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Matthew Ingle

We are interested in groups with the following properties:
Let n ≥ 7 be an odd integer, and consider subgroups G ≤ Sn that satisfy:

1. G = 〈s1, s2, s3, s4〉 where s1s2s3s4 = 1.

2. (s1, s2, s3, s4) = ((2)m, (2)m, (2)m, (2)m−3(4)) where m = n−1
2

. The notation (2)m

means that si is a product of m disjoint 2-cycles, and similarly, the cycle decom-
position of s4 consists of m− 3 disjoint 2-cycles and one 4-cycle.

3. G acts primitively on S = {x1, x2, ..., xn}.

Such groups occur in [1], pg. 17 (specifically, Prop. 3.6) as the monodromy groups of
certain curve covers. In this paper, we prove the following fact about these groups:

Theorem 1. If a group G satisfies the above conditions then G = An, if n ≡ 1 (mod 4)
and G = Sn, if n ≡ 3 (mod 4).

In our demonstration, the case n = 7 will be considered separately because for the
case n ≥ 9 we prove a more general result:

Theorem 2. If G is a primitive permutation group of degree n ≥ 9 and G contains a
4-cycle or a (2, 2)-cycle then G ≥ An.

The motivation for Theorem 2 came from Netto who, in his Theory of Substitutions,
gave a sketched proof of an equivalent theorem (cf. [2] pg. 133-8). Unfortunately, a new
formulation of his argument was necessary because of some ambiguity in his exposition
(see Remark 1 below). In our new formulation, Theorem 2 follows from Propositions 1
and 2 appearing below.

Because it is a more general result, we begin with our proof of Theorem 2 and its
antecedent propositions. Following this, we consider the case of n = 7 and conclude
with our proof of Theorem 1. Before beginning, we need to establish the following
terminology:

Definition. Let G be a group acting on a set Ω, and let T be a subset of G. We define
the support of T by

supp(T ) := {x ∈ Ω |xg 6= x for at least one g ∈ T}.
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When T is a singleton, i.e. T = {g}, we write supp(g) instead of supp({g}). Addi-
tionally, due to its ubiquitous application, we define the following shorthand:

supp(g)(h) := supp(g)∩ supp(h).

Proposition 1. Let G be a primitive permutation group of degree n ≥ 9 and let gi =
aibi ∈ G be two (2, 2) cycles such that:

#supp(a1)(a2) = 1. (1)

Then G ≥ An unless we have:

#supp(b1)(a2) = 0, #supp(a1)(b2) = 0, and #supp(b1)(b2) = 1. (2)

Proof. Let G be a primitive permutation group acting on the set Ω := {1, 2, .., n} with
n ≥ 9 and let gi = aibi ∈ G be two (2, 2) cycles such that condition (1) holds.

Our argument concerns the following variables: #supp(b1)(a2) ∈ {0, 1}, and
#supp(b2)(a1b1) ∈ {0, 1, 2}. We begin by supposing that #supp(b1)(a2) = 1, and
show that for each possible value of #supp(b2)(a1b1), G ≥ An. Then, we suppose that
#supp(b1)(a2) = 0 and show that G ≥ An unless condition (2) holds.

Claim 1: #supp(b1)(a2) = 1 =⇒ G ≥ An.
The following three subcases are organized according to the value of #supp(b2)(a1b1) ∈

{0, 1, 2} wherein we show that in each case, G ≥ An.
Case 0: #supp(b2)(a1b1) = 0. Up to conjugacy, we have g1 = a1b1 = (12)(34) and

g2 = a2b2 = (13)(56). Thus, we have g3 := g2g1g2 = (14)(23) ∈ G and consequently
g1g3 = (13)(24) ∈ G. Now, let Γ := {1, 2, 3, 4} and ∆ := Ω \ Γ. Then G∆ is tran-
sitive on the set Γ because g1, g3, g1g3 ∈ G∆. Since by assumption |Ω| ≥ 9, we have
|Γ| = 4 < 1

2
|Ω|, and so it follows from a result of Marggraf (cf. [3] pg. 35) that G ≥ An.

Case 1: #supp(b2)(a1b1) = 1. There are two cases to consider here: either i)
#supp(b2)(a1) = 1 and #supp(b2)(b1) = 0 or ii) #supp(b2)(a1) = 0 and #supp(b2)(b1) =
1. In either case, we claim that G contains a 5-cycle. If we have i), then up to conju-
gacy, g1 = a1b1 = (12)(34) and g2 = a2b2 = (13)(25) which gives g1g2 = (14325) ∈ G.
On the other hand, if we have ii), then up to conjugacy, g1 = a1b1 = (12)(34) and
g2 = a2b2 = (13)(45) which gives g1g2 = (14532) ∈ G. So, if #supp(b1)(a2) = 1 and
#supp(b2)(a1b1) = 1 then G contains a 5-cycle. By Netto (cf. [2] pg. 93), a primitive
group of degree n which contains a p-cycle of order p < 2n

3
contains the alternating

group. In the case where p = 5 this is 15 < 2n. Since by assumption n ≥ 9, the
inequality holds and so G ≥ An.

