [15].

Proof of Theorem 71. It follows from the classification theory of endomorphisms of
simple abelian surfaces in characteristic 0 (cf. [22], p. 202) that if ρ(A) = 4, then A
cannot be simple and so one sees easily that A ∼ E2, where E/K is a CM elliptic
curve. Thus the set (ii) is the same as the set

(ii′) the set of isomorphism classes of abelian surfaces A/K with A ∼ E2, for some
CM elliptic curve E/K.

To describe the bijection, fix for each discriminant ∆ < 0 an elliptic curve E∆ with
∆E∆

= ∆ (which exists by Proposition 37(a)). Let

A(∆) := {A/K : A ∼ E2
∆ and ∆(A/K) = −∆}/'

denote the set of isomorphism classes of abelian surfaces A/K which are isogenous to
E∆×E∆ and have discriminant ∆(A/K) = −∆. Now if A ∼ E2, where E/K is some
CM curve and if ∆(A/K) = −∆, then it follows from Theorem 67 that E ∼ E∆, and
so we see that the set A described by (ii′) is the disjoint union of the sets A(∆), where
∆ runs over all negative discriminants. We thus see from Remark 68 that the rule
q 7→ E∆ × E ′

E∆,q (notation as in Remark 68) induces the desired bijection

Q/SL2(Z) =
⋃̇
∆<0

Q∆/SL2(Z)
∼→

⋃̇
∆<0

A(∆) = A.

Remark 73 The same argument as above shows that if K is an algebraically closed
field of characteristic p 6= 0, then we have a bijection between the following two sets:

(i) the set Q(p)/SL2(Z) of proper equivalence classes of positive definite binary
quadratic forms whose discriminant ∆ satisfies (∆

p
) = 1;

(ii) the set of isomorphism classes of abelian surfaces A/K such that A ∼ E2, for
some CM elliptic curve E/K.
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Basel, 1932, pp. 163 – 188.

[17] E. Kani, The moduli spaces of Jacobians isomorphic to a product of two elliptic
curves. Preprint, 39 pages.

[18] E. Kani, Products of CM elliptic curves. Inst. Exp. Math., Essen, Universität
Duisburg-Essen, IEM Preprint No. 2–2009, 54 pages.

51



[19] E. Kani, The existence of Jacobians isomorphic to a product of two elliptic curves.
Inst. Exp. Math., Essen, Universität Duisburg-Essen, IEM Preprint No. 3–2009,
36 pages.

[20] S. Lang, Elliptic Functions. Addison-Wesley, Reading, MA, 1972.

[21] H. Lange, Produkte elliptischer Kurven. Nachr. Akad. Wiss. Göttingen Math.-
Phys. Kl. II (1975), 95–108.

[22] D. Mumford, Abelian Varieties. Oxford U Press, Oxford, 1970.

[23] W. Ruppert, When is an abelian surface isomorphic or isogenous to a product of
elliptic curves? Math. Z. 203 (1990), 293–299.

[24] C. Schoen, Produkte abelscher Varietäten und Moduln über Ordnungen. J. reine
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