A new formulation of Netto’s argument and the case
of degree seven.

Matthew Ingle

We are interested in groups with the following properties:
Let n > 7 be an odd integer, and consider subgroups G < .5,, that satisfy:

1. G = (s, S2, 3, S4) where s1525354 = 1.

2. (s1,592,83,50) = ((2)™,(2)™,(2)™, (2)"*(4)) where m = “*. The notation (2)™
means that s; is a product of m disjoint 2-cycles, and similarly, the cycle decom-
position of s4 consists of m — 3 disjoint 2-cycles and one 4-cycle.

3. G acts primitively on S = {xy, 29, ..., T, }.

Such groups occur in [1], pg. 17 (specifically, Prop. 3.6) as the monodromy groups of
certain curve covers. In this paper, we prove the following fact about these groups:

Theorem 1. If a group G satisfies the above conditions then G = A,,, if n =1 (mod 4)
and G = S,, if n =3 (mod 4).

In our demonstration, the case n = 7 will be considered separately because for the
case n > 9 we prove a more general result:

Theorem 2. If G is a primitive permutation group of degree n > 9 and G contains a
4-cycle or a (2,2)-cycle then G > A,

The motivation for Theorem 2 came from Netto who, in his Theory of Substitutions,
gave a sketched proof of an equivalent theorem (cf. [2] pg. 133-8). Unfortunately, a new
formulation of his argument was necessary because of some ambiguity in his exposition
(see Remark 1 below). In our new formulation, Theorem 2 follows from Propositions 1
and 2 appearing below.

Because it is a more general result, we begin with our proof of Theorem 2 and its
antecedent propositions. Following this, we consider the case of n = 7 and conclude
with our proof of Theorem 1. Before beginning, we need to establish the following
terminology:

Definition. Let G be a group acting on a set (2, and let T" be a subset of G. We define
the support of T by

supp(T) := {zx € Q|29 # x for at least one g € T'}.
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When T is a singleton, i.e. T' = {g}, we write supp(g) instead of supp({g}). Addi-
tionally, due to its ubiquitous application, we define the following shorthand:

supp(g)(h) := supp(g) Nsupp(h).

Proposition 1. Let G be a primitive permutation group of degree n > 9 and let g; =
a;b; € G be two (2,2) cycles such that:

#supp(a1)(az) = 1. (1)

Then G > A,, unless we have:

#supp(by)(az) = 0, #supp(a1)(bz) = 0, and #supp(by)(b2) = 1. (2)

Proof. Let G be a primitive permutation group acting on the set Q :={1,2,..,n} with
n > 9 and let g; = a;b; € G be two (2,2) cycles such that condition (1) holds.

Our argument concerns the following variables: #supp(b;)(az) € {0,1}, and
#supp(by)(a1by) € {0,1,2}. We begin by supposing that #supp(b;)(as) = 1, and
show that for each possible value of #supp(by)(a1by), G > A,. Then, we suppose that
#supp(by)(az) = 0 and show that G > A,, unless condition (2) holds.

Claim 1: #supp(by)(az) =1 = G > A,.

The following three subcases are organized according to the value of #supp(b2)(a1by) €
{0,1,2} wherein we show that in each case, G > A,,.

Case 0: #supp(by)(ai1b;) = 0. Up to conjugacy, we have g1 = a;b; = (12)(34) and
g2 = agby = (13)(56). Thus, we have g3 := ¢g29192 = (14)(23) € G and consequently
9193 = (13)(24) € G. Now, let I' := {1,2,3,4} and A := Q\ I Then Gx is tran-
sitive on the set I" because g1, 93,9193 € Ga. Since by assumption |[Q2] > 9, we have
IT| =4 < 3|9, and so it follows from a result of Marggraf (cf. [3] pg. 35) that G > A,.