Case 2: #supp(b2)(a1b1) = 2. We cannot have #supp(b2)(a1) = 2 because condition
(1) and b2 = a1 would imply that b2 and a2 are not disjoint. Similarly, we cannot have
#supp(b2)(b1) = 2 because #supp(b1)(a2) = 1 and b2 = b1 would also imply that b2 and
a2 are not disjoint. Therefore, there is only one case to consider: #supp(b2)(a1) = 1
and #supp(b2)(b1) = 1. Up to conjugacy, this is g1 = a1b1 = (12)(34) and g2 = a2b2 =
(13)(24). Thus, we have g3 := g1g2 = (14)(23) ∈ G. Now, as in Case 0 above, let
Γ := {1, 2, 3, 4} and ∆ := Ω \ Γ. Then, g1, g2, g3 ∈ G∆ and G∆ is transitive on Γ. Since
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|Γ| = 4, the above cited result of Marggraf gives that G ≥ An.
Since the preceding cases exhaust the possibilities for #supp(b2)(a1b1) ∈ {0, 1, 2},

Claim 1 is proved. We turn now to Claim 2.
Claim 2: #supp(b1)(a2) = 0 =⇒ G ≥ An unless (2).
As before, we divide the argument into subcases according to the value of #supp(b2)(a1b1) ∈

{0, 1, 2}. Since (2) is included in the case #supp(b2)(a1b1) = 1, our first task is to show
that if #supp(b2)(a1b1) ∈ {0, 2} then G ≥ An.

Case 0: #supp(b2)(a1b1) = 0. Up to conjugacy, we have g1 = a1b1 = (12)(34) and
g2 = a2b2 = (15)(67). Thus, (g1g2)

2 = (125) ∈ G. By a well-known result, if a primitive
group contains a 3-cycle then G ≥ An (cf. [3] pg. 34).

Case 2: #supp(b2)(a1b1) = 2. We cannot have #supp(b2)(a1) = 2 because (1)
#supp(a1)(a2) = 1 and b2 = a1 would imply that a2 and b2 are not disjoint. Thus,
there are two subcases to consider: either i) #supp(b2)(a1) = 1 and #supp(b2)(b1) = 1
or ii) #supp(b2)(a1) = 0 and #supp(b2)(b1) = 2. If we have i) then up to conjugacy,
g1 = a1b1 = (12)(34) and g2 = a2b2 = (15)(23). Thus, g1g2 = (12)(34)(15)(23) =
(15243) ∈ G. While, if we have ii) then up to conjugacy, g1 = a1b1 = (12)(34),
g2 = a2b2 = (15)(34) which gives g1g2 = (152) ∈ G. So, if #supp(b1)(a2) = 0 and
#supp(b2)(a1b1) = 2 then G either contains a 5-cycle or a 3-cycle. As shown previ-
ously, the presence of either implies that G ≥ An.

Thus, from the preceding two cases, we conclude that if #supp(b1)(a2) = 0 and
#supp(b2)(a1b1) ∈ {0, 2} then G ≥ An. The final case to consider is #supp(b2)(a1b1) =
1 where we show that G ≥ An unless (2) holds.

Case 1: #supp(b2)(a1b1) = 1. Here, there are two cases to consider: either i)
#supp(b2)(a1) = 1 and #supp(b2)(b1) = 0 or ii) #supp(b2)(a1) = 0 and #supp(b2)(b1) =
1. If we can show that the former implies G ≥ An then we will have proven the proposi-
tion because ii) is precisely (2). If we have i) then up to conjugacy, g1 = a1b1 = (12)(34)
and g2 = a2b2 = (15)(26). Also in the group is the element g3 := g1g2g1 = (25)(16) and
consequently the element g3g2 = (25)(16)(15)(26) = (12)(56). Now, let Γ := {1, 2, 5, 6}
and ∆ := Ω \ Γ. Since, g2, g3, g3g2 ∈ G∆, G∆ is transitive on the set Γ. As before,
|Γ| = 4 and the result of Marggraf cited above gives G ≥ An.

Thus, we have shown that if (1) holds then G ≥ An unless (2) holds.

