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1 Introduction

Let E1 and E2 be two elliptic curves over an algebraically closed field K. The purpose
of this paper is to study the question of whether or not the product surface E1 × E2

can be the Jacobian of a (smooth, irreducible) curve C of genus 2. By properties of
the Jacobian, this question is equivalent to the question of whether or not there is
such a curve C on E1 × E2.

This question was first investigated in 1965 by Hayashida and Nishi[7], [6] who
obtained partial results. Later Ibukiyama, Katsura and Oort[8] settled the case that
E1 and E2 are supersingular (see Theorem 5 below).

In studying the moduli spaces of genus 2 curves C whose Jacobians are isomorphic
to a product of two elliptic curves, the following result was obtained in [11]:

Theorem 1 Suppose that Hom(E1, E2) = Zh 6= 0, and put d = deg(h). Then there
is no genus 2 curve on E1×E2 if and only if d = 1 or if d is an even idoneal number
which is not divisible by 8. This is the case for the following 21 values of d,

d = 1, 2, 4, 6, 10, 12, 18, 22, 28, 30, 42, 58, 60, 70, 78, 102, 130, 190, 210, 330, 462,(1)

and for at most one more value d = d∗ > 462. If the Euler/Gauss Conjecture (or if
the Generalized Riemann Hypothesis) is true, then no such extra d∗ exists.

This, therefore, answers the above question in the case that E1 and E2 are isoge-
nous elliptic curves without complex multiplication, if we leave aside the difficult
number-theoretic question of whether or not an extra idoneal number d∗ exists. (A
discussion of this question and its history can be found in [12].)

In this paper we answer the above question in the remaining case that E1 and E2

are isogenous elliptic curves with complex multiplication. (Note that if E1 and E2

are not isogenous, then this question is uninteresting; cf. Remark 9.) Before stating
the result, we make the important observation (cf. Corollary 8) that the existence of
genus 2 curves on E1 × E2 depends only on the nature of the quadratic form qE1,E2

on Hom(E1, E2) which is defined by

qE1,E2(f) := deg(f) for f ∈ Hom(E1, E2).

Note that by fixing a basis of Hom(E1, E2) we obtain an explicit binary quadratic
form and hence (by considering all bases) a GL2(Z)-equivalence class of forms.
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Theorem 2 Let E1 ∼ E2 be two isogenous CM elliptic curves over K. Then there is
no genus 2 curve on E1×E2 if and only if qE1,E2 is equivalent to one of the 15 forms
f(x, y) = ax2 + bxy + cy2 whose coefficients (a, b, c) are in the following list:

L = {k(1, 1, 1) : k = 1, 2, 4, 6, 10} ∪ {k(1, 0, 1) : k = 1, 2, 6} ∪ {(1, 1, 2), (1, 1, 4)}
∪ {2(1, 1, c) : c = 3, 9} ∪ {2(1, 0, c) : c = 2, 5} ∪ {2(2, 0, 3)}.

In particular, there are only finitely many pairs (E1, E2) of isomorphism classes
of CM-curves such that E1 × E2 has no genus 2 curve, and these can be determined
explicitly; cf. Remark 60. However, since different pairs may give rise to isomorphic
product surfaces, it is more useful to count isomorphism classes of CM abelian product
surfaces (i.e. abelian surfaces which are isogenous to E×E, where E is a CM elliptic
curve). By using the results of [13], we obtain:

Corollary 3 Up to isomorphism, there are at most 15 isomorphism classes of CM
abelian product surfaces over K which do not contain a genus 2 curve. Moreover, if
char(K) = 0, then there are precisely 15 such surfaces.

These 15 product surfaces are given explicitly in Corollary 59 and Remark 60.
Moreover, Remark 58 discusses what happens when char(K) 6= 0.

Note that if we restrict attention to those CM-curves Ei for which End(Ei) is a
maximal order, then qE1,E2 is a primitive form (cf. Remark 38) and so Theorem 2
shows that there are only 4 such exceptional forms and 4 exceptional surfaces. Thus,
the above result includes the result of Hayashida and Nishi[7], who considered only
the maximal order case.

This result can also be turned into an existence theorem which is valid over an
arbitrary ground field K0, as follows.

Corollary 4 Let A/K0 be an abelian surface such that A is isogenous to E × E,
where E/K0 is a CM elliptic curve with rank(EndK0(E)) = 2, and let ∆(A) be the
discriminant of the intersection pairing on the Néron-Severi group NS(A). Then there
exist elliptic curves E1 and E2/K0 such that A ' E1 × E2. Moreover, if −∆(A) is
not equal to one of the 15 discriminants of the forms in L, i.e. if

∆(A) /∈ {3, 4, 7, 12, 15, 16, 32, 44, 48, 80, 96, 108, 140, 144, 300},(2)

then there is a genus 2 curve C/K0 on A and hence JC ' A ' E1 × E2.

Note that the above corollary is a special case of a more precise result (Theorem
61) which is proven in section 7.

For the sake of completeness we also mention the following analogue of Theorems
1 and 2 in the supersingular case which was proven (but not explictly stated) by
Ibukiyama, Katsura and Oort [8].
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Theorem 5 (Ibukiyama/Katsura/Oort) If E1 and E2 are two supersingular curves
over K, then there is no genus 2 curve on E1 × E2 if and only if char(K) = 2 or 3.

The first main ingredient of the proof of Theorem 2 is the refined Humbert invari-
ant qθ which was defined in [11] (see also [10]). As is explained in §2, this allows us
to translate the problem of finding genus 2 curves on E1 × E2 into a problem about
the classification of quadratic forms with certain properties.

This classification problem is also of independent interest, for it can be viewed as
a generalization of the problem of classifying idoneal numbers, as is explained in more
detail in [12]. Indeed, one of the key steps of this result is the classification (given
in §5) of (special) idoneal-valued binary quadratic forms which are introduced here
in §3. (Roughly speaking, a special idoneal-valued form is a quadratic form whose
small values are all special idoneal numbers, i.e. those idoneal numbers which appear
in Theorem 1.)

In addition, it turns out that there is close connection between this problem and
the class-number one problem for forms in r ≥ 3 variables. This problem, which
was studied in a series of papers by Watson[20], is to classify all positive definite
quadratic forms q whose class number c(q) := #gen(q) = 1; i.e. to determine those
forms q whose genus gen(q) consists only of a single equivalence class.

As the following result shows, these two classification problems are also con-
nected to other classification problems, and this connection is established via the
θ-construction, which is an abstract version of the refined Humbert invariant qθ in
the context of quadratic forms. This construction, which associates to a pair (Q, θ)
(where Q is an arbitrary quadratic form in r variables and θ ∈ Zr satisfies Q(θ) = 1)
a certain equivalence class Qθ of forms in r − 1-variables, is studied in detail in §4,
and leads to the following classification theorem of quadratic forms.

Theorem 6 Let q(x, y) = ax2 + bxy + cy2 be a positive-definite binary quadratic
form such that either b is odd or that q(x, y) 6≡ 3 (mod 4), for all x, y ∈ Z. If
fq(x, y, z) = z2+4q(x, y) and Q(x, y, z, w) = xy−q(z, w), then the following conditions
are equivalent:

(i) c(fq) = 1;

(ii) 1 ∈ f ′(Z3), for all f ′ ∈ gen(fq);

(iii) 1 ∈ Qθ(Z3), for all θ ∈ Z4 with Q(θ) = 1;

(iv) q is a special idoneal-valued form;

(v) q is equivalent to one of 15 forms of the list L of Theorem 2.

The proof this theorem, which uses the mass formula for ternary quadratic forms
(cf. §6) and the analytic results of Weinberger[22] (cf. §5), occupies most of this
paper (§4-7). As was mentioned above (and is explained in detail in §3), Theorem 2
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follows immediately from it once one has established certain properties of the refined
Humbert invariant which are presented in §2.

This research was partially supported by a Discovery Grant from the Natural
Sciences and Engineering Research Council of Canada (NSERC), and also by the
Graduiertenkolleg of the Institute of Experimental Mathematics (IEM) of the Uni-
versity of Duisburg/Essen. I would like to express my appreciation to Gerd Frey
and to the IEM for their hospitality, and to thank him for his interest and helpful
comments on this paper.

2 Curves on product surfaces

As was mentioned in the introduction, the first step in proving Theorem 2 is to
translate the problem of finding genus 2 curves on the product surface E1 × E2 into
a problem about quadratic forms. For this, we recall from [11] the following facts
about such curves.

Let A be an abelian surface over an algebraically closed field K, and let P irr(A)
denote the set of smooth, irreducible genus 2 curves C on A. By the adjunction
formula on A, the self-intersection number of C is C2 = 2, so

P irr(A) ⊂ P(A) := {θ ∈ Div(A) : θ ≥ 0, θ2 = 2},

where Div(A) denotes the group of divisors on A. Here the notation P irr(A) reflects
the fact (due to Weil[21]) that if θ ∈ P(A), then θ ∈ P(A)irr if and only if θ is an
irreducible curve. (Thus, if θ is irreducible, then it is also smooth.)

To decide whether or not θ ∈ P(A) is irreducible, we shall use the refined Humbert
invariant qθ defined in [11] (which by [10] is closely related to the classical Humbert
invariant defined by Humbert). This is the quadratic form defined by the formula

qθ(D) = (D.θ)2 − 2D2, D ∈ Div(A),(3)

where (.) denote intersection numbers. It is clear that qθ can be viewed as a quadratic
form on the Néron-Severi group of A, i.e. on the quotient group NS(A) = Div(A)/≡,
where the equivalence relationD1 ≡ D2 (numerical equivalence) means that (D1.D) =
(D2.D), ∀D ∈ Div(A). Moreover, a short computation (using the fact that θ2 = 2)
shows that qθ is actually a quadratic form on NS(A, θ) := NS(A)/Zθ, and the Hodge
Index Theorem shows that qθ is positive definite (on NS(A, θ)).

One of the key properties of qθ is the following irreducibility criterion (cf. [11],
Proposition 6): if θ ∈ P(A), then

θ is irreducible ⇔ qθ(D) 6= 1, for all D ∈ Div(A).(4)

The above criterion translates the existence of genus 2 curves on A into a problem
that only involves the integral quadratic form qA defined by the intersection pairing
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on NS(A) ' Zρ. To make this precise, put

qA(D) = 1
2
(D.D), for D ∈ NS(A),

which is an integral quadratic form by the Riemann-Roch theorem ([15], p. 150).
Then the refined Humbert invariant qθ = (qA)θ associated to θ ∈ P(A) is given by

(qA)θ(D) = βqA
(D, θ)2 − 4qA(D), for D ∈ NS(A),(5)

where βqA
denotes the bilinear form associated to the quadratic form qA (cf. §3).

Proposition 7 There is a genus 2 curve on the abelian surface A if and only if there
is a θ ∈ NS(A) with qA(θ) = 1 and (qA)θ(D) 6= 1, for all D ∈ NS(A).

Proof. If such a curve C exists, then its class θ = cl(C) in NS(A) satisfies qA(θ) =
1
2
C2 = 1 and (qA)θ(D) 6= 1, for all D ∈ NS(A) by (4). Conversely, if θ ∈ NS(A)

satisfies these properties, then by [10], Corollary 2.4, there is an effective curve C
on A such that its class cl(C) equals either θ or −θ. Thus, C ∈ P(A). Since
(qA)−θ = (qA)θ, it thus follows from (4) that C ∈ P(A)irr.

So far, the above results are true for an arbitrary abelian surface A. If we now
specialize to the case that A = E1×E2 is a product surface, then we can relate qA to
the binary quadratic form qE1,E2 defined by the degree map on Hom(E1, E2), i.e. by

qE1,E2(f) = deg(f), if f ∈ Hom(E1, E2) ' Zr,

where r = rank(Hom(E1, E2)). (Note that this defines a GLr(Z)-equivalence class of
quadratic forms in r variables.)

Now by Proposition 22 of [11] we have an isomorphism NS(A) ' Z2⊕Hom(E1, E2)
and via this identification we have

qE1×E2(x, y, f) = xy − qE1,E2(f), for x, y ∈ Z, f ∈ Hom(E1, E2).(6)

In other words, qE1×E2 ∼ (xy) ⊥ (−qE1,E2), where xy denotes the quadratic form
defined by the hyperbolic plane (and ∼ denotes equivalence of quadratic forms). We
thus obtain:

Corollary 8 Let E1 and E2 be two elliptic curves over K, and let q ∼ qE1,E2 be
a quadratic form in r variables. Put Q = xy ⊥ (−q). Then there is no curve of
genus 2 on E1 × E2 if and only if for every θ ∈ Zr+2 with Q(θ) = 1 there exists an
x = xθ ∈ Zr+2 such that Qθ(x) = 1.

Remark 9 Note that the above corollary applies to arbitrary elliptic curves E1, E2

(including the supersingular case). It also applies to the case that E1 and E2 are
not isogenous, i.e. r = 0. Then we have that Q(x, y) = xy, so the only solution of
Q(θ) = 1 is θ = ±(1, 1) and then Qθ(x, y) = (x+y)2. Since Qθ(1, 0) = 1, we conclude
that in the non-isogenous case there is never a curve of genus 2 on E1 × E2.
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3 The main result

By Corollary 8, the geometric problem of finding genus 2 curves on the product
surface A = E1 × E2 has been translated into a purely arithmetic problem involving
the quadratic form qA. In this section we formulate this problem in the context of
quadratic forms and present the main result which connects the original problem with
other interesting problems about quadratic forms.