Case 1: #supp(be)(aiby) = 1. There are two cases to consider here: either i)
#supp(bz2)(a1) = 1 and #supp(b)(b1) = 0 or ii) #supp(bz)(a1) = 0 and #supp(b2) (b1) =
1. In either case, we claim that G contains a 5-cycle. If we have i), then up to Conju—
gacy, g1 = a1b; = (12)(34) and g2 = asby = (13)(25) which gives g9 = (14325) €
On the other hand, if we have ii), then up to conjugacy, g1 = a1b; = (12)(34) and
g2 = asby = (13)(45) which gives g1g2 = (14532) € G. So, if #supp(b1)(az) = 1 and
#supp(by)(a1by) = 1 then G contains a 5-cycle. By Netto (cf. [2] pg. 93), a primitive
group of degree n which contains a p-cycle of order p < 2?" contains the alternating
group. In the case where p = 5 this is 15 < 2n. Since by assumption n > 9, the
inequality holds and so G > A,,.

Case 2: #supp(by)(a1by) = 2. We cannot have #supp(by)(a;) = 2 because condition
(1) and by = a; would imply that by and as are not disjoint. Similarly, we cannot have
#supp(bs)(by) = 2 because #supp(b;)(az) = 1 and by = by would also imply that by and
ay are not disjoint. Therefore, there is only one case to consider: #supp(by)(a;) = 1
and #supp(b2)(b1) = 1. Up to conjugacy, this is g1 = a1b; = (12)(34) and g2 = asbs =
(13)(24). Thus, we have g3 := ¢192 = (14)(23) € G. Now, as in Case 0 above, let
[':=1{1,2,3,4} and A := Q\T'. Then, g1, 92,93 € Ga and G is transitive on I". Since
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IT'| = 4, the above cited result of Marggraf gives that G > A,,.

Since the preceding cases exhaust the possibilities for #supp(bs)(a1by) € {0,1,2},
Claim 1 is proved. We turn now to Claim 2.

Claim 2: #supp(by)(az) =0 = G > A, unless (2).

As before, we divide the argument into subcases according to the value of #supp(by)(a1by) €
{0,1,2}. Since (2) is included in the case #supp(bs)(aib;) = 1, our first task is to show
that if #supp(bs)(a1by) € {0,2} then G > A,,.

Case 0: #supp(bs)(aib;) = 0. Up to conjugacy, we have g1 = a1by = (12)(34) and
g2 = asby = (15)(67). Thus, (g192)*> = (125) € G. By a well-known result, if a primitive
group contains a 3-cycle then G > A,, (cf. [3] pg. 34).

Case 2: #supp(bs)(aiby) = 2. We cannot have #supp(b2)(a;) = 2 because (1)
#supp(ai)(az) = 1 and by = a; would imply that ay and by are not disjoint. Thus,
there are two subcases to consider: either i) #supp(bz)(a;) = 1 and #supp(b2)(by) =1
or ii) #supp(bs)(a;) = 0 and #supp(by)(by) = 2. If we have i) then up to conjugacy,
g1 = a1by = (12)(34) and g = agby = (15)(23). Thus, g192 = (12)(34)(15)(23) =
(15243) € G. While, if we have ii) then up to conjugacy, g1 = a1by = (12)(34),
g2 = asbe = (15)(34) which gives ¢g1g2 = (152) € G. So, if #supp(by)(az) = 0 and
#supp(by)(a1by) = 2 then G either contains a 5-cycle or a 3-cycle. As shown previ-
ously, the presence of either implies that G > A,,.

Thus, from the preceding two cases, we conclude that if #supp(b;)(a2) = 0 and
#supp(b2)(aiby) € {0,2} then G > A,,. The final case to consider is #supp(by)(a1by) =
1 where we show that G > A,, unless (2) holds.

Case 1: #supp(be)(a1by) = 1. Here, there are two cases to consider: either i)
srsupp(by) (1) = 1 and #supp(ba) (b1) = 0 or if) #Esupp(ba)(ar) = 0 and #supp(b;)(by) =
1. If we can show that the former implies G > A,, then we will have proven the proposi-
tion because ii) is precisely (2). If we have i) then up to conjugacy, g1 = a1b; = (12)(34)
and g2 = asby = (15)(26). Also in the group is the element g3 := g1g291 = (25)(16) and
consequently the element g3go = (25)(16)(15)(26) = (12)(56). Now, let I := {1,2,5,6}
and A := Q\ I'. Since, ¢, 93,9392 € Ga, Ga is transitive on the set I'. As before,
II'| = 4 and the result of Marggraf cited above gives G > A,,.