Corollary 1. Let G be a primitive permutation group of degree n ≥ 9 which contains
a (2, 2) cycle g1 = a1b1. Then G contains a second (2, 2) cycle g2 = a2b2 such that (1)
holds. Moreover, G ≥ An unless (2) holds.

Proof. Let G act on the set Ω := {1, .., n}. Without loss of generality, we can assume
that a1 = (12). By a lemma of Rudio (cf. [2] pg. 78), the primitivity of G implies that
there exists an h ∈ G such that 1h ∈ {1, 2} while 2h /∈ {1, 2}. Let a2 := ha1h

−1 = (1h 2h)
and b2 := hb1h

−1. Then, g2 := hg1h
−1 = a2b2 ∈ G and by our choice of h we have (1)

#supp(a1)(a2) = 1. By Proposition 1, G ≥ An unless (2) holds as well.

Remark 1. Proposition 1 roughly corresponds to cases A and B of Netto’s argument.
Some specific differences in our formulation are the appeal to a result of Marggraf,
and the fact that a 5-cycle in a primitive group of degree ≥ 9 implies that the group
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contains the alternating group. Although new, these are only simplifications over Netto;
his treatement of the third case is what in fact necessitated our new formulation.

In his case C analysis on pg. 136, Netto lists a number of possible cases for a (2, 2)
cycle. One of which is (x1xm)(xnxp) where m, n, p ∈ {1, ..n}\{1, 2, 5}. On the following
page, Netto claims that in every case a proper combination of this element with the
other elements already determined to be in the group, (x1x2)(x3x4), (x1x5)(x3x6), and
(x2x5)(x4x6), results in a 7-cycle. However, if m = 3, n = 7 and p = 8 then no such
7-cycle appears in any combination of these elements; in fact, the permutation group
generated by these elements is of order 48 which cannot contain a 7-cycle. It is not
entirely clear from the exposition whether Netto had a different range in mind for the
indices or if this case was simply overlooked. In either case, a new argument was needed.

Since Netto’s case C originally began with (x1x2)(x3x4) and (x1x5)(x3x6) being in
the group and these elements satisfy conditions (1) and (2) from above, we have given
a new proof that such conditions imply that G ≥ An. This proof appears as:

Proposition 2. Let G be a primitive permutation group of degree n ≥ 9 acting on a
set Ω. If G contains a subset Tk := {g1, g2, ..., gk} with k ≥ 2, such that the following
conditions hold:

1. gi = aibi is a (2, 2) cycle for 1 ≤ i ≤ k,

2. ∃ t ∈ Ω s.t. for i 6= j, 1 ≤ i, j ≤ k, supp(ai)(aj) = {t},

3. ∆k
a ∩∆k

b = ∅ where ∆k
a :=

⋃k
i=1supp(ai) and ∆k

b :=
⋃k

i=1supp(bi),

then G ≥ An.

Proof. Let G be a primitive permutation group of degree n ≥ 9 and let Tk be a subset
of G that satisfies the hypotheses of the proposition.

Suppose that G � An. We begin by establishing that the primitivity of G implies
the existence of an element gk+1 = ak+1bk+1 ∈ G such that gk+1 is a (2, 2) cycle and
supp(ai)(aj) = {t} for i 6= j, 1 ≤ i, j ≤ k + 1. In other words, Tk+1 := Tk ∪ {gk+1}
satisfies the first two conditions of the proposition. We then show that because we have
supposed G � An, Tk+1 must also satisfy the third condition of the proposition. To
complete the proof, we show that this implies a contradiction and hence we must have
G ≥ An.

To begin, we have gk = akbk = (t u)(v w) where u, v, w ∈ Ω. Note that t ∈ supp(ak)
because gk ∈ Tk and Tk satisfies condition 2 of the proposition. Since ∆k

a 6= Ω by
condition 3, the lemma of Rudio implies that there exists h ∈ G such that th ∈ ∆k

a while
uh /∈ ∆k

a. Consider hakh
−1 = (th uh) and hbkh

−1 = (vh wh). If th = t then let ak+1 :=
hakh

−1 and bk+1 := hbkh
−1. Then, gk+1 := ak+1bk+1 = hgkh

−1 = (t ug)(vg wg) ∈ G is a
(2, 2) cycle, and supp(ai)(aj) = {t} for i 6= j, 1 ≤ i, j ≤ k+1. Thus, Tk+1 := Tk∪{gk+1}
satisfies the first two conditions of the proposition.