For this, let Q(x1, . . . , xr) =
∑

i≤j aijxixj be an integral quadratic form in r
variables, and let

P(Q) = {x ∈ Zr : Q(x) = 1}.

denote the set of representations of 1 by Q. For each θ ∈ P(Q), let Qθ be defined by

Qθ(x) = βQ(x, θ)2 − 4Q(x),(7)

where βQ is the bilinear form associated to Q. Since this is naturally a quadratic form
on the quotient Zr/Zθ (cf. §4), we thus obtain (after choosing a basis of Zr/Zθ '
Zr−1), an equivalence class Q̄θ of quadratic forms in r − 1 variables. We call this
construction of Q̄θ the θ-construction; it will be studied in more detail in the next
section.

The discussion in the previous section (cf. Corollary 8) leads us to consider the
following problem.

Problem 10 Classify the positive definite quadratic forms q in r variables such that
Q := xy ⊥ (−q) satisfies the following property:

Qθ → 1, for all θ ∈ P(Q).(8)

Here, the symbol Qθ → 1 means that Qθ represents 1, i.e. that P(Qθ) 6= ∅.

Remark 11 If θ ∈ P(Q)ev := {θ ∈ P(Q) : βQ(x, θ) ≡ 0 (mod 2),∀x ∈ Zr}, then (7)
shows that Qθ(x) ≡ 0 (mod 4), for all x ∈ Zr, so clearly Qθ cannot represent 1. Thus,
if P(Q)ev 6= ∅ or, equivalently, if P(Q) 6= P(Q)odd := P(Q) \ P(Q)ev, then Q cannot
satisfy (8).

In the case that r = 1, i.e. that q(x) = nx2, for some n ≥ 1, Problem 10 was
(implicitly) solved in [11]. In this case it was found that (8) holds if and only if n is
an idoneal number (in the sense of Euler) satisfying certain extra conditions. Thus,
by using the results of Euler, Grube[5] and Weinberger[22] on the classification of
idoneal numbers, one obtains Theorem 1.

The key result in the above case was the fact (cf. [11], Proposition 15) that

{Q̄θ : θ ∈ P(Q)odd} = gen(x2 + 4ny2);(9)
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here gen(f) denotes the genus of the (binary) quadratic form f . This yields a direct
connection to the idoneal numbers of Euler because we have the well-known relation
(due to Grube; cf. [12]) that

n ≥ 1 is idoneal ⇔ #gen(x2 + ny2) = 1.(10)

A (partial) generalization of (9) is proved for all r ≥ 1 in the next section; cf.
Theorem 20. For this, we require the (well-known) generalization of the notion of
a genus for binary forms to forms in an arbitrary number of variables: if q is a
quadratic form in r variables, then its genus gen(q) is the set of equivalence classes
of quadratic forms in r variables which are genus-equivalent (or semi-equivalent) to
q; cf. Watson[18], p. 72. (Here, as in [18], equivalence means GLr(Z)-equivalence.)

Following Watson[20], we call

c(q) = #gen(q)

the class number of the form q. In view of (10), the following problem, which was
studied by Watson in a series of papers in the years 1963–1978 (cf. [20] and the
references therein), can be viewed as a generalization of the classification problem of
idoneal numbers (cf. [12]):

Problem 12 (Watson) Find all the equivalence classes of positive definite primitive
forms q with class number 1, i.e. with c(q) = 1.

As we shall see below in Theorem 13, Watson’s problem is closely related to
Problem 10, but this fact is far from obvious.

Another problem that turns out to be is closely related to the above problems
is the problem of classifying all (special) idoneal-valued quadratic forms which are
defined as follows.

Definition. Let q(x1, . . . , xr) be a positive definite quadratic form in r variables. We
say that q is an idoneal-valued form if its only (proper) values ≤ |∆(q)| are idoneal
numbers, i.e. if

q → n ≤ |∆(q)| ⇒ n is an idoneal number;(11)

here, the symbol q → n means that q properly represents n, i.e. that there exist
x1, . . . , xr ∈ Z with gcd(x1, . . . , xr) = 1 such that q(x1, . . . , xr) = n, and ∆(q) denotes
the discriminant of q; cf. [18], p. 2.

In addition, we say that q is a special idoneal-valued form if

q → n ≤ |∆(q)| ⇒ 4n is an idoneal number,(12)

and if in addition we have that q 6→ n, for any n ≡ 3 (mod 4) when ∆(q) 6≡ 1 (mod 4),
and that q 6→ n, for any n ≡ 3 (mod 4) with n < |∆(q)| when ∆(q) ≡ 1 (mod 4).
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At first sight it might seem unlikely that (special) idoneal-valued quadratic forms
in 2 variables exist at all. However, there are some, and they are classified in the
following theorem which can be viewed as the main result of this paper:

Theorem 13 Let q(x, y) = ax2 + bxy + cy2 be a positive definite binary quadratic
form, and let fq(x, y, z) = z2 + 4q(x, y) and Q(x, y, z, w) = xy − q(z, w). Assume
that P(Q) = P(Q)odd or, equivalently, that either ∆ := b2 − 4ac ≡ 1 (mod 4) or that
q 6→ n, for any n ≡ 3 (mod 4). Then the following conditions are equivalent:

(i) c(fq) = 1;

(ii) f ′ → 1, for all f ′ ∈ gen(fq);

(iii) Qθ → 1, for all θ ∈ P(Q);
(iv) q is a special idoneal-valued form;

(v) q is equivalent to one of 15 forms whose coefficients (a, b, c) are in the following
list:

L = {k(1, 1, 1) : k = 1, 2, 4, 6, 10} ∪ {k(1, 0, 1) : k = 1, 2, 6} ∪ {(1, 1, 2), (1, 1, 4)}
∪ {2(1, 1, c) : c = 3, 9} ∪ {2(1, 0, c) : c = 2, 5} ∪ {2(2, 0, 3)}.

The proof of this theorem (which is a restatement of Theorem 6) is quite long and
will occupy the rest of this paper; cf. §7, where all parts are put together. Note that
this theorem immediately implies Theorem 2 of the introduction, as we now show.

Proof of Theorem 2. By Corollary 8, there is no genus 2 curve on E1 × E2 if and
only if q = qE1,E2 satisfies condition (iii) of Theorem 13. Since E1 ∼ E2 has CM, it
follows that rank(Hom(E1, E2)) = 2, and so q is a positive definite binary quadratic
form. Thus, the assertion of Theorem 2 follows from the equivalence (iii) ⇔ (v) of
Theorem 13, together with Remark 11.

Note that the notion of a special idoneal-valued quadratic form can be used to
unify the CM and non-CM cases (Theorems 1 and 2) as follows:

Corollary 14 Let E1 ∼ E2 be two isogenous elliptic curves over K, and assume that
E1 is not supersingular. Then there is no genus 2 curve on E1 × E2 if and only if
qE1,E2 is a special idoneal-valued form.

Proof. If E1 has CM, i.e. if r = rank(Hom(E1, E2)) = 2, then by the above proof of
Theorem 2, this follows from the equivalence (iii) ⇔ (iv) of Theorem 13.

If E1 does not have CM, i.e. if End(E1) = Z, then Hom(E1, E2) = Zh, for some
h and qE1,E2(xh) = nx2, where n = deg(h). Since ∆(qE1,E2) = n, and n = q(1 · h) is
the only value which is primitively represented by n, it is clear that qE1,E2 is a special
idoneal-valued form if and only if n 6≡ 3 (mod 4) and 4n is not idoneal. Since this is
equivalent to the condition that either n = 1 or that n is even but n 6≡ 0 (mod 8) (cf.
[11], Corollary 34 or [12], Theorem 36) we see from Theorem 1 that this condition is
equivalent to the condition that E1 × E2 does not contain any genus 2 curve.
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4 The θ-construction

In this section we study the θ-construction (cf. §3) in the general context of quadratic
R-modules. Here R can be an arbitrary commutative ring (in which 2 is not a zero-
divisor), but in the applications we only need the cases that R = Z, Zp or R.

Let (X, q) be a quadratic R-module. Thus, X is an R-module and q is a quadratic
form in the sense of Milnor/Husemoller[14], p. 110, i.e. q : X → R is a function which
satisfies (i) q(rx) = r2q(x), for all r ∈ R and (ii) the map βq : X ×X → R defined by

βq(x, y) = q(x+ y)− q(x)− q(y), for all x, y ∈ X,(13)

is an R-bilinear map. If this is the case, then we call βq the bilinear map associated
to q. Note that βq(x, x) = 2q(x).

Let θ ∈ P(q) = P(X, q) := {x ∈ X : q(x) = 1}, and put

qθ(x) = βq(x, θ)
2 − 4q(x), for x ∈ X.(14)

Clearly, qθ is again a quadratic form on X with associated bilinear form

βqθ
= 2βθ, where βθ(x, y) = βq(x, θ)βq(y, θ)− 2βq(x, y), ∀x, y ∈ R.(15)

Indeed, clearly βθ is symmetric and R-bilinear and we have

qθ(x) = βθ(x, x),(16)

and so the formula βqθ
= 2βθ follows immediately.

Since βq(θ, θ) = 2q(θ) = 2, it follows from the definition (15) of βθ that

βθ(x, rθ) = 0, for all r ∈ R,(17)

and so βθ defines a bilinear form β̄θ on the quotient module X̄θ = X/Rθ. In particular,
qθ induces a quadratic form q̄θ on Xθ and we have by (15) that βq̄θ

= 2β̄θ. Thus,
(X̄θ, q̄θ) is quadratic R-module, and if πθ : X → Xθ = X/Rθ denotes the quotient
map, then we have qθ(x) = q̄θ(πθ(x)), for all x ∈ X.

Remark 15 (a) The above construction clearly generalizes the θ-construction pre-
sented in §3. To see this, note first that if q : Zr → Z is an integral quadratic
form in r variables, then (Zr, q) is a quadratic Z-module, and if q′ : Zr → Z is an-

other quadratic form, then (Zr, q) ' (Zr, q′)
def⇔ ∃α ∈ Aut(Zr) = GLr(Z) such that

q′ ◦ α = q ⇔ q ∼ q′, where ∼ denotes GLr(Z)-equivalence of forms. Thus, the iso-
morphism classes of quadratic modules (X, q) with X ' Zr can be identified with the
equivalence classes of quadratic forms in r variables.

From this we see that if q : Zr → Z is an integral quadratic form in r variables, and
if θ ∈ P(q) = P(Zr, q), then (Zr/Zθ, q̄θ) defines an equivalence class q̄θ of quadratic
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forms in r − 1 variables because the condition q(θ) = 1 implies that the quotient
Zr/Zθ is torsionfree and hence is free of rank r − 1.

(b) For later use we observe that the θ-construction is compatible with base-
change, i.e. if ϕ : R→ R′ is a ring homomorphism, then for any θ ∈ P(X, q) we have
an isomorphism

((XR′)θ⊗1, (qR′)θ⊗1)
∼→ (X̄θ, q̄θ)⊗R := ((X̄θ)⊗R R

′, q̄θ ⊗ idR′),(18)

where XR′ = X ⊗R R
′ and qR′ = qR⊗R′ : X ⊗R R

′ → R⊗R R
′ = R′. (Indeed, by the

right-exactness of the tensor product, the canonical map πθ⊗ idR′ : XR′ = X⊗RR
′ →

X̄θ⊗RR
′ induces an isomorphism XR′/R′(θ⊗ 1) ' X̄θ⊗RR

′ because R′(θ⊗ 1) is the
image of (Rθ)⊗R R

′ in XR′ , and from this (18) follows immediately.)

As was explained in the previous section, we are interested in studying the set

Θ(X, q) = {(X̄θ, q̄θ) : θ ∈ P(q)}/'

of isomorphism classes of quadratic modules resulting from the θ-construction. A first
result in this direction is given by:

Proposition 16 If α ∈ Aut(X, q) := {α ∈ AutR(X) : q ◦ α = q}, then

qα(θ) ◦ α = qθ, for all θ ∈ P (q),(19)

and hence α induces an isometry ᾱ : (X̄θ, q̄θ)
∼→ (X̄α(θ), q̄α(θ)).

Proof. Clearly, the group Aut(X, q) acts (on the right) on P (q). If α ∈ Aut(X, q),
then by (13) we see that βq ◦ (α × α) = βq, and so for x ∈ X we have qα(θ)(α(x)) =
βq(α(x), α(θ))2 − 4q(α(x)) = βq(x, θ)

2 − 4q(x) = qθ(x), which proves (19).
Moreover, since α(Ker(πθ)) = α(Rθ) = Rα(θ) = Ker(πα(θ)), there is a unique

R-module isomorphism ᾱ : Xθ
∼→ Xα(θ) such that πα(θ) ◦ α = ᾱ ◦ πθ, and by (19) we

see that ᾱ is an isometry.

Remark 17 The above result shows that the map θ 7→ (X̄θ, q̄θ) induces a surjection

P(X, q)/Aut(X, q) → Θ(X, q).

Now if [R : 2R] ≤ 2, then one can show that this is in fact a bijection; indeed, one
can show more precisely that if θ1, θ2 ∈ P(X, q), then any isometry ᾱ : (X̄θ1 , q̄θ1)

∼→
(X̄θ2 , q̄θ2) can be lifted to an isometry α ∈ Aut(X, q) with α(θ1) = θ2. Since this is
not needed below (and is somewhat tedious to prove), the proof of this fact will not
be given here.

10



By combining the above proposition with a basic fact about isometries of quadratic
modules over local rings, we obtain the following important result.

Proposition 18 If R is a local ring with 2 ∈ R×, then Aut(X, q) acts transitively on
P(X, q) and hence we have (X̄θ1 , q̄θ1) ' (X̄θ2 , q̄θ2), for all θ1, θ2 ∈ P(X, q).

Proof. By [14], Lemma (4.2), we know that for every θ1, θ2 ∈ P(X, q) there is a
reflection α ∈ Aut(X, q) such that α(θ1) = θ2. Thus, Aut(X, q) acts transitively on
P(X, q), and so the last assertion follows from this and Proposition 16.