Thus, we have shown that if (1) holds then G > A,, unless (2) holds. O

Corollary 1. Let G be a primitive permutation group of degree n > 9 which contains
a (2,2) cycle g1 = arby. Then G contains a second (2,2) cycle go = asby such that (1)
holds. Moreover, G > A,, unless (2) holds.

Proof. Let G act on the set  := {1,..,n}. Without loss of generality, we can assume
that a; = (12). By a lemma of Rudio (cf. [2] pg. 78), the primitivity of G implies that
there exists an h € G such that 1" € {1,2} while 2" ¢ {1,2}. Let ay := ha;h™! = (1" 2")
and by := hbyh™t. Then, g, := hgih™' = asby € G and by our choice of h we have (1)
#supp(ay)(az) = 1. By Proposition 1, G > A,, unless (2) holds as well. O

Remark 1. Proposition 1 roughly corresponds to cases A and B of Netto’s argument.
Some specific differences in our formulation are the appeal to a result of Marggraf,
and the fact that a 5-cycle in a primitive group of degree > 9 implies that the group
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contains the alternating group. Although new, these are only simplifications over Netto;
his treatement of the third case is what in fact necessitated our new formulation.

In his case C analysis on pg. 136, Netto lists a number of possible cases for a (2, 2)
cycle. One of which is (z12,,)(z,2p) where m,n,p € {1,..n}\{1,2,5}. On the following
page, Netto claims that in every case a proper combination of this element with the
other elements already determined to be in the group, (z1x2)(z324), (z125)(2326), and
(xows)(x4ms), results in a T-cycle. However, if m = 3, n = 7 and p = 8 then no such
7-cycle appears in any combination of these elements; in fact, the permutation group
generated by these elements is of order 48 which cannot contain a 7-cycle. It is not
entirely clear from the exposition whether Netto had a different range in mind for the
indices or if this case was simply overlooked. In either case, a new argument was needed.

Since Netto’s case C originally began with (x122)(x324) and (x125)(x326) being in
the group and these elements satisfy conditions (1) and (2) from above, we have given
a new proof that such conditions imply that G > A,,. This proof appears as:

Proposition 2. Let G be a primitive permutation group of degree n > 9 acting on a
set Q. If G contains a subset Ty := {q1, g2, ..., gr} with k > 2, such that the following
conditions hold:

1. g = ab; is a (2,2) cycle for 1 <i <k,

2. 3t € Q st fori#j,1<i,j <k, supp(a;)(a;) = {t},

3. AF 0 AF =0 where AF = Y supp(a;) and AF = I supp(b;),
then G > A,

Proof. Let GG be a primitive permutation group of degree n > 9 and let T} be a subset
of G that satisfies the hypotheses of the proposition.

Suppose that G # A,. We begin by establishing that the primitivity of G implies
the existence of an element gxi1 = agi1bpr1 € G such that gy is a (2,2) cycle and
supp(a;)(a;) = {t} for i # j, 1 < 4,5 < k+ 1. In other words, Tj+1 = T U {gr+1}
satisfies the first two conditions of the proposition. We then show that because we have
supposed G # A,, Ty41 must also satisfy the third condition of the proposition. To
complete the proof, we show that this implies a contradiction and hence we must have
G>A,.

To begin, we have gy = agby = (tu)(vw) where u, v, w € . Note that ¢t € supp(ay)
because gp € Tj and T}, satisfies condition 2 of the proposition. Since AF # Q by
condition 3, the lemma of Rudio implies that there exists h € G such that t" € AF while
uh ¢ AF. Consider haph™! = (thu") and hbyh™t = (vPwh). If t* =t then let agyi =
hayh™ and by := hbph™t. Then, gpi1 = api1bpsr = hgrh™' = (tu9) (v w9) € G is a
(2,2) cycle, and supp(a;)(a;) = {t} fori # j, 1 <i,j < k+1. Thus, T4y := T,U{gr+1}
satisfies the first two conditions of the proposition.