We now consider the case th 6= t and show that here too the set Tk+1 := Tk ∪{gk+1}
satisfies the first two conditions of the proposition. If th 6= t then we still have th ∈
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supp(ar) for some gr = arbr ∈ Tk; in fact, ar = (th t) because t ∈ supp(ar). In this
case, let ak+1 be the transposition that results from first conjugating ak by h and then
by gr. Similarly, let bk+1 be the transposition that results from first conjugating bk

by h and then by gr. Then, gk+1 := ak+1bk+1 ∈ G and ak+1 = (thgr uhgr)†. Now,
thgr = tharbr = tbr = t because if br did not fix t then gr would not be a (2, 2) cycle
contrary to assumption (i.e. ar and br would not be disjoint). So, ak+1 = (t uhgr).

Now, consider uhgr . We want to show that uhgr /∈ ∆k
a because this implies that

supp(ai)(aj) = {t} for i 6= j, 1 ≤ i, j ≤ k + 1. Since uh /∈ ∆k
a, we know that ar fixes

uh so uhgr = uhbr . Now, either uh /∈ supp(br) or uh ∈ supp(br). If uh /∈ supp(br) then
br fixes uh as well and uhgr = uh /∈ ∆k

a. On the other hand, if uh ∈ supp(br) then br

being a transposition, br = (uhuhbr) and so, uhgr = uhbr /∈ ∆k
a because if uhbr ∈ ∆k

a then
uhbr ∈ ∆k

a ∩ ∆k
b contrary to assumption. This shows that as in the case where th = t,

we have that gk+1 = ak+1bk+1 ∈ G is a (2, 2) cycle, and supp(ai)(aj) = {t} for i 6= j,
1 ≤ i, j ≤ k + 1. Hence, in either case, Tk+1 satisfies the first two conditions of the
proposition.

The next step in the proof is to show that because of our supposition that G � An,
Tk+1 must also satisfy the third condition; that is, ∆k+1

a ∩∆k+1
b = ∅. The fact that Tk+1

satisfies all three of the conditions will then be shown to imply a contradiction.
To show ∆k+1

a ∩ ∆k+1
b = ∅, note that for distinct gi, gj ∈ Tk+1, #supp(ai)(aj) = 1

so gi and gj satisfy condition (1) in Proposition 1. And since we’ve assumed that
G � An, Proposition 1 gives us (2): #supp(bi)(aj) = 0, #supp(ai)(bj) = 0, and
#supp(bi)(bj) = 1. Now, since this applies to any distinct gi, gj ∈ Tk+1, we must have
∆k+1

a ∩ ∆k+1
b = ∅. Thus, Tk+1 satifies all three of the conditions in the proposition.

What remains to be shown is that this leads to a contradiction.
The contradiction follows from the fact that #supp(Tk+1) ≥ #supp(Tk) + 1 which

we prove presently. First of all, #supp(Tk+1) ≥#supp(Tk∪{ak+1}) because Tk+1 = Tk∪
{gk+1}. Now, we need to show that #supp(Tk ∪{ak+1}) = #supp(Tk)+1. We do so by
showing that there is precisely one element in supp(ak+1) that is not in supp(Tk); that is,
#supp(ak+1)(Tk) = 1. This follows from the fact that Tk+1 satisfies the three conditions
of the proposition. More precisely, from ∆k+1

a ∩∆k+1
b = ∅ we get supp(ak+1) ∩∆k

b = ∅,
and from supp(ak+1)(ai) = {t} for 1 ≤ i ≤ k we get supp(ak+1) ∩ ∆k

a = {t}. Since
∆k

a ∪∆k
b = supp(Tk), these imply that supp(ak+1)(Tk) = {t}. Hence,

#supp(Tk+1) ≥ #supp(Tk ∪ {ak+1}) = #supp(Tk) + 1. (3)

With this inequality in hand, the contradiction is derived as follows. By assuming
that G � An, Tk ⊆ G implies Tk+1 ⊆ G where Tk+1 also satisfies the hypotheses of the
proposition. Thus, by iteration, what we in fact have is that Tk ⊆ G implies Tk+s ⊆ G
for any s ≥ 0 by a chain of implications. In particular, Tk ⊆ G implies Tk+n ⊆ G.
Then, by (3), we have #supp(Tk+n) ≥#supp(Tk)+n > n. So, #supp(Tk+n) > n. But,
Tk+n ⊆ G so we cannot have that the support of Tk+n is greater than the degree n of
G. This is a contradiction. Hence, G ≥ An.

†In symbols, this is: ak+1 := grhakh−1gr
−1 = (thgr uhgr ) and bk+1 := grhbkh−1gr

−1 = (vhgr whgr ).
Then, gk+1 = grhgkh−1gr

−1. Therefore, gk+1 ∈ G.
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Proposition 1 (more precisely, Corollary 1) and Proposition 2 immediately furnish
Theorem 2:

Proof of Theorem 2. If G contains a 4-cycle then the square of that element will be a
(2, 2)-cycle so we can suppose, without loss of generality, that G contains a (2, 2)-cycle,
g1.