The above result implies in particular that when p is an odd prime, then the q̄θ’s
are all p-adically equivalent (notation: ∼p) in the sense of Watson[18], p. 50, and/or
Jones[9], p. 82.

Corollary 19 If q : Zr → Z is a quadratic form in r variables, and p is an odd prime
or p = ∞, then q̄θ1 ∼p q̄θ2, for all θ1, θ2 ∈ P(q).

Proof. If p is an odd prime, then 2 ∈ Z×p , and so by Proposition 18 we have that

((Xp)θ1
, (qp)θ1

) ' ((Xp)θ2
, (qp)θ2

), where qp denotes the canonical extension of q to
Xp = Zr

p = X ⊗ Zp (with X = Zr). By base-change (cf. Remark 15(b)), this means
that (X̄θ1 , q̄θ1)⊗ Zp ' (X̄θ2 , q̄θ2)⊗ Zp, which by definition means that q̄θ1 ∼p q̄th2 .

If p = ∞, then by replacing Zp by R, an analogous argument yields the result.

If R is a (local) ring for which 2 /∈ R×, then the results of Proposition 18 are
in general not true. One reason for this is that there may exist proper Aut(X, q)-
invariant subsets P(X, q)ev and P(X, q)′ of P(X, q), which would therefore prevent
Aut(X, q) from acting transitively on P(X, q). These sets are defined as follows:

P(X, q)ev = {θ ∈ P(X, q) : βq(x, θ) ∈ 2R, for all x ∈ X}
P(X, q)′ = {θ ∈ P(X, q) : qθ(x) ∈ 1 + 8R, for some x ∈ X}

Thus, if 2 /∈ R×, then P(X, q)′ ⊂ P(X, q)odd := P(X, q) \ P(X, q)ev. It is immediate
that these sets are Aut(X, q)-invariant, and hence give rise to sets

Θ(X, q)ev, Θ(X, q)odd and Θ(X, q)′

by replacing in the definition of Θ(X, q) the set P(X, q) by P(X, q)ev, P(X, q)odd, and
P(X, q)′, respectively. We shall prove:

Theorem 20 For any integral quadratic form q : X = Zr → Z in r variables with
∆(q) 6= 0, the set Θ(X, q)′ lies in a single genus, i.e. for any θ ∈ P(X, q)′ we have

gen(q̄θ) ⊃ {q̄θ1 : θ1 ∈ P(Zr, q)′}/∼ .(20)

Moreover, if there exists θ0 ∈ P(X, q) with P(X̄θ0 , q̄θ0) 6= ∅, then P(X, q)′ = P(X, q)odd

and hence Θ(X, q)odd = Θ(X, q)′ lies in a single genus.

As a first step towards proving this, we note the following:

11



Lemma 21 If R = Z2, then

P(X, q)′ = {θ ∈ P(X, q) : 1 ∈ qθ(X)}.(21)

Proof. Let θ ∈ P(X, q)′. Then there exists x ∈ X such that µ := qθ(x) ∈ 1 + 8Z2.
Then µ is the square of a 2-adic unit, so µ = µ2

1, for some µ1 ∈ Z×2 . Then x1 := µ−1
1 x

satisfies qθ(x1) = µ−2
1 qθ(x) = 1, so 1 ∈ qθ(X). This proves that P(X, q)′ is contained

in the right hand side of (21), and so (21) follows since the other inclusion is trivial.

By the above lemma we see that the key to proving Theorem 20 is to analyze the
condition that 1 ∈ qθ(X) or, equivalently, that P(X̄θ, q̄θ) 6= ∅. It turns out that this
condition is closely related to the existence of a hyperbolic plane in X.

Definition. A hyperbolic plane in a quadratic R-module (X, q) is an R-submodule
H = Rx1 +Rx2 of X such that

q(r1x1 + r2x2) = r1r2, for all r1, r2 ∈ R.(22)

Any basis {x1, x2} of H for which (22) holds is called a hyperbolic basis of H.

Remark 22 If H = Rx1 +Rx is a hyperbolic plane in (X, q), then

βq(r1x1 + r2x2, r
′
1x1 + r′2x2) = r1r

′
2 + r2r

′
1, for all r1, r2, r

′
1, r

′
2 ∈ R,(23)

and so we see that q|H is non-degenerate, and that x1 and x2 are R-linearly indepen-
dent. Thus, H = Rx1 ⊕Rx2 ' R2. Moreover, we have that

X = H ⊕H⊥, where H⊥ = {x ∈ X : βq(x, h) = 0,∀h ∈ H}

because if x ∈ X, then

x = xH+x⊥, where xH = βq(x, x2)x1+βq(x, x1)x2 ∈ H and x⊥ = x−xH ∈ H⊥.(24)

The following result classifies the structure of the spaces (X̄θ, q̄θ) when P(X̄θ, q̄θ) 6=
∅. For this we shall use the following (usual) notation: if a ∈ R, then 〈a〉R denotes
the (rank 1) quadratic R-module (Rx, qa), where qa(rx) = r2a, for all r ∈ R.

Proposition 23 Suppose that [R : 2R] ≤ 2. If θ ∈ P(X, q), then the following
conditions are equivalent:

(i) P(X̄θ, q̄θ) 6= ∅, i.e. ∃x ∈ X such that qθ(x) = 1;

(ii) there is a hyperbolic plane H in (X, q) with θ ∈ H;

(ii′) there is a hyperbolic plane H in (X, q) such that θ = x1+x2 for some hyperbolic
basis {x1, x2} of H;

(iii) there is an R-submodule X ′ of X such that

(X̄θ, q̄θ) ' 〈1〉R ⊕ (X ′,−4q|X′);(25)

(iii′) there is a hyperbolic plane H in (X, q) containing θ such that (25) holds for
X ′ = H⊥.
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Proof. Since the implications (iii′) ⇒ (iii) ⇒ (i) and (ii′) ⇒ (ii) are trivial, it is enough
to verify that (ii) ⇒ (i) ⇒ (ii′) ⇒ (iii′).

(ii) ⇒ (i): Write H = Rx1 + Rx2 and θ = rx1 + sx2 with r, s ∈ R. Put x = rx1.
Since rs = q(θ) = 1, we have by (23) that βq(x, θ) = rs = 1, and so qθ(x) =
βq(x, θ)

2 − 4q(x) = 12 − 0 = 1.
(i) ⇒ (ii′): We first note that since qθ(x) = βq(x, θ)

2 − 4q(x) = 1, there is an
r ∈ R such that βq(x, θ) = 1 + 2r. Indeed, if R = 2R, then this is trivial. Otherwise
we have by hypothesis that R = 2R∪̇(1 + 2R), and then βq(x, θ) ∈ 1 + 2R because
if βq(x, θ) ∈ 2R, then 1 = βq(x, θ)

2 − 4q(x) ∈ 2R, contradiction. Thus, in both cases
βq(x, θ) = 1 + 2r for some r ∈ R.

Put x1 = x − rθ and x2 = θ − x1. Then θ = x1 + x2, so it is enough to show
that H = Rx1 + Rx2 is a hyperbolic plane in (X, q). For this we first observe that
βq(x1, θ) = βq(x, θ)−rβq(θ, θ) = 1+2r−r(2) = 1, and so q(x1) = 0 because by (17) we
have qθ(x1) = qθ(x) = 1 and so 4q(x1) = β1(x1, θ)

2−qθ(x1) = 12−1 = 0. Next we note
that βq(x1, x2) = βq(x1, θ)−βq(x1, x1) = 1−2(0) = 1. Finally, βq(x2, x2) = 0 because
βq(x2, θ) = βq(θ, θ)−βq(x1, θ) = 2−1 = 1 and so βq(x2, x2) = βq(θ, x2)−βq(x1, x2) =
1− 1 = 0. From these identities and the R-bilinearity of βq it is clear that (22) holds,
and so H = Rx1 +Rx2 is a hyperbolic plane with hyperbolic basis {x1, x2}.

(ii′) ⇒ (iii′): Let x̄1 = πθ(x1) ∈ X̄θ. Then q̄θ(x̄1) = qθ(x1) = 1, the latter by the
proof of (ii) ⇒ (i). Then we have

X̄θ = Rx̄1 ⊕ (Rx̄1)
⊥(26)

because if x̄ ∈ X̄θ, then x̄ = βθ(x̄, x̄1)x̄1 + x̄′, where x̄′ = x − βθ(x̄, x̄1)x̄1 ∈ (Rx̄1)
⊥.

(Note that β̄θ(x̄
′, x̄1) = β̄θ(x̄, x̄1) − β̄θ(x̄, x̄1)β̄θ(x̄1, x̄1) = 0 because by (16) we have

that β̄θ(x̄1, x̄1) = qθ(x1) = 1 .)
Thus, (25) follows once we have shown that the restriction π′ = (πθ)|H⊥ of πθ to

H⊥ induces an isometry

π′ : (H⊥, −4q|H⊥)
∼→ ((Rx̄1)

⊥, (q̄θ)|(Rx1)⊥).(27)

For this, note first that π′ is clearly injective because Ker(πθ) = Rθ ⊂ H and so
Ker(π′) = Ker(πθ) ∩ H⊥ ⊂ H ∩H⊥ = 0.

Next we observe that π′(H⊥) = (Rx̄1)
⊥. Indeed, if x ∈ H⊥, then βq(x, xi) = 0, for

i = 1, 2, and so βq(x, θ) = 0, and hence βθ(x, x1) = 0− 2βq(x1, x1) = 0, which means
that π′(x) ∈ (Rx̄1)

⊥. Conversely, let x̄ ∈ (Rx̄1)
⊥; thus, β̄θ(x̄, x̄1) = 0. Let x̃ ∈ X be

such that πθ(x̃) = x̄ and put r := βq(x̃, x1) and x := x̃− rθ. Then πθ(x) = πθ(x̃) = x̄.
Moreover, since βq(θ, xi) = 1, we have βq(x, x1) = βq(x̃, x1)−rβq(θ, x1) = r−r(1) = 0.
Thus 0 = β̄θ(x̄, x̄1) = βθ(x, x1) = βq(x, θ)βq(x1, θ) − 2βq(x1, x1) = βq(x, θ) · 1, i.e.
βq(x, θ) = 0 and hence also βq(x, x2) = βq(x, θ − x1) = 0 − 0 = 0. This means that
x ∈ H⊥, and so x̄ = π′(x) ∈ π′(H⊥).
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We thus have that π′ : H⊥ ∼→ (Rx̄1)
⊥ is an isomorphism of R-modules. Now if

x ∈ H⊥, then βq(x, θ) = 0, and hence q̄θ(π
′(x)) = qθ(x) = β(x, θ)2 − 4q(x) = −4q(x).

This shows that π′ defines an isometry (27) and hence (iii′) holds.

For later reference we observe the following consequence of the above results.

Corollary 24 Let q : X = Zr → Z be an integral quadratic form such that (X, q)
contains a hyperbolic plane H. If q′ = −q|H⊥ is positive definite, then qθ is positive
definite, for all θ ∈ P(X, q).

Proof. Let {x1, x2} be a hyperbolic basis of H and let θ1 = x1+x2. Then θ1 ∈ P(X, q)
and by Proposition 23 we know that qθ1 ∼ x2 + 4q′ is positive definite. Now if
θ ∈ P(X, q), then qθ ∼∞ qθ1 by Proposition 18 (with R = R), and so qθ is also
positive-definite.

For further applications of the above proposition, we shall use the following fun-
damental Cancellation Theorem in the theory of quadratic modules:

Proposition 25 Suppose that R = Zp (or that R = R) and that q : X = Rr → R is
a quadratic form with ∆(q) 6= 0. If H1 and H2 are two hyperbolic planes in (X, q),
then their orthogonal complements are isometrically isomorphic.

Proof. If p is odd (or if R = R), then this follows form the general Cancellation
Theorem (O’Meara[16], Theorem 92:3) because H1 and H2 are isomorphic. (Here we
do not require that H1 and H2 are hyperbolic planes.) If p = 2, then this is Theorem
93:14 of O’Meara[16], p. 256.

Corollary 26 If q1 and q2 are two integral quadratic forms in r variables with ∆(qi) 6=
0 such that xy ⊥ q1 ∼ xy ⊥ q2, then q1 and q2 are genus-equivalent.

Proof. By Proposition 25 we know that q1 ∼p q2 are p-adically equivalent for all primes
p (including p = ∞), so q1 and q2 are genus-equivalent.

Remark 27 The converse of this corollary is also true, as is mentioned in Conway
and Sloane[4], p. 378 (without proof). Thus, q1 and q2 are genus-equivalent if and
only if xy ⊥ q1 ∼ xy ⊥ q2. (To prove the converse, note that the class number
c(xy ⊥ q1) = 1, which follows from Theorem 1(iii) of [19] by observing that xy and
hence xy ⊥ q1 is universal.)

From this, together with Proposition 23, we can conclude that the quadratic
modules in Θ(X, q)′ are all 2-adically isomorphic (and hence lie in the same genus).

Corollary 28 If q : X = Zr
2 → Z2 is a 2-adic quadratic form with ∆(q) 6= 0, then

(X̄θ1 , q̄θ1) ' (X̄θ2 , q̄θ2), for all θ1, θ2 ∈ P(X, q)′.
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Proof. By Lemma 21 and Proposition 23 we know that there exist hyperbolic planes
Hi in (X, q) such that (X̄θi

, q̄θi
) ' 〈1〉R ⊕ (H⊥

i ,−4q|H⊥
i
), for i = 1, 2. By the Can-

cellation Theorem (Proposition 25) we know that (H⊥
1 , q|H⊥

1
) ' (H⊥

2 , q|H⊥
2
), so also

(H⊥
1 ,−4q|H⊥

1
) ' (H⊥

2 ,−4q|H⊥
2
), and hence (X̄θ1 , q̄θ1) ' (X̄θ2 , q̄θ2).