We now consider the case t" # ¢ and show that here too the set Ty 1 := T, U{gr+1}
satisfies the first two conditions of the proposition. If t* # t then we still have t" €



supp(a,) for some g, = a,b, € Ty; in fact, a, = (t"t) because t € supp(a,). In this
case, let a1 be the transposition that results from first conjugating a; by A and then
by ¢.. Similarly, let by, be the transposition that results from first conjugating by
by h and then by g,. Then, gri1 = apiibpy1 € G and agyy = ("9 u"9)7. Now,
thor = tharbr — ¢br — ¢ because if b, did not fix ¢ then g, would not be a (2,2) cycle
contrary to assumption (i.e. a, and b, would not be disjoint). So, ap,; = (tu9r).

Now, consider u"r. We want to show that u" ¢ AF because this implies that
supp(a;)(a;) = {t} for i # j, 1 <i,5 < k+ 1. Since u" ¢ AF, we know that a, fixes
ul so uh9r = uhb . Now, either u” ¢ supp(b,) or u" € supp(b,). If v ¢ supp(b,) then
b, fixes u" as well and u"9" = u* ¢ Ak, On the other hand, if u" € supp(b,) then b,
being a transposition, b, = (u"u""") and so, u"9 = u"*r ¢ AF because if v € A¥ then
uhb € Ak N AF contrary to assumption. This shows that as in the case where t" = t,
we have that gyy1 = ap1bk+1 € G is a (2,2) cycle, and supp(a;)(a;) = {t} for i # j,
1 <4,7 < k+ 1. Hence, in either case, Ty, satisfies the first two conditions of the
proposition.

The next step in the proof is to show that because of our supposition that G # A,,
T}.+1 must also satisfy the third condition; that is, A’;“ N A’g“ = (). The fact that Ty,
satisfies all three of the conditions will then be shown to imply a contradiction.

To show AF N AF = (), note that for distinct g;,g; € Thr1, F#supp(a;)(a;) = 1
so g; and g; satisfy condition (1) in Proposition 1. And since we've assumed that
G # A,, Proposition 1 gives us (2): #supp(b;)(a;) = 0, #supp(a;)(b;) = 0, and
#supp(b;)(b;) = 1. Now, since this applies to any distinct g;, g; € Tk11, we must have
AF N AT = (). Thus, Ty, satifies all three of the conditions in the proposition.
What remains to be shown is that this leads to a contradiction.

The contradiction follows from the fact that #supp(Tj41) > #supp(Tx) + 1 which
we prove presently. First of all, #supp(Tk11) > #supp(TxU{axs1}) because Ty 1 = TU
{gk+1}. Now, we need to show that #supp(7; U{ar+1}) = #supp(Ty)+ 1. We do so by
showing that there is precisely one element in supp(ay1) that is not in supp(7}); that is,
#supp(ag+1)(Tx) = 1. This follows from the fact that T} satisfies the three conditions
of the proposition. More precisely, from A¥1 N A’;“ = ) we get supp(agy1) NAF =10,
and from supp(ap;i)(a;) = {t} for 1 < i < k we get supp(arr1) N A¥ = {t}. Since
AR U A = supp(Ty), these imply that supp(ax,1)(Tx) = {t}. Hence,

#supp(Trq1) > #supp(Ty U {ars+1}) = #supp(Tx) + 1. (3)

With this inequality in hand, the contradiction is derived as follows. By assuming
that G # A,, T}, C G implies Ty41 € G where Ty, also satisfies the hypotheses of the
proposition. Thus, by iteration, what we in fact have is that T, C G implies T}, s C G
for any s > 0 by a chain of implications. In particular, T, C G implies T, C G.
Then, by (3), we have #supp(Tg1y) > #supp(Tx) +n > n. So, #supp(Tkin) > n. But,
Tkin € G so we cannot have that the support of Ty, is greater than the degree n of
(. This is a contradiction. Hence, G > A,,. O

"In symbols, this is: ap,1 := grharh™ g, ~! = (t"9 u"9r) and by := g hbph™lg,~! = (V"9 whor).
Then, gri1 = g-hgrh~'g,~!. Therefore, gr41 € G.