By Corollary 1, we have another element g2 in G such that if G � An then conditions
(1) and (2) hold. But if (1) and (2) hold then T2 := {g1, g2} satisfies the hypotheses of
Proposition 2, and so G ≥ An.

With this result in hand, we now turn to the specific case of n = 7. Here, we prove
a more general result than is needed to establish Theorem 1; namely,

Proposition 3. If G ≤ S7 is transitive and contains a 4-cycle, then G = S7.

In doing so, we make use of the following well-known lemma:

Lemma 1. A group of order 84 is solvable.

Proof. Let K be a group of order 84 = 7 · 4 · 3. By the Sylow Theorems, the number,
n7, of Sylow 7-subgroups of K must satisfy: n7 ≡ 1 mod 7 and n7 | 12. Thus, n7 = 1,
so the unique Sylow 7-subgroup of K is normal and by forming the quotient group K

P7
,

we get |K
P7
| = |K|

|P7| = 12. Hence, P7 and K
P7

are both solvable implying K is solvable.

Also, we remark that, by an easy argument, a transitive group of prime degree is
automatically primitive (cf. [3] pg. 16).

Proof of Proposition 3. We begin by supposing that G 6= S7. Since G contains a 4-cycle
and thus G 6= A7, this is equivalent to supposing G � A7. Now, since G is a permutation
group of prime degree, we have from Galois (cf. [3] pg. 29) that G is solvable iff for two
distinct points of {1, .., 7} the only element which fixes both is the identity. The 4-cycle
in G, however, fixes three distinct points and so G is insolvable. By Burnside (cf. [3]
pg. 29), every insolvable transitive group of prime degree is 2-transitive. Hence, G is
2-transitive.

By a result of Bochert (cf. [3] pg. 41), a primitive group G � An satisfies:

|Sn : G| ≥ [n+1
2

]!

With n = 7 this implies |S7 : G| ≥ 4! and hence, |G| ≤ 210. As a lower bound, we
have 60 ≤ |G| because G is insolvable. By Wielandt (cf. [3] pg. 20) the order of a
k-fold transitive group of degree n is divisible by n(n − 1)...(n − k + 1). In our case,
G is at least 2-transitive, so 7(7− 1) = 42 divides |G|. Together, these conditions give
|G| ∈ {84, 126, 168, 210}.

Now, by Lemma 1, |G| 6= 84 because G is insolvable. Furthermore, the presence
of the 4-cycle means |G| must be divisible by 4 so |G| 6= 126, 210 =⇒ |G| = 168. If
|G| = 168 then we claim G must be simple. Suppose G had a proper normal subgroup
H. If 3 ≤ |H| ≤ 56 then by a straight cardinality argument both H and G

H
must be
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solvable. On the other hand, if |H| ∈ {2, 84} then by Lemma 1, both H and G
H

are
again solvable. Since G is insolvable, these would imply a contradiction and so G must
be simple.

We now show that if G is simple then G ≤ A7. Let G′ and S ′
7 be the commutator

subgroups for G and S7 respectively. Then, G′ ≤ S ′
7 because G ≤ S7. Since G is

nonabelian simple, G = G′. Furthermore, given that S ′
7 = A7, this implies G ≤ A7.

But G contains a 4-cycle, which is odd, so G � A7. This being a contradiction, our
original assumption that G 6= S7 must have been wrong. Hence, G = S7.

With Theorem 2 for n ≥ 9 and the preceding Proposition 3 for n = 7, we are now
in a position to prove our desired result, Theorem 1:

Proof of Theorem 1. If n = 7 then s4 ∈ G is a 4-cycle and by Proposition 3, G = S7.
If n ≥ 9 then because s4 has cycle decomposition (2)m−3(4), s4

2 ∈ G is a (2, 2) cycle
and G ≥ An by Theorem 2.

Moreover, if n ≡ 1 (mod 4) then m ≡ 0 (mod 2) and s1, s2, s3 and s4 are all even.
Since G is generated by even elements, G ≤ An. Together with G ≥ An, this implies
G = An if n ≡ 1 (mod 4).

On the other hand, if n ≡ 3 (mod 4), then m ≡ 1 (mod 2) and s1, s2, s3 and s4 are
all odd. Since G contains odd elements, G 6= An. Together with G ≥ An this implies
G = Sn if n ≡ 3 (mod 4).
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