Proof of Theorem 20. Let θ1, θ2 ∈ P(Zr, q)′. Then by Corollaries 19 and 28 we have
that q̄θ1 ∼p q̄θ2 , for all primes p (including p = ∞), and so q̄θ1 and q̄θ2 are genus
equivalent. This proves (20).

Now suppose that ∃θ0 ∈ P(X, q) such that 1 ∈ q̄θ0 . Then by Proposition 23 we
know that there exists a hyperbolic plane H = Zx1 + Zx2 in (X, q).

Let θ ∈ P(X, q)odd. Then we can write θ = n1x1 + n2x2 + y with n1, n2 ∈ Z and
y ∈ H⊥. Note that for any x = m1x1 +m2x2 + x⊥ ∈ X we have by (23) that

βq(x, θ) = n1m2 + n2m1 + βq(x
⊥, y).(28)

To show that θ ∈ P(X, q)′, we distinguish two cases.

Case 1: n1 ≡ 1 (mod 2) or n2 ≡ 1 (mod 2).

Assume first that n1 ≡ 1 (mod 2). Then by (28) we have βq(x1, θ) = n1, so qθ(x2) =
βq(x1, θ)

2 − 4q(x1) = n2
1 − 0 = n2

1 ≡ 1 (mod 8). Thus θ ∈ P(X, q)′. Similarly, if
n2 ≡ 1 (mod 2), then θ ∈ P(X, q)′.

Case 2: n1 ≡ n2 ≡ 0 (mod 2).

By hypothesis, ∃x0 ∈ X such that βq(x0, θ) ≡ 1 (mod 2). By (24) we have x0 =
(x0)H + x⊥0 with (x0)H ∈ H and x⊥ ∈ H⊥, and by (28) we see that b := βq(x

⊥
0 , θ) ≡

βq(x0, θ) ≡ 1 (mod 2). Thus, if we put x′ = x1 − q(x⊥0 )x2 ∈ H and x = x′ + x⊥0 , and
mi = βq(x, xi), then βq(x, θ) = n1m1 + n2m2 + b ≡ b ≡ 1 (mod 2). Moreover, since
q(x′) = 1(−q(x⊥0 )) = −q(x⊥0 ), we have that q(x) = q(x′) + q(x⊥0 ) = −q(x⊥0 ) + q(x⊥0 ) =
0. Thus qθ(x) = βq(x, θ)

2 − 4q(x) = b2 − 0 = b2 ≡ 1 (mod 8), and so θ ∈ P(X, q)′.

From the above two cases we see that P(X, q)odd ⊂ P(X, q)′. Since the opposite
inclusion is trivial, we thus have that P(X, q)odd = P(X, q)′, and the theorem follows.

In view of what was proved above, the last part of Theorem 20 can also be stated
in the following way.

Corollary 29 If q : X = Zr → Z is an integral quadratic form with ∆(q) 6= 0,
and if (X, q) contains a hyperbolic plane H, then Θ(X, q)odd ⊂ gen(1 ⊥ (4q′)), where
q′ = −q|H⊥.

Proof. Let x1, x2 be a hyperbolic basis of H and put θ0 = x1 +x2. Then θ0 ∈ P(X, q),
and by Proposition 23 we know that q̄θ0 ∼ 1 ⊥ (4q′), and so the corollary follows
from Theorem 20.
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In the case that r = 3, a much stronger result than Corollary 29 was proved in
[11], §5. Indeed, by using the composition theory of binary quadratic forms (and a
precise classification of the binary quadratic forms q̄θ), it was shown there that in
fact equality holds in (20). While the argument there does not carry over to arbitrary
r, it does yield the following useful general result (Proposition 30) which shows that
equality holds in (20) in the case that r = 3.

In order to state this result, we first introduce the following (well-known) concept:

Definition. If (X, q) and (X ′, q′) are two quadratic R-modules, then we say that
(X, q) represents (X ′, q′) if there exists an injective R-module homomorphism ϕ :
X ′ ↪→ X such that q′ = q ◦ ϕ. If ϕ can be chosen such that in addition X/ϕ(X ′)
is R-torsionfree, then we say that (X, q) primitively represents (X ′, q′) and write
(X, q) → (X ′, q′) or q → q′.

Proposition 30 Let q : X = Zr → Z be an integral quadratic form which primitively
represents xy − dz2 (i.e. q → xy − dz2), where d ≥ 1. If q0 ∈ gen(x2 + 4dy2) or if
q0 ∈ gen(4x2 + 4xy + (d− 1)y2) and d ≡ 3 (mod 4), then there is a θ ∈ P(X, q) such
that q̄θ → q0.

Proof. Since q → xy−dz2, there is a submodule X ′ of X such that X/X ′ is torsionfree
and such that (X ′, q|X′) ' (Z3, xy− dz2). Thus, X ′ has a basis {x1, x2, x3} such that
H = Zx1 + Zx2 is a hyperbolic plane and x3 ∈ H⊥ satisfies q(x3) = −d.

By Proposition 15 of [11], there exists s = (n1, n2, k) ∈ Z3 with n1n2−dk2 = 1 such
that q0 ∼ qs := n2

2x
2−2k(t−d)xy+n2

1ty
2, where t = d(n1n2+3). (Note that although

the case that q0 ∼ x2 + 4y2 was excluded in that result, we can include it here by
taking s = (1, 1, 0).) Put θ = n1x1 +n2x2 + kx3 ∈ X ′. Then θ ∈ P(X ′, q′) ⊂ P(X, q),
and the proof of Proposition 28 of [11] shows that qθ → qs ∼ q0.

For convenience of the reader, we recall the proof here. Put y = kdx2 + n1x3.
Then x2 = n1θ−ky−n2

1x1 and x3 = n2y−kdθ+n1kdx1, so {x1, θ, y} is another basis
of X ′. Thus, if x̄1 := πθ(x) and ȳ := πθ(y), then {x̄1, ȳ} is a basis of X̄ ′ := πθ(X

′).
Next we observe that βq(mx1 +ny, θ) = n2m−n1kdn and q(mx1 +ny) = kdmn−

n2
1dn

2, and so qθ(mx + ny) = βq(mx + ny, θ)2 − 4q(mx + ny) = n2
2m

2 − 2kd(n1n2 +
2)mn+ n2

1d(k
2d+ 4)n2 = qs(m,n); here we used the fact that k2d+ 4 = n1n2 + 3 by

equation (5) of [11]. From this we see that (q̄θ)|X̄′ ∼ qs ∼ q0, and so q̄θ → q0 because
X̄/X̄ ′ ' X/X ′ is torsionfree.

Remark 31 The above proof of Proposition 30 actually yields the following more
precise statement: if X ′ is a submodule of X such that X/X ′ is torsionfree and
q|X′ ∼ xy − dz2, then ∃θ ∈ X ′ ∩ P(X, q) such that (Z2, q0) ' (X̄ ′, (q̄θ)|X̄′), where
X̄ ′ = πθ(X

′).
In addition, we note that if we write θ = θH + kx3 with θH ∈ H = Zx1 + Zx2,

then it follows from Lemma 16 of [11] that q0 ∈ gen(x2 + 4dy2) ⇔ θH /∈ 2H.
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We will use the above result to show that (under suitable hypotheses) there exists
a θ ∈ P(X, q) such that qθ 6→ 1. We begin by characterizing the trivial case that
θ ∈ P(X, q)ev; recall that by Remark 11 we know that for such a θ we have qθ 6→ 1.

Proposition 32 Let q : X = Zr → Z be an integral quadratic form, and suppose that
(X, q) contains a hyperbolic plane H with complement X ′ = H⊥. Write q′ = −q|X′.
Then P(X, q)ev 6= ∅ if and only if

∃x′ ∈ X ′ with q′(x′) ≡ 3 (mod 4) and βq′(x
′, x′′) ≡ 0 (mod 2),∀x′′ ∈ X ′.(29)

Proof. Let {x1, x2} be a hyperbolic basis of H, and let θ ∈ P(X, q). Then θ =
n1x1 +n2x2 +x′ with n1, n2 ∈ Z and x′ ∈ X ′ = H⊥. Moreover, by definition and (23)
we have that

θ ∈ P(X, q)ev ⇔ n1 ≡ n2 ≡ 0 (mod 2) and βq′(x
′, x′′) ≡ 0 (mod 2).(30)

Thus, if θ ∈ P(X, q)ev, then n1 ≡ n2 ≡ 0 (mod 2) and so 1 = q(θ) = n1n2 − q′(x′) ≡
−q′(x′) (mod 4), which shows that (29) holds.

Conversely, suppose that x′ ∈ X ′ satisfies condition (29). Then −q′(x′) = 1 + 4m
with m ∈ Z, and so θ := 2x1 +2mx2 +x′ satisfies q(θ) = 1, and from (30) we see that
θ ∈ P(X, q)ev.

Remark 33 It is clear that if q′(x) = mx2, then q′ satisfies condition (29) if and only
if m ≡ 3 (mod 4).

Similarly, if q′(x, y) = ax2 + bxy + cy2, then q′ satisfies condition (29) if and only
if ∆(q′) = b2 − 4ac ≡ 0 (mod 4) and q′(r, s) ≡ 3 (mod 4) for some r, s ∈ Z.

Indeed, if this latter condition holds, then b ≡ 0 (mod 2) and then (29) holds
for x′ = (r, s) ∈ Z2 = X ′ because βq′((r, s), (m,n)) = 2arm + bsm + brn + 2csn ≡
0 (mod 2), for all m,n ∈ Z. Conversely, suppose that (29) holds for x′ = (r, s) ∈ Z2 =
X ′. Since βq′((r, s), (m,n)) = 2arm+ bsm+ brn+2csn ≡ 0 (mod 2), for all m,n ∈ Z,
we see that either b ≡ 0 (mod 2) or r ≡ s ≡ 0 (mod 2). However, in the latter case
q′(x′) ≡ 0 (mod 4), contradiction. Thus b ≡ 0 (mod 2) and hence ∆(q′) ≡ 0 (mod 4).

We now turn to investigate when qθ 6→ 1 in the case that θ ∈ P(X, q)odd. The
following result suffices for our purposes.

Proposition 34 Let q : X = Zr → Z be an integral quadratic form, and suppose
that (X, q) contains a hyperbolic plane H with complement X ′ = H⊥. Suppose that
q′ := −q|X′ is a positive-definite binary quadratic form, and that θ ∈ P(X, q) has
the form θ = θH + kθ⊥, where θH ∈ H, k ∈ Z and θ⊥ ∈ X ′ is primitive. If
a := q′(θ⊥) ≤ |∆(q′)|, then

qθ → 1 ⇔ qθ(y) = 1, for some y ∈ H + Zθ⊥,(31)

except in the case that a = |∆(q′)| ≡ 3 (mod 4), θH ∈ 2H and q′ ∼ ax2±axy+ a+1
4
y2.
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The proof of this will be based on the following elementary identity.

Lemma 35 Suppose (X, q) contains a hyperbolic plane H. Let θ ∈ P(X, q), and
write θ = θH + kθ⊥ where θH ∈ H, θ⊥ ∈ H⊥ and k ∈ Z. If a := q(θ⊥), then

4a2qθ(x+ y) = qθ(2ax+ βq(y, θ
⊥)θ⊥) + 4ad(y),(32)

for all x ∈ H + Zθ⊥ and y ∈ H⊥, where d(y) = βq(y, θ
⊥)2 − 4q(θ⊥)q(y).

Proof. Put Hθ = H + Zθ⊥. We first observe that

qθ(x+ z) = qθ(x)− 4q(z), if x ∈ Hθ, z ∈ (Hθ)
⊥(33)

because qθ(x+z) = βq(x+z, θ)2−4q(x+z) = βq(x, θ)
2−4q(x)−4q(z) = qθ(x)−4q(z).

Now let x ∈ Hθ and y ∈ H⊥, and put z = 2ay − bθ⊥ ∈ H⊥, where b = βq(y, θ
⊥).

Then βq(z, θ
⊥) = 0, and so z ∈ (Hθ)

⊥. Moreover, q(z) = −ad(y) because 4a2q(y) =
q(2ay) = q(z+bθ⊥) = q(z)+q(bθ⊥) = q(z)+ab2. Thus, if we put x̃ = 2ax+bθ⊥ ∈ Hθ,
then x̃ + z = 2a(x + y) and so by (33) we obtain 4a2qθ(x + y) = qθ(x̃ + z) =
qθ(x̃)− 4q(z) = qθ(x̃) + 4ad(y), which proves (32).

Proof of Proposition 34. Since θ⊥ is primitive in X ′, there exists x′ ∈ X ′ such that
{θ⊥, x′} is a basis of X ′. Put b = −βq′(θ

⊥, x′) = βq(θ
⊥, x′) and c = q′(x′); then

∆(q′) = (−b)2−4ac = d(x′) (in the notation of Lemma 35). Note that we can assume
without loss of generality that |b| ≤ a by replacing x′ by x′ +nx, for a suitable n ∈ Z
(because βq′(θ

⊥, x′ + nx) = 2na− b).
Suppose qθ(x) = 1 for some x ∈ X. Write x = xH +mθ⊥+nx′ with m,n ∈ Z, and

put x̃ = xH +mθ⊥ ∈ Hθ = H+Zθ⊥. Since d(nx′) = n2d(x′) = n2∆(q′) = −n2|∆(q′)|,
it follows from (32) (applied to (x̃, nx′,−a) in place of (x, y, a)) that

4a2 = 4a2qθ(x) = qθ(−2ax̃+ nbθ⊥) + 4an2|∆(q′)| ≥ 4an2|∆(q′)|,(34)

where the last inequality follows from fact that qθ is positive definite (cf. Corollary
24). We thus see that if a < |∆(q′)|, then n2 < 1 and so n = 0 and x = x̃ ∈ Hθ. This
proves (31) in this case.