Proposition 1 (more precisely, Corollary 1) and Proposition 2 immediately furnish
Theorem 2:

Proof of Theorem 2. If G contains a 4-cycle then the square of that element will be a
(2, 2)-cycle so we can suppose, without loss of generality, that G contains a (2, 2)-cycle,
g1-

By Corollary 1, we have another element g, in G such that if G # A, then conditions
(1) and (2) hold. But if (1) and (2) hold then T3 := {g1, g2} satisfies the hypotheses of
Proposition 2, and so G > A,,. n

With this result in hand, we now turn to the specific case of n = 7. Here, we prove
a more general result than is needed to establish Theorem 1; namely,

Proposition 3. If G < 57 is transitive and contains a 4-cycle, then G = Sy.
In doing so, we make use of the following well-known lemma:
Lemma 1. A group of order 84 is solvable.

Proof. Let K be a group of order 84 = 7 -4 - 3. By the Sylow Theorems, the number,
nz, of Sylow 7-subgroups of K must satisfy: n; = 1mod 7 and n; | 12. Thus, n; = 1,

so the unique Sylow 7-subgroup of K is normal and by forming the quotient group %,
1Kl

we get 5] = {4

= 12. Hence, P; and % are both solvable implying K is solvable. [

Also, we remark that, by an easy argument, a transitive group of prime degree is
automatically primitive (cf. [3] pg. 16).

Proof of Proposition 3. We begin by supposing that G # S7. Since G contains a 4-cycle
and thus G # A7, this is equivalent to supposing G # A;. Now, since G is a permutation
group of prime degree, we have from Galois (cf. [3] pg. 29) that G is solvable iff for two
distinct points of {1, .., 7} the only element which fixes both is the identity. The 4-cycle
in G, however, fixes three distinct points and so G is insolvable. By Burnside (cf. [3]
pg. 29), every insolvable transitive group of prime degree is 2-transitive. Hence, G is
2-transitive.
By a result of Bochert (cf. [3] pg. 41), a primitive group G # A, satisfies:

S G| = [5]!

With n = 7 this implies |S; : G| > 4! and hence, |G| < 210. As a lower bound, we
have 60 < |G| because G is insolvable. By Wielandt (cf. [3] pg. 20) the order of a
k-fold transitive group of degree n is divisible by n(n — 1)...(n — k + 1). In our case,
G is at least 2-transitive, so 7(7 — 1) = 42 divides |G|. Together, these conditions give
G| € {84,126, 168, 210}.

Now, by Lemma 1, |G| # 84 because G is insolvable. Furthermore, the presence
of the 4-cycle means |G| must be divisible by 4 so |G| # 126,210 = |G| = 168. If
|G| = 168 then we claim G must be simple. Suppose G had a proper normal subgroup
H. If 3 < |H| < 56 then by a straight cardinality argument both H and £ must be



solvable. On the other hand, if |[H| € {2,84} then by Lemma 1, both H and % are
again solvable. Since G is insolvable, these would imply a contradiction and so G must
be simple.

We now show that if G is simple then G < A7. Let G" and S, be the commutator
subgroups for G and S7 respectively. Then, G’ < SI because G < S7. Since G is
nonabelian simple, G = G’. Furthermore, given that S, = A7, this implies G < A7.
But G contains a 4-cycle, which is odd, so G £ A;. This being a contradiction, our
original assumption that G # S7 must have been wrong. Hence, G = S7. O]

With Theorem 2 for n > 9 and the preceding Proposition 3 for n = 7, we are now
in a position to prove our desired result, Theorem 1:

Proof of Theorem 1. If n = 7 then s4 € GG is a 4-cycle and by Proposition 3, G = 5.
If n > 9 then because s; has cycle decomposition (2)™73(4), s4> € G is a (2,2) cycle
and G > A,, by Theorem 2.

Moreover, if n = 1 (mod 4) then m = 0 (mod 2) and s1, s5, s3 and s4 are all even.
Since G is generated by even elements, G < A,,. Together with G > A,,, this implies
G=A,ifn=1 (mod 4).

On the other hand, if n = 3 (mod 4), then m = 1 (mod 2) and s, s3, 53 and sy are
all odd. Since G contains odd elements, G # A,,. Together with G > A,, this implies
G =S, if n =3 (mod 4). O
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