
Modular Diagonal Quotient Surfaces
Introduction
The modular diagonal quotient surfaces Z ′N,ε occur naturally as the (coarse) moduli spaces
associated to the moduli problem which classifies isomorphisms between the mod N Galois
representations attached to elliptic curves:

ρE,N : Gal(K/K)→ Aut(E[N ]) ' GL2(Z/NZ).

Such moduli problems arise in connection with Mazur’s Question and/or Frey’s Conjecture
(see below). As a result, this modular interpretation gives a (partial) geometric interpretation
of these questions and conjectures.

In addition, there is a close analogy between these surfaces and the Hilbert modular
surfaces studied by F. Hirzebruch and others (cf. van der Geer[3]).

The Definition of Modular Diagonal Quotient Surfaces
1. Algebraic Description

Fix an integer N ≥ 1 and ε ∈ (Z/NZ)×, and let

X = X(N) = Γ(N)\H∗ denote the modular curve of level N ,
G = SL2(Z/NZ)/{±1}, viewed as a subgroup of the automorphism group of X,
αε ∈ Aut(X) the automorphism of G defined by conjugation with Qε;

more precisely, αε(g) = QεgQ
−1
ε , where Qε =

(
ε 0
0 1

)
∈ Gl2(Z/NZ). In addition, let

YN = X(N)×X(N) be the product surface of X by itself,
∆ε = {(g, αε(g)) : g ∈ G} the “twisted diagonal” subgroup defined by αε,
ZN,ε = ∆αε\Y the (twisted) diagonal quotient surface defined by αε.

Notes: 1) The modular diagonal quotient surfaces as defined above may be viewed as a
special case of the general diagonal quotient surfaces studied in Kani/Schanz[7].

2) The inclusions of subsgroups {1} ≤ ∆αε ≤ G × G induce finite morphisms (both of
degree m = |G|)

YN
Φ→ ZN,ε

Ψ→ Y1 ' P1 × P1.

Moreover, by using Shimura’s canonical model X(N)/Q, it can be shown that all these
varieties have canonical models over Q (and even over Spec(Z[ 1

N
]).

3) The above curves and surfaces are all projective. For the above-mentioned moduli
problem, however, it is also useful to consider the following affine variants. Let

X ′(N) = Γ(N)\H = X(N) \ {cusps} denote the affine modular curve of level N ,
Y ′N = X ′(N)×X ′(N) be the product surface of X ′(N) by itself,
Z ′N,ε = ∆α\Y ′N the (affine) diagonal quotient surface.

In particular, Z ′N,ε ⊂ ZN,ε is an affine subvariety of ZN,ε and the complement Zinf
N,ε = ZN,ε \

Z ′N,ε is a union of finitely many curves (the curves at infinity).
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2. Analytic Description
As usual, let Γ(N) = Ker(SL2(Z)→ SL2(Z/NZ)) denote the principal congruence subgroup
of level N , and let ±Γ(N) = 〈Γ(N),±1〉. Then (Z ′N,ε)/C may also defined by

(Z ′N,ε)/C = ∆̃N,ε\(H× H),

where ∆̃N,ε ≤ SL2(Z)× SL2(Z) is the unique subgroup containing (±Γ(N))× (±Γ(N)) such
that

∆N,ε := ∆̃N,ε/(±Γ(N))× (±Γ(N))),

is the twisted diagonal subgroup as defined above via the identificationG ' SL2(Z)/(±Γ(N)).
The above analytic description of Z ′N,ε points to the analogy with Hilbert modular surfaces

(which are quotients of H×H by other discrete subgroups of SL2(R)×SL2(R).) Indeed, many
of the analytic properties of these surfaces are analogous to those of the usual Hilbert modular
surfaces, and hence the ZN,ε’s may also be called degenerate Hilbert modular surfaces of
discriminant N2. (Terminology of C.F. Hermann[5]).

3. Modular Description

The surface Z ′N,ε “classifies” isomorphisms (of determinant ε) between mod N Galois repre-
sentations attached to elliptic curves E/K:

ρ̄E/K,N : GK → Aut(E[N ]) ' GL2(Z/NZ).

More precisely, Z ′N,ε “classifies” isomorphism classes of triples (E1, E2, ψ), where Ei/K are

two elliptic curves and ψ : E1[N ]
∼→ E2[N ] is an isomorphism of the N -torsion subgroups

Ei[N ] of determinant ε; the latter means that the Weil