If a = |∆(q′)| and n 6= 0, then (34) shows that n = ±1 and qθ(−2ax̃+ nbθ⊥) = 0,
so −2ax̃ + nbθ⊥ = tθ, for some t ∈ Z because q̄θ is positive definite. To analyze this
equation, let {x1, x2} be a hyperbolic basis of H and write xH = m1x1 + m2x2 and
θ = n1x1 +n2x2 +kθ⊥. Then the identity −2ax̃+nbθ⊥ = tθ is equivalent to the three
equations

−2am1 = tn1, −2am2 = tn2, −2am+ nb = tk.

Since q(θ) = n1n2 − k2a = 1, we see from the first two equations that ni|2mi, for
i = 1, 2, and so a|t. Thus, the third equation yields that a|nb = ±b. Since |b| ≤ a, this
is only possible if b = 0 or b = ±a. Now b 6= 0 because otherwise a = |∆(q′)| = 4ac,
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contradiction. Thus b = ±a, so c = |∆(q′)|+b2

4a
= a+a2

4a
= 1+a

4
, and hence a ≡ 3 (mod 4)

and q′ ∼ ax2 ± axy + 1+a
4
y2. Moreover, from the third equation we now see that tk

and hence t is odd, so the first two equations show that n1 and n2 are even. This
means that θH ∈ 2H, and so we are in the exceptional case, contradiction. Thus
n = ±1 is not possible, and hence n = 0. This proves (31).

Note that the above results yield the implication (iii) ⇒ (iv) of Theorem 13:

Corollary 36 Suppose q = xy ⊥ (−q′), where q′ is a positive definite binary quadratic
form. If q′ is not a special idoneal-valued form, then there exists θ ∈ P(Z4, q) such
that qθ 6→ 1.

Proof. By hypothesis, X = Z4 = H ⊕ X ′, where H is a hyperbolic plane, X ′ = H⊥

and q|X′ = −q′. Since q′ is not a special idoneal-valued form, we have the following
three possibilities:

Case 1: ∆(q′) ≡ 0 (mod 4) and q′ → n ≡ 3 (mod 4).

From Proposition 32 together with Remark 33 it follows that in this case ∃θ ∈
P(X, q)ev, and so qθ 6→ 1 by Remark 11.

Case 2: q′ → n ≡ 3 (mod 4) and n < |∆(q′)|.
Let x′ ∈ X ′ be such that q′(x′) = n, and put X ′′ = H + Zx′. Note that X/X ′′ '
X ′/Zx′ is torsionfree since x′ is primitive (by hypothesis). Moreover, since q|X′′ ∼
xy−nz2, we see that q → xy−nz2. Let q0 := 4x2+4xy+(n+1)y2. Then by Proposition
30 and Remark 31 we have that ∃θ ∈ X ′′ ∩P(X, q) such that (X̄ ′′, (q̄θ)X′′) ' (Z2, q0),
where X̄ ′′ = πθ(X

′′). Since q0(x) ≡ 0 (mod 4) for all x ∈ Z2, we see that qθ(x
′′) 6= 1,

for all x′′ ∈ X ′′, and so by Proposition 34 it follows that qθ 6→ 1.

Case 3: q → n, n ≤ |∆(q′)| and 4n is not idoneal.

Since 4n is not idoneal, we have that c(x2 + 4ny2) > 1, so ∃q0 ∈ gen(x2 + 4ny2)
with q0 6→ 1. Then by the same argument (and notation) as in Case 2, there exists
θ ∈ X ′′ ∩ P(X, q) such that (X̄ ′′, (q̄θ)X′′) ' (Z2, q0). Thus, qθ(x

′′) 6= 1,∀x′′ ∈ X ′′.
Since θH /∈ 2H by Remark 31, it follows from Proposition 34 that qθ 6→ 1.

5 Idoneal-valued quadratic forms

By the previous Corollary 36 we see that the hypothesis of Problem 10 (for r = 2)
naturally leads to the condition that q is a special idoneal-valued binary quadratic
form, or, more briefly, a special form.

We shall now classify the special forms q(x, y) = ax2 + bxy + cy2 and begin by
classifying those whose content cont(q) = gcd(a, b, c) is odd.
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Proposition 37 Let q be a special form with cont(q) ≡ 1 (mod 2). Then q is equiv-
alent to one of the following four forms f(x, y) = ax2 + bxy + cy whose coefficients
(a, b, c) are in the list L1 = {(1, 1, 1), (1, 0, 1), (1, 1, 2), (1, 1, 3)}.

Remark 38 The above Proposition 37 is all that is needed to deduce (a generaliza-
tion of) of the existence theorem of Hayashida and Nishi[7]. Indeed, if we assume that
End(Ei) ' OF is a maximal order of an imaginary quadratic field F of discriminant
−d, then by [13], Corollary 42, we know that q = qE1,E2 is a form of discriminant −d
and content cont(q) = 1. Thus, if E1 × E2 does not contain a curve of genus 2, then
by Corollary 8 and Corollary 36 we know that q is special, and so by Proposition 37
we have that d = 3, 4, 7, 15 and that E1 ' E2 (and that the same is result true if the
conductors of Ei are odd). This, therefore, proves the existence part of the theorem
in [7], p. 14.

Note that the above proof is quite different from that of [7] because here we
consider the problem of whether the (positive definite) ternary forms Qθ represent 1
whereas Hayashida and Nishi consider the problem of determining whether specific
numbers are represented by certain (positive definite) quaternary forms; cf. [7], p.
10. Note that if cont(qE1,E2) > 1, then it is questionable whether their criterion (for
the existence of genus 2 curves) still holds, and so their method cannot be adapted
readily to the more general case.

In order to prove Proposition 37 and other related results, it is useful to introduce
the following notation.

Notation. If q(x, y) = ax2 + bxy + cy2 is a positive definite binary quadratic form,
then we write q = [a, b, c]. Moreover, we let R(q) = {n ∈ Z : q → n} denote the set
of values which are primitively represented by q. Furthermore, we let

R′(q) = {n ∈ R(q) : n < |∆(q)|} and R∗(q) = {n ∈ R(q) : n ≤ |∆(q)|}.

Lemma 39 If q = [a, b, c] is reduced, then a, c ∈ R′(q) and a ± b + c ∈ R∗(q).
Moreover, a± b+ c ∈ R′(q) except when a = b = c = 1.

Proof. Put d = |∆(q)|. Since q is reduced, we have a ≤
√
d/3 < d and c ≤ 1

4
(
√
d/3 +

d) ≤ d
2
< d (cf. e.g. [3], p. 184), so a = q(1, 0) ∈ R′(q) and c = q(0, 1) ∈ R′(q).

Furthermore, q(1,±1) = a±b+c ≤ 2a+c ≤ 2
√
d/3+ 1

4

√
d/3+ 1

4
d = 9

4

√
d/3+ 1

4
d ≤ d,

and equality holds only if
√
d/3 = d/3, i.e. d = 3. Thus, a±b+c ∈ R′(q) except when

d = 3 (and then q = [1, 1, 1] because this is the only reduced form with ∆(q) = −3).

We next recall some elementary properties of idoneal numbers. For this, it is
useful to introduce the following notation.
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Notation. Let I = {n ≥ 1 : c(x2 +ny2) = 1} denote the set of idoneal numbers, and
put

S̃ = {n : 4n ∈ I} and S = {n : 4n ∈ I, n 6≡ 3 (mod 4)}.
We call S the set of special idoneal numbers.

Remark 40 If q is a positive definite binary quadratic form, then

q is a special idoneal-valued form ⇔ R′(q) ⊂ S and R∗(q) ⊂ S̃.(35)

Indeed, if q is special, then the first condition of the definition is equivalent to
the inclusion R∗(q) ⊂ S̃. Moreover, since q 6→ n ≡ 3 (mod 4), if n < |∆(q)|,
we also have R′(q) ⊂ S. Conversely, if R′(q) ⊂ S and R∗(q) ⊂ S̃, then it is
clear that q is special if ∆(q) ≡ 1 (mod 4). Thus, assume ∆(q) ≡ 0 (mod 4),
and (without loss of generality) that q = [a, b, c] is reduced. Then a, c, a ± b +
c ∈ R′(q) ⊂ S (by Lemma 39) and 2|b. Thus, either 2|cont(q) or (a, b, c) ≡
(0, 0, 1), (1, 0, 0), (1, 0, 1), (1, 2, 1), (1, 2, 2), (2, 2, 1) (mod 4). In all these cases we see
that q does not represent any number n ≡ 3 (mod 4), and so q is special.

The following properties of idoneal numbers are essentially due to Euler and
Grube[5].

Lemma 41 (a) If n ∈ S and n > 1, then n ≡ 2, 4, 6 (mod 8). Moreover, if Skn :=
{n ∈ S : n ≤ 105} denotes the set of “known” special idoneal numbers, then

Skn = {1, 2, 4, 6, 10, 12, 18, 22, 28, 30, 42, 58, 60, 70, 78, 102, 130, 190, 210, 330, 462}.
(b) If n ∈ I and n ≡ 3 (mod 4), then n = 3, 7, 15. In particular, S̃ = S ∪ {3, 7, 15}.
(c) If n ∈ S and n > 60, then n is squarefree. Thus

S4 := {n ∈ S : 4|n} = {4, 12, 28, 60}.
Proof. (a) This follows immediately from Euler’s results; cf. Theorem 1 and Corollary
10 of [12]. (See also [11].)

(b) The first assertion is due to Grube; cf. [12], Corollary 8. The second assertion
follows from this and Euler’s result ([12], Corollary 10(b)).

(c) Since n 6≡ 0 (mod 8) by (a), it follows from Grube’s Theorem ([12], Theorem
12) that n is squarefree when n > 60. If n ∈ S4, then n ≡ 4 (mod 8) (because
n 6≡ 0 (mod 8)), so n ∈ S4 ⇔ n ∈ {4, 12, 28, 60} by Grube (cf. [12], Theorem 12(c)).

Corollary 42 The form q is not special if any one of the following conditions hold:

(i) ∃n ∈ R′(q) with n ≡ 1 (mod 2) and n > 1;

(ii) q = [a, b, c] is reduced and one of a, b, c is an odd number 6= 1;

(iii) 1 ∈ R(q), ∆(q) ≡ 0 (mod 4), and ∆(q) 6= −4;

(iv) 1 ∈ R(q), ∆(q) ≡ 1 (mod 4) but ∆(q) 6≡ 1 (mod 8) and ∆(q) 6= −3.

Proof. (i) Since n /∈ S by Lemma 41(a), we have R′(q) 6⊂ S, and hence q cannot be
special (cf. (35)).
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(ii) Since a, c ∈ R′(q) by Lemma 39, it follows from (i) that q cannot be special if
a 6= 1 is odd or if c 6= 1 is odd. Now suppose that b 6= 1 is odd. Then c ≥ a ≥ |b| ≥ 3,
so if a or c are odd, then we are done. If not, then a+ |b|+ c ∈ R′(q) is odd, and so
q is not special by (i).

(iii) If 1 ∈ R(q) and ∆(q) = −4d, then q ∼ q1 := [1, 0, d]. If d > 1 and odd, then
q1 and hence q are not special by (ii). If d is even, then 1 + 0 + d ∈ R′(q) is odd, and
so q1 and q are not special by (i).

(iv) If 1 ∈ R(q) and ∆(q) = −4d + 1, then q ∼ q1 := [1, 1, d]. By hypothesis,
d > 1 is odd, so q1 and q are not special by (ii).

Proof of Proposition 37. Let q ∼ q1 := [a, b, c], where q1 is reduced. Since cont(q) =
cont(q1) is odd, at least one of a, b, c must be odd. If a > 1, then q is not special
because if a or c ≥ a is odd, then we are done by Corollary 42(ii), and if a and c
are even, then a + |b| + c ∈ R′(q) is odd, so we are done by Corollary 42(i). Thus,
assume that a = 1. If ∆(q) ≡ 0 (mod 4), then q ∼ [1, 0, 1] by Corollary 42(iii), and if
∆(q) ≡ 1 (mod 4) but ∆(q) 6≡ 1 (mod 8) then q ∼ [1, 1, 1] by Corollary 42(iv).

Thus, assume that ∆(q) ≡ 1 (mod 8). Then q ∼ q1 = [1, 1, d] with d ≡ 0 (mod 2).
Thus 4d− 1 = q1(1,−2) ∈ R∗(q) ⊂ S̃, and so 4d− 1 ∈ {3, 7, 15} by Lemma 41. Thus
d = 1, 2, or 4, and the assertion follows.

In view of Proposition 37, this leaves us to classify the special forms whose content
is even. If, in fact, 4|cont(q), then the answer is simple.

Proposition 43 If q is special and 4|cont(q), then q ∼ [4, 4, 4].

The proof of this is based on the following fact which gives a useful lower bound
on the number of elements in R′(q).

Lemma 44 Let q = [a, b, c] be reduced and b ≥ 0. If n ≥ 1 satisfies the inequality

n(n+ 1) < c(3− 1/a) + c− b,(36)

then q(k,±1) ∈ R′(q), for 0 ≤ k ≤ n. Thus

#R′(q) ≥ n+ 1 and even #R′(q) ≥ 2n+ 1, if a > b > 0.(37)

Proof. For 0 ≤ k ≤ n we have that

q(k,±1) = ak2 ± bk + c ≤ an2 + an+ c = an(n+ 1) + c.

Combining this inequality with (36) yields

q(k,±1) ≤ an(n+ 1) + c < a(c(3− 1/a) + c− b) + c = 4ac− ab ≤ 4ac− b2 = |∆(q)|,

and so q(k,±1) ∈ R′(q), as claimed.
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Since the values q(k, 1) are distinct for 0 ≤ k ≤ n, the first inequality of (37) is
clear. The second follows from the fact that the function q(±k, 1) = q(k,±1) takes
on 2n+ 1 distinct values for 0 ≤ k ≤ n because for x, y ∈ Z we have that

q(x, 1) = q(y, 1) ⇔ x = y, provided that a > b > 0.(38)

Indeed, suppose that ax2 + bx + c = ay2 + by + c. Then ax2 − by2 = by − bx, so if
x 6= y, then −a(x+ y) = b. Thus a|b which is impossible since 0 < b < a.

Proof of Proposition 43. By reduction theory there exists a reduced form q1 := [a, b, c]
with b ≥ 0 such that q ∼ q1 (GL2(Z)-equivalence). Since 4|cont(q1), we have that
c ≥ 4. If c = 4, then also a = 4 and b = 0 or 4. Thus q1 = [4, 0, 4] or ]4, 4, 4].
However, since 4 + 0 + 4 = 8 /∈ S4 by Lemma 41(c), the form [4, 0, 4] is not special,
so only q1 = [4, 4, 4] is possible if c = 4.

Now assume that c > 4. Since c ∈ S4, we have by Lemma 41(c) that c ≥ 12. Since
4(4+1) = 20 < 12(11

4
) ≤ c(3− 1/a)+ c− b (because a ≥ 4 and c ≥ b), it follows from

Lemma 44 that q(k, 1) ∈ R′(q1) for 0 ≤ k ≤ 4. If q1 were special, then these would
give 5 distinct numbers in S4, which contradicts the fact that #S4 = 4 by Lemma
41(c). Thus q1 is not special for c > 4.

The above results reduce the classification problem to the case that cont(q) ≡
2 (mod 4). Here we first prove:

Proposition 45 If q = [a, b, c] is a reduced special form with cont(q) ≡ 2 (mod 4)
and 4|c, then q = [2, 0, 4].

Proof. As in the proof of Proposition 43, we may assume that b ≥ 0.
Suppose first that c = 4. If a = 2, then b = 0 or 2. But q = [2, 2, 4] is not special

since q(1, 1) = 8 /∈ S4, so we must have q = [2, 0, 4]. If a > 2, then a = 4 and b = 2.
But q = [4, 2, 4] is not special because q(2, 1) = 24 < |∆(q)| = 60 but 24 /∈ S4.

Thus, assume c > 4. Then c ≥ 12 because c ∈ S4. If a = 2, then q = [2, 0, c]
or q = [2, 2, c]. In the first case q(2, 1) = 8 + c < 8c = |∆(q)|, but 8 + c /∈ S4

(when c ∈ S4 and c ≥ 12), so [2, 0, 4] is not special. Similarly, if q = [2, 2, c], then
q(2,−1) = c+ 4 < 8c− 4 = |∆(q)|, but c+ 4 /∈ S4 (when c ∈ S4 and c ≥ 12), and so
[2, 2, c] is not special.

We thus have that a > 2, so a ≥ 4. Then, as in the proof of Proposition 43, we
have that q(k,±1) ∈ R′(q) for 0 ≤ k ≤ 4. Thus, if q is special, then q(4, 1) ∈ S4

(because 4|q(4, 1)). But q(4, 1) ≥ 42a + 4b + c > 424 = 64 > 60, so q(4, 1) /∈ S4,
contradiction. Thus q is not special, and so the only possible case is q = [2, 0, 4].

Proposition 46 If q = [a, b, c] is a reduced special form with cont(q) ≡ 2 (mod 4)
and 4|a, then q = [4, 0, 6].

Here we shall use the following technical fact.
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Lemma 47 If q = [a, b, c] is reduced, and if a ≥ 2 and b ≥ 0, then

q(−1, 2) ∈ R′(q), and also q(1, 2) ∈ R′(q), if c > b.(39)

Proof. Since a ≥ 2, it follows that we have

(b− 1)2 < (4a− 5)c+ 1, and even (b+ 1)2 < (4a− 5)c+ 1, if c > b.(40)

Indeed, if b = 0, then this is clear, so assume that b ≥ 1. Then 3a− 6 ≥ 3 · 2− 6 = 0,
so b + 1 ≤ a + 1 ≤ 4a − 5. Thus 0 ≤ b − 1 < b + 1 ≤ 4a − 5 and 0 ≤ b − 1 < c, so
(b− 1)2 < (4a− 5)c < (4a− 5)c+ 1, which proves the first part of (40). Note that if
c > b, then b+1 ≤ c, so a similar argument shows that the second part of (40) holds.

From the first part of (40) we obtain that q(−1, 2) = a − 2b + 4c = (b − 1)2 +
4c + a − b2 + 1 < (4a − 5)c + 1 + a − b2 − 1 = 4ac − b2 − (c − a) ≤ 4ac − b2. Thus,
q(−1, 2) < 4ac − b2 = |∆(q)|, and so q(−1, 2) ∈ R′(q). Similarly, if c > b, then a
similar argument (using the second part of (40)) shows that q(1, 2) < |∆(q)|, so (39)
follows.

Proof of Proposition 46. Note first that b < c for else q = [a, a, a] and then cont(q) =
a ≡ 0 (mod 4), contradiction. Thus, since a ≥ 4, we have by (39) that q(1,±2) =
a± 2b+ 4c ∈ S4 (and a ∈ S4).

If a ≥ 12, then q(1, 2) = a+ 2b+ 4c ≥ 5a ≥ 60, so q(1, 2) /∈ S4 unless a = c = 12
and b = 0. But q = [12, 0, 12] is not special since q(1, 1) = 24 /∈ S4.

Thus, a < 12, and hence a = 4 because a ∈ S4. Then b = 0, 2, or 4. Suppose
first that b = 4. Since q(±1, 2) ∈ S4 and since q(1, 2)− q(−1, 2) = 4b = 16, it follows
that q(−1, 2) = 12 because (12, 28) is the only pair of numbers in S4 whose difference
is 16. Thus c = 4 and so 4|cont(q), contradiction. Next, suppose that b = 2. Here
we have that q(−1, 2) = 4 because (4, 12) is the only pair of numbers in S4 whose
difference is 2b = 8, and so c = 1, contradiction.

Thus, only b = 0 is possible. Then q(1, 2) = 4 + 4c ∈ S4, so 4c ∈ {8, 25, 56} or
c ∈ {2, 6, 14}. Now c = 2 < a is impossible. Moreover, since c = 14 /∈ S (cf. Lemma
41(a)), we must have that c = 6, so q = [4, 0, 6], as claimed.

Proposition 48 Let q = [a, b, c] be a reduced special form with cont(q) ≡ 2 (mod 4).
If q 6≡ [2, 2, 2] (mod 4), then q ∈ L0 := {[2, 0, 2], [2, 0, 4], [4, 0, 6], [6, 0, 6], [2, 0, 10]}.

Proof. If 4|c or 4|a, then q = [2, 0, 4] ∈ L0 or q = [4, 0, 6] ∈ L0 by Propositions 45
and 46, respectively. Thus, assume that a ≡ c ≡ 2 (mod 4). Then b ≡ 0 (mod 4), for
otherwise q ≡ [2, 2, 2] (mod 4). Thus, if k is odd, then q(k, 1) ≡ a + c ≡ 0 (mod 4).
As before, we may assume that b ≥ 0.

Suppose first that c < b + 4. Then we must have that a = c = b + 2, so we can
write q = [4k + 2, 4k, 4k + 2], for some integer k ≥ 0. Since q(1,±1) ∈ R′(d) by
Lemma 39, we have that 12k + 4 = q(1, 1) ∈ S4 and 4k + 4 = q(1,−1) ∈ S4. This is
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only possible for k = 0 or k = 2. If k = 2, then we obtain that q = [10, 8, 10]. But
since 124 = q(3, 1) ∈ R′(q) (because 124 < |∆(q)| = 336) yet 124 /∈ S4, we see that
[10, 8, 10] cannot be special, and so we must have k = 0, and hence q = [2, 0, 2] ∈ L0.

Now suppose that c ≥ b+ 4. Then in fact c ≥ b+ 6 because c 6≡ b (mod 4). Since
3(3 + 1) = 12 < 6(5

2
) ≤ c(3 − 1

a
) + c − b, we see from (36) that q(k,±1) ∈ R′(q) for

0 ≤ k ≤ 3. Now if b 6= 0, then 0 < b < a (because b 6≡ a (mod 4)), and so it follows
from (38) that q(1,±1) and q(3,±1) are 4 distinct numbers S4. But since they are
≥ c ≥ 6, this is impossible.

Thus, b = 0. Now 10a ≤ 9a + c = q(3, 1) ∈ S4, so 10a ≤ 60 or a ≤ 6. If
a = 6, then the inequalities 60 = 10a ≤ 9a + c ≤ 60 force that c = a = 6, and so
q = [6, 0, 6] ∈ L0. Thus, assume that a < 6. Then a = 2 because a ≡ 2 (mod 4).
Since 18 + c = q(3, 1) ∈ S4, only the cases c = 28 − 18 = 10 and c = 60 − 18 = 42
are possible. But since 2 + 42 = 44 /∈ S4, it follows that [2, 0, 42] is not special, and
so only q = [2, 0, 10] ∈ L0 is possible. This proves the assertion.

By the above results, the only case left to investigate is the case that q ≡
[2, 2, 2] (mod 4). The analysis of this case, however, seems to require much deeper
results about idoneal numbers than the previous cases. Indeed, we shall use here
the following basic fact which will be deduced from the (unconditional!) results of
Weinberger[22]:

Theorem 49 If q is a special idoneal-valued form, then |∆(q)| ≤ 106 and hence
R′(q) ⊂ Skn.

Proof. We first note that if there exists d∗ ∈ S \ Skn, then by Lemma 41(c) we know
that d∗ is squarefree and so −4d∗ is a fundamental discriminant. By Weinberger[22]
we therefore know that d∗ is unique and that 4d∗ > 1011. We thus have that

either S = Skn or S = Skn ∪ {d∗} with d∗ > 1010.

Thus, if q = [a, b, c] is reduced and special, then by Lemma 39 we have that
a, c, a + |b| + c ∈ S. But if c ∈ S \ Skn = {d∗}, then a + |b| + c > c = d∗, so
a + b + c /∈ S, contradiction. Thus, c ∈ Skn, and hence a ≤ c ≤ 462. Thus
|∆(q)| ≤ 4 · 4622 < 106 < d∗, and hence R′(q) ⊂ Skn.

Using this result, we can now prove the following:

Proposition 50 If q = [a, 2, c] is a reduced special form with a ≡ c ≡ 0 (mod 2),
then q ∈ L2 := {[2, 2, 2], [2, 2, 6], [2, 2, 18]}.

Proof. By Lemma 39 and Theorem 49 we have that a, c, a + c ± 2 ∈ Skn, and so
a+ c− 2 ∈ T4 := {n ∈ Skn : n+ 4 ∈ Skn}. Since Skn is known explicitly (cf. Lemma
41), one checks easily that

T4
def
= {n ∈ Skn : n+ 4 ∈ Skn} = {2, 6, 18}.(41)
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Thus, a + c = 4, 8 or 20. If a + c = 4, then 2a ≤ a + c = 4 and so a ≤ 2. Thus
a = c = 2 and hence q = [2, 2, 2] ∈ L2.

Next, if a + c = 8, then 2a ≤ a + c = 8, so a ≤ 4, i.e. a = 2 or 4. If a = 4, then
q = [4, 2, 4] which is not special by Proposition 45. Thus, a = 2 and q = [2, 2, 6] ∈ L2.

We are thus left with the case that a+ c = 20, so 2a ≤ a+ c = 20 or a ≤ 10. The
cases a = 4 and a = 8 are not possible by Proposition 46. Moreover, the case a = 6 is
also not possible because then c = 14, but c /∈ Skn. In addition, a = 10 is out because
for q = [10, 2, 10] we have that 54 = q(1, 2) ∈ R′(q) by (39) but 54 /∈ Skn. Thus, only
q = [2, 2, 18] ∈ L2 is possible, and the assertion follows.

The last remaining case to be studied is the following.

Proposition 51 If q = [a, b, c] is a reduced special form with cont(q) ≡ 0 (mod 2)
and b > 2, then q ∈ L3 := {[k, k, k] : k = 4, 6, 10}.

Proof. First note that if 4|cont(q), then q = [4, 4, 4] ∈ L3 by Proposition 43, so
we can assume that cont(q) ≡ 2 (mod 4). It thus follows from Proposition 48 that
a ≡ b ≡ 2 (mod 4), and hence b ≥ 6 because b > 2. Thus also c ≥ a ≥ 6. In addition,
we know from Theorem 49 that R′(q) ⊂ Skn.

Suppose first that c > 10. Then c ≥ 18 because c ∈ Skn and c ≡ 2 (mod 4). Since
a ≥ 6 we have 42 < 51 = 18(3− 1

6
) ≤ c(3− 1

a
)+(c− b), so we see that (36) holds with

n = 6 and hence q(6, 1) ∈ R′(q) by Lemma 44. Then a ≤ 10, for otherwise a ≥ 18
(because a ∈ Skn and a ≡ 2 (mod 4)) and then q(6, 1) ≥ 36(18) + 6(6) + 18 = 702 >
462, so q(6, 1) /∈ Skn and hence q is not special. If a = 10, then b = 6 or 10. In the
first case q(6, 1) = 396 + c ∈ Skn. Since q(6, 1) > 330, it follows that q(6, 1) = 462,
so c = 462 − 396 = 66. But then c /∈ Skn, contradiction. Similarly, for b = 10 we
have q(6, 1) = 420 + c ∈ Skn, so c = 462 − 420 = 42 and hence q = [10, 10, 42]. But
q(1, 1) = 62 /∈ Skn, contradiction.

We thus have that a < 10. Then a = b = 6 and so q(6, 1) = 252 + c ≥ 270. Thus,
only q(6, 1) = 330 or 462 are possible. In the first case we get c = 330−252 = 78, but
q = [6, 6, 78] is not special since q(1, 1) = 90 /∈ Skn. Similarly, c = 462− 252 = 210 is
impossible since then q(1, 1) = 222 /∈ Skn.

We are thus left with the case that c ≤ 10. If c = 6, then q = [6, 6, 6] ∈ L3, so
assume that c = 10. If b ≥ 10, then q = [10, 10, 10] ∈ L3, so assume b = 6. Thus
a = 6 or 10, so either q = [6, 6, 10] or q = [10, 6, 10]. But neither of these is special
because in the latter case q(1, 1) = 26 /∈ Skn, and in the first case q(3, 1) = 82 /∈ Skn

but 82 ∈ R′(q) because 82 < 204 = |∆(q)|. This proves the assertion.

Combining Propositions 37, 43, 48, 50 and 51, we obtain:

Theorem 52 If q is a special idoneal-valued binary form, then q ∼ [a, b, c], where
[a, b, c] ∈ L := L0 ∪ L1 ∪ L2 ∪ L3.
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Proof. As in the proof of Proposition 43, there is a reduced form q1 = [a, b, c] with
b ≥ 0 such that q ∼ q1. If cont(q1) is odd, then q1 ∈ L1 by Proposition 37. Thus,
assume that cont(q1) is even. If b > 2, then q1 ∈ L3 by Proposition 51, and if b = 2,
then q1 ∈∈ L2 by Proposition 50. If b = 0, then by Proposition 43 we must have that
cont(q1) ≡ 2 (mod 4), and so Proposition 48 shows that q1 ∈ L0. Thus, in all cases
q1 ∈ L, as claimed.

6 The mass formula for ternary forms

In the previous section we saw that if q(x, y) is a special idoneal-valued binary
quadratic form, then q is equivalent to one of the 15 forms in L; cf. Theorem 52.
This does not imply, however, that the forms in L are actually special idoneal-valued
forms. In order to verify that this is indeed the case, we shall show first that the class
number c(fq) of the ternary form fq(x, y, z) = x2 + 4q(y, z) is equal to 1, and then
use the theory developed in §4 to deduce from this that q is special; cf. Theorem 13,
which is proved in the next section.

In order to show that c(fq) = 1, we shall use the mass formula for positive
definite ternary forms which is due to Eisenstein, Smith and Brandt; cf. Brandt[1].
This formula gives a simple expression for the mass M(f) of a ternary form, which
is defined as

M(f) =
∑

f ′∈gen(f)

1

w(f ′)
, where w(f ′) = |Aut+(f ′)|;

cf. Smith[17], p. 483. In order to state the result, it is useful to introduce the abbre-
viation

ψ(n,∆) := n
∏
p|n

(
1 +

(
∆

p

)
1

p

)
;

here ∆ ≡ 0 or 1 (mod 4), and (∆
p
) denotes the Kronecker-Legendre symbol. Note

that this function generalizes the usual Dedekind function ψ(n) = ψ(n, 1). If φ(n)
denotes the Euler φ-function, then the mass formula of Eisenstein/Smith/Brandt for
the form fq is as follows.

Proposition 53 Let q′ be a primitive positive definite binary quadratic form of dis-
criminant ∆′ = −d′, and let t ≥ 1 be an integer. Put q = tq′ and δ = (d′, 2t). Then
the mass of fq(x, y, z) = x2 + 4q(y, z) is given by

M(fq) =
1

24g(−16t)g(∆′)δ2
φ(δ)ψ(δ)ψ(t,∆′)ψ(d′,−16tr′),(42)

where g(d) denotes the number of genera of binary quadratic forms of discriminant
d, and r′ ∈ R(q′) is any number represented by q′ with (r′, d′) = 1.
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Proof. Let f be any primitive positive definite ternary form with primitive positive
definite adjoint F , and let I1 and I2 be their invariants as defined on p. 316 of [1].
Let rf (respectively, rF ) be a number represented by f with (rf , I1) = 1 (respectively,
by F with (rF , I2) = 1). Then the mass formula on p. 316 of Brandt[1] is

M(f) =
κI

6 · 2ν

∏
p|(I1,I2)

(
1− 1

p2

) ∏
p|I

(
1 +

(
I2rf

p

)
1

p

) (
1 +

(
I1rF

p

)
1

p

)
,(43)

where I = I1I2/16, κ ∈ {1, 1
2
, 1

3
} is as defined on p. 317 of [1] and 2ν denotes the

total number of characters attached to f and to F . Thus, 2ν = 2ν12ν2 , where 2νk =
[(Z/IkZ)× : ((Z/IkZ)×)2], for k = 1, 2. Note that 2νk equals the total number of
factorizations of Ik into prime discriminants, and so this definition of 2νk agrees with
that of Brandt[2], p. 339. In addition, we observe that by Gauss’s genus theory we
have 2νk = 2g(Ik).

We now apply this formula to f = fq. For this, we need to determine F , I1, I2,
etc. To calculate F , recall that if A(f) is the symmetric matrix associated to f (so
f(~x) = 1

2
~xtA(f)~x as on p. 2 of [18]), then by [18], p. 25, the adjoint form adj(f) of f

is given by the formula

A(adj(f)) = (−2)adj(A(f)) = (−2) det(A(f))A(f)−1,

and we have adj(f) = I1F , where F is positive definite and primitive and I1 ∈ Z.
Applying this to f = fq, and writing q(x, y) = ax2 + bxy + cy2 = t(a′x2 + b′xy +

c′y2) = tq′(x, y) and d = −∆(q), we have

A(f) =

 2 0 0
0 8a 4b
0 4b 8c

 and hence adj(A(f)) = (−2)

 16d 0 0
0 8c −4b
0 −4b 8a

 ,

because det(A(f)) = 32(4ac− b2) = 32d. Thus adj(fq)(x, y, z) = (−2)2(8dx2 +4cy2−
4byz + 4az2) = −16tF (x, y, z), where F (x, y, z) := d′tx2 + c′y2 − b′yz + a′z2. Since
F is clearly primitive and positive definite (because q′ is), we see that the primitive
adjoint of fq is

F (x, y, z) = d′tx2 + c′y2 − b′yz + a′z2 ∼ d′tx2 + q′(y, z).(44)

In addition, we see that I1 = −16t (because adj(fq) = −16tF = I1F ). Moreover,
since fq has discriminant ∆(fq) = −1

2
det(A(fq)) = −16d, it follows from the last line

of [1], §5, that I2 = 16∆(fq)/I
2
1 = −162d/(16t)2 = −d/t2 = ∆′, and so

I1 = −16t and I2 = ∆′.

(Note that above we used a slightly different definition of F , I1 and I2 than that
given in [1]. However, this gives the same form and invariants because one can check
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that the above form F (x, y, z) and the invariants I1 and I2 do indeed satisfy the two
formulae in the middle of p. 316 of [1].)

Since 16|I1 we have κ = 1 by [1], p. 317. Moreover, since fq(1, 0, 0) = 1 and
F (0, y,−x) = q′(x, y), we see that we can take rf = 1 and rF = r′, where r′ = rq′ is
any number represented by q′ with (d′, r′) = 1.

Since the prime divisors of δ = (d′, 2t) are the same as those of (I1, I2) = (16t, d′),
we thus see that the mass formula (43) for fq becomes

M(f) =
td′

6 · 2ν

∏
p|δ

(
1− 1

p2

) ∏
p|td′

(
1 +

(
∆′

p

)
1

p

) (
1 +

(
−16tr′

p

)
1

p

)
=

1

6δ2 · 2ν
φ(δ)ψ(δ)ψ(t,∆′)ψ(d′,−16tr′),

where the latter equality uses the fact that
(
1 +

(
∆′

p

)
1
p

)
=

(
1 +

(
−16tr′

p

)
1
p

)
= 1

when p|(t, d′). From this, equation (42) follows immediately because 2ν = 4g(I1)g(I2) =
4g(−16t)g(∆′), as was mentioned above.

We now want to analyze the weight (or mass) w(f) = |Aut+(f)| of the form
f = fq. For this we shall prove the following general result.

Proposition 54 If q1 and q2 are two positive definite binary quadratic forms, then
we have a bijection

Isom(fq1 , fq2) ' {±1} × Isom(q1, q2),(45)

where Isom(·, ·) denotes the set of isometries between two forms. In particular, for
any positive binary form q we have c(fq) ≥ c(q) and wt(fq) = |Aut(q)|.

Proof. Let e1, e2, e3 be the standard basis of M := Z3, and put M1 = Ze1 and M2 =
Ze2+Ze3. Then fqi

(xe1+ye3+ze3) = x2+4qi(y, z), so (M1)
⊥
qi

= M2 and (fqi
)|M2 = 4qi,

for i = 1, 2. Thus, if ϕ ∈ Isom(q1, q2) = {ϕ ∈ Aut(M2) = GL2(Z) : q1 = q2 ◦ ϕ}, and
if ε = ±1, then εidM1 ⊕ ϕ ∈ Isom(fq1 , fq2) = {ϕ ∈ Aut(M) : fq1 = fq2 ◦ ϕ}, and so
the rule (ε, ϕ) 7→ εidM1 ⊕ ϕ defines an injection {±} × Isom(q1, q2) → Isom(fq1 , fq2).

To show that this map is also surjective, note first that for m ∈ M we have
that fqi

(m) = 1 ⇔ m = ±e1 because 4qi(y, z) ≥ 4 for (y, z) 6= (0, 0). Thus, if
ϕ ∈ Isom(fq1 , fq2), then fq2(ϕ(e1)) = fq1(e1) = 1, and so ϕ(e1) = ±e1. It thus
follows that ϕ(M2) = ϕ((M1)

⊥
q1

) = (M1)
⊥
q2

= M2, so ϕ|M2 ∈ Isom(q1, q2), and hence
ϕ = ±idM1 ⊕ ϕ|M2 . Thus, the above map is surjective and hence bijective.

From (45) we see that the natural map gen(q) → gen(fq) (given by q1 7→ fq1 , for
q1 ∈ gen(q)) is injective, and so c(q) = #gen(q) ≤ #gen(fq) = c(fq).

To verify the last assertion, it is enough to show that |Aut+(fq)| = |Aut(q)|
(because wt(fq) = |Aut+(fq)|), and this follows immediately from (45) together with
the observation that if α ∈ Aut(q), then there is a unique choice of sign ε ∈ {±1}
such that det(εidM1 ⊕ α) = 1, i.e. such that εidM1 ⊕ α ∈ Aut+(fq).
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Corollary 55 Let q′ be a primitive positive definite binary quadratic form of discrim-
inant ∆′ and put q = tq′, where t ≥ 1. Then

wt(fq) =


12 if ∆′ = −3,
8 if ∆′ = −4,
4 if ∆′ < −4 and q′ is ambiguous,
2 if ∆′ < −4 and q′ is not ambiguous.

(46)

Proof. By Proposition 54 we have wt(fq) = |Aut(q)| = |Aut(q′)|. Now it is well-known
that |Aut(q′)| = ε|Aut+(q′)|, where ε = 2 if q is ambiguous, and ε = 1 otherwise (cf.
e.g. Jones[9], p. 147). Since |Aut+(q′)| = 6 and 4, for ∆ = −3 and −4, respectively,
and |Aut+(q′)| = 2, for ∆ < −4, the formula (46) follows.

We are now ready to prove the main result of this section.

Proposition 56 For every q ∈ L we have M(fq) = 1/wt(fq), and so c(fq) = 1.

Proof. We shall apply the mass formula (42) to the form q = tq′ ∈ L. Since each
form q′ except q′ = [2, 0, 3] represents 1, we can take r′ = 1 for all except for the last,
where we can take r′ = 5. To evaluate the right hand side of (42), note that for any
discriminant ∆ we have that

g(∆) = 2ω(∆)−1+ε(∆),(47)

where ω(∆) denotes the number of distinct prime divisors of ∆ and ε(∆) = 1 if
∆ ≡ 0 (mod 32), ε = −1 if ∆ ≡ 4 (mod 16) and ε(∆) = 0 otherwise; cf. e.g. [12], §2.2.

Now if we let ν∗ be defined by 2ν∗ = g(−16t)g(∆′) and put φψ = φ(δ)ψ(δ),
ψ1 = ψ(t,∆′) and ψ2 = ψ(d′,−16tr′), then the quantities appearing on the right
hand side of (42) for q ∈ L are given in the Table 1 below.

Since all the forms q′ here are ambiguous, we see from Table 1 and (46) that
M(fq) = 1/wt(fq), for all q ∈ L. Now it is clear from the definition that

M(fq) ≥ 1/wt(fq) and M(fq) = 1/wt(fq) ⇔ #gen(fq) = 1,

and so we obtain from this that c(fq) = #gen(fq) = 1, for all q ∈ L.

Remark 57 It is perhaps worthwhile to mention that the forms q which are equiva-
lent to those in L are not the only binary forms q for which c(fq) = 1 (so the “converse”
of Proposition 56 is false). Indeed, the forms q ∈ {[1, 0, 2], [1, 0, 3], [1, 0, 6], [3, 0, 3]}
also satisfy c(fq) = 1. But each of these represents an integer n ≡ 3 (mod 4) (with
n < |∆(q)|), so they cannot be special idoneal-valued forms. Note that such forms are
excluded from consideration in the hypothesis of Theorem 13, and hence this shows
that this extra hypothesis is necessary for the validity of Theorem 13.
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q d′ t δ ν∗ φψ ψ1 ψ2 M(fq)
−1

[1, 1, 1] 3 1 1 0 1 1 2 12

[2, 2, 2] 3 2 1 1 1 1 4 12

[4, 4, 4] 3 4 1 1 1 2 2 12

[6, 6, 6] 3 6 3 2 8 3 3 12

[10, 10, 10] 3 10 1 2 1 4 2 12

[1, 0, 1] 4 1 2 0 3 1 4 8

[2, 0, 2] 4 2 4 1 12 2 4 8

[6, 0, 6] 4 6 4 2 12 4 4 8

[1, 1, 2] 7 1 1 0 1 1 6 4

[1, 1, 4] 15 1 1 1 1 1 12 4

[2, 2, 6] 11 2 1 1 1 1 12 4

[2, 2, 18] 35 2 1 2 1 1 24 4

[2, 0, 4] 8 2 4 1 12 2 8 4

[2, 0, 10] 20 2 4 2 12 2 16 4

[4, 0, 6] 12 2 4 1 12 2 8 4

Table 1: Evaluating the mass formula for q ∈ L.

7 Proofs of the main results

We are now ready to put the above results together to prove the main theorems of
this paper. We begin with the main theorem on quadratic forms.

Proof of Theorems 6 and 13. (i) ⇒ (ii): Trivial, since fq → 1.
(ii) ⇒ (iii): Here we use the hypothesis that P(Q) = P(Q)odd. (Note that by

Remark 33 this hypothesis is equivalent to the condition that either ∆ ≡ 1 (mod 4)
or that q 6→ n, for any n ≡ 3 (mod 4)). Thus, if θ ∈ P(Q) = P(Q)odd, then by
Corollary 29 we have that Qθ ∈ gen(fq) and so it follows from (ii) that Qθ → 1.

(iii) ⇒ (iv): Corollary 36.
(iv) ⇒ (v): Theorem 52.
(v) ⇒ (i): Proposition 56.

As was already explained after the statement of Theorem 13, this theorem, to-
gether with Corollary 8, immediately implies Theorem 2 of the introduction.

We next prove Corollary 3, which requires some results from [13].

Proof of Corollary 3. Let Aex
K denote the set of isomorphism classes of the CM abelian

product surfaces A/K which do not contain a genus 2 curve. We will construct an
injective map ΦK : Aex

K → L and show that it is surjective when char(K) = 0.
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The map ΦK : Aex
K → L is defined by the relation

ΦK(A) = q ⇔ qA ∼ xy ⊥ (−q).(48)

To see that this relation defines a function, we show first that q ∈ L is uniquely
determined by this condition. For this we shall use the fact that

c(q) = 1, for all q ∈ L,(49)

which follows from the fact that if q ∈ L, then q = tq′, where q′ is primitive and
∆(q′) ∈ {−3,−4,−7,−8,−11,−15,−20,−24,−35}, which are all idoneal discrimi-
nants. (Alternately, we can deduce (49) by noting that c(fq) = 1 by Proposition 56,
and that hence also c(q) = 1 by Proposition 54.) Thus, if xy ⊥ (−q1) ∼ xy ⊥ (−q2),
then by Corollary 26 we know that gen(q1) = gen(q2). But by (49) it then follows
that q1 ∼ q2 and that hence q1 = q2 because the forms in L are distinct reduced
forms. Thus, q is uniquely determined by (48).

Now let A ∈ Aex
K . Since (by definition) A ∼ E × E, for some CM elliptic curve

E/K, we have by [13], Theorem 2, that A ' E1 ×E2, for some elliptic curves Ei/K,
and so by Theorem 2 we know that qE1,E2 ∼ q, for some q ∈ L. Then by (6) we have
that qA ∼ xy ⊥ (−qE1,E2) ∼ xy ⊥ (−q), and hence ΦK(A) = q. This shows that (48)
defines a map ΦK : Aex

K → L.
To show that ΦK is injective and/or bijective, we examine the fibre Φ−1

K (q), for
q ∈ L. For this we first note that if q ∈ L, then

q ∈ Im(ΦK) ⇔ there exists a CM elliptic curve E/K with ∆E = ∆(q).(50)

Indeed, suppose that q ∈ Im(ΦK). Then by the above discussion we know that
q ∼ qE1,E2 , for some CM elliptic curves E1 ∼ E2. By [13], (79), we know that
∆(q) = ∆(qE1,E2) = −lcm(∆E1 ,∆E1), and by [13], Proposition 29, it follows that
there is an elliptic curve E/K with ∆E = −lcm(∆E1 ,∆E1) = ∆(q).

Conversely, if E/K is a CM elliptic curve with ∆E = ∆(q), then for any pair
(E1, E2) of isogenous CM elliptic curves with qE1,E2 ∼ q, it follows from [13], Corollary
42 and [13], Proposition 36 that Ei ∼ E. Thus, Φ−1

K (q) = {A ∼ E × E : qA ∼ xy ⊥
(−q)}/', which by [13], Corollary 70, has cardinality Nq = h(∆′)/g(∆′) ≥ 1, where
∆′ = ∆(q)/cont(q)2. Thus q ∈ Im(ΦK), and so (50) follows. Moreover, since it
follows from (49) that Nq = h(∆′)/g(∆′) = 1, we see that ΦK is injective, and so
#Aex

K ≤ #L = 15, as asserted. In addition, if char(K) = 0, then for each discriminant
∆ < 0 there is a CM elliptic curve E ′/K with ∆E′ = ∆ (cf. [13], Proposition 37(a)),
and so ΦK is surjective. Thus, there are precisely 15 such non-isomorphic surfaces.

Remark 58 The above proof also determines the number ExK := #Aex
K of excep-

tional surfaces when char(K) = p 6= 0. Indeed, since a CM elliptic curve E/K with
∆E = ∆ exists if and only if (∆

p
) = 1 (cf. [13], Proposition 37(b)), it follows from
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(50) that ExK = #(Lp), where Lp =
{
q ∈ L :

(
∆(q)

p

)
= 1

}
. From this we see that

ExK is determined by suitable congruence conditions on p = char(K). In particular,
there are infinitely many characteristics p for which no exceptional surfaces exist, i.e.
ExK = 0 (the smallest is p = 479) and there are infinitely many for which all 15
surfaces exist, i.e. ExK = 15 (the smallest is p = 2689). Similarly, since #L2 = 2,
#L3 = 4 and #L5 = 5, we see that there are precisely 2, 4, and 5 exceptional surfaces
when char(K) = 2, 3, and 5, respectively.

By using the theory of [13], the exceptional surfaces can be written down quite
explicitly. Here we use the method due to Deuring (see the reference in [13]) which
associates to each ideal I of End(E) a finite subgroup scheme H(I) of E.

Corollary 59 Let q ∈ L and suppose that there exists an elliptic curve E/K with

∆E = ∆ := ∆(q). Fix an isomorphism End(E) ' R∆ := Z + Z∆+
√

∆
2

, and put
c = cont(q). Then the unique exceptional surface Aq/K with qAq ∼ xy ⊥ (−q) is
given by

Aq = E × E/H(Iq), where Iq =

{
cR∆/c2 if ∆ 6= −96

4Z +
√
−24Z if ∆ = −96.

(51)

Proof. In view of the bijection of [13], Theorem 67 (see also [13], Remark 68), together
with equations (101) and (78) of [13], it is enough to show that q ∼ [R(I) : R]q+

Iq
,

where q+
Iq

denotes the equivalence class of (primitive) forms associated to the lattice

(ideal) Iq of R = R∆. Now if ∆(q) 6= −96, then q ∼ c1∆′ , where ∆′ = ∆/c2, and so
the desired equivalence is clear in this case. If ∆(q) = −96, then q ∼ [4, 0, 6], and it
is easy to see that here q+

Iq
∼ [2, 0, 3] and so the result is true here as well.

Remark 60 If K = C, then it follows from Corollary 59 (and [13], Proposition 33)
that the exceptional surfaces Aq with q ∈ L have a very simple analytic description:

Aq ' C/R∆ × C/Lq, where Lq =

{
R∆/c2 if ∆ 6= −96,

2Z +
√
−6Z if ∆ = −96.

(52)

Here, as before, ∆ = ∆(q), c = cont(q) and R∆ = Z + Z∆+
√

∆
2

.
From (52) we can determine explictly the j-invariants of the pair (E1, E2) which

define Aq by calculating the (known) values j1 := j(E1) = j(R∆) and j2 = j(E2) =
j(Lq) of the j-function. Thus, there are precisely 5 cases for which (j1, j2) ∈ Q2; these
are given in the following table:

−∆(q) 3 4 7 12 16
(j1, j2) (0, 0) (2633, 2633) (−3353,−3353) (243253, 0) (2333113, 2632)

The values of other pairs can also be computed, but lead to complicated algebraic
numbers of degree ≤ max{h(∆(q)) : q ∈ L} = 6.
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One can also determine the pairs (E1, E2) of all elliptic curves such that qE1,E2 ∼
q ∈ L by using Corollary 42 of [13]. A somewhat tedious count shows that there are
46 such pairs.

We now turn to the proof of Corollary 4. This will we be deduced from the
following more precise statement.

Theorem 61 If A/K0 is an abelian surface such that A is isogenous to E × E,
where E/K0 is a CM elliptic curve with rank(EndK0(E)) = 2, then there exist elliptic
curves E1 and E2/K0 such that A ' E1×E2. Moreover, the following conditions are
equivalent:

(i) There is a curve C/K0 such that JC ' A ' E1 × E2;

(i′) There is a genus 2 curve on A ' E1 × E2;

(ii) qA is not equivalent to xy ⊥ (−q), for any q ∈ L;

(iii) qE1,E2 is not equivalent to any q ∈ L.

Proof. The existence of E1 and E2 with A ' E1 × E2 follows directly from [13],
Theorem 2. It thus remains to show that the conditions (i) – (iii) are equivalent.

(i) ⇒ (iii): Let K = K0 be the algebraic closure of K0 and write Ei = Ei ⊗K.
Since E1 ∼ E2 ∼ E, the hypothesis implies that Hom(E1, E2) = Hom(E1, E2) (cf.
[13], Lemma 14(b)), and so qE1,E2 ∼ qE1,E2

. Since C = C ⊗K is a genus 2 curve on

JC ' E1 × E2, it follows from Theorem 2 that qE1,E2 cannot be equivalent to any
q ∈ L.

(iii) ⇒ (ii): Put A = A ⊗ K = E1 × E2. Then by (53) below we have that
NS(A) = NS(A), and so by (6) (applied to A) we have that qA ∼ qA ∼ xy ⊥
(−qE1,E2

) ∼ xy ⊥ (−qE1,E2). Now suppose that (iii) is false, i.e. that qA ∼ xy ⊥ (−q),
for some q ∈ L. Then by Corollary 26 we know that qE1,E2 ∈ gen(q). But for q ∈ L
we have c(q) = 1 (cf. proof of Corollary 3), and so qE1,E2 ∼ q, which is contrary to
the hypothesis (ii).

(ii) ⇒ (i′): If (ii) holds, then it is clear that also (iii) holds because if qE1,E2 ∼ q,
then qA ∼ xy ⊥ (−qE1,E2) ∼ xy ⊥ (−q), contradiction. Thus, by Theorem 2 (applied
to A ' E1 × E2), we see that there exists a genus 2 curve C on A. By Lemma 62
below we then also have a genus 2 curve on A, and so (i′) holds.

(i′) ⇒ (i): This follows from Weil[21], Satz 2.

In the above proof we used the following fact.

Lemma 62 Let E1 and E2 be elliptic curves over a field K0, and suppose that
Hom(E1, E2) = Hom(E1, E2), where Ei = Ei ⊗ K and K is the algebraic closure
of K0. If C is genus 2 curve on A := E1 × E2, then there exists a genus 2 curve C
on A = E1 × E2 such that C ⊗K is a translate of C.
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Proof. We first show that

D ∈ Div(A) ⇒ ∃D ∈ Div(A) such that D ⊗K ≡ D,(53)

where D⊗K denotes the pullback of the divisor D under base change, and ≡ denotes
numerical equivalence (as in §2). Indeed, let θi = pr∗i (0Ei

) ∈ Div(A) and θi =
θi ⊗ K = pr∗i (0Ei

) ∈ Div(A), for i = 1, 2. Then by the fundamental identification

NS(A) ' Z2 ⊕ Hom(E1, E2) (cf. [11], Proposition 22), there exist integers a, b ∈ Z
and h ∈ Hom(E1, E2) such that D ≡ aθ1 + bθ2 + Γh, where Γh denotes the graph of
h. By hypothesis, there is an h ∈ Hom(E1, E2) such that h⊗K = h. Thus, if we put
D = aθ1 + bθ2 + Γh ∈ Div(A), then D ⊗K = aθ1 + bθ2 + Γh, and so (53) follows.

Applying this to D = C, we thus see that there exists D ∈ Div(A) such that
D⊗K ≡ C. Since C

2
= 2 by the adjunction formula, we conclude from the Riemann-

Roch theorem on A (cf. Mumford[15], p. 150) that C defines a principal polarization
and that hence D ⊗ K ∼ Cx, for some x ∈ A(K). Thus dimK0 H

0(A,O(D)) =
dimK H0(A,O(D⊗K)) = 1 (the latter by Riemann-Roch and the Vanishing Theorem;
cf. [15], p. 150), and hence D ∼ C, for a unique effective divisor C ≥ 0, C ∈ Div(A).
By uniqueness we then have C ⊗K = Cx, which proves the lemma.

Proof of Corollary 4. Since qA ∼ xy ⊥ (−qE1,E2), it follows that ∆(qA) = −∆(qE1,E2),
and so it is clear that Corollary 4 follows from Theorem 61 because the discriminants
of the forms in L are the negative of the numbers listed in (2).

Proof of Theorem 5. As is mentioned on p. 145 of [8], it follows from a result of
Deligne that E1 × E2 ' E0 × E0, where E0/K is a fixed supersingular curve, so all
such product abelian surfaces are isomorphic. Thus, using Weil[21], Satz 2, again,
there is a genus 2 curve C on E1 × E2 if and only if there is a genus 2 curve C with
JC ' E ′

1 ×E ′
2, for some supersingular curves E ′

1 and E ′
2, and so the assertion follows

immediately from the mass formula of [8], p. 149.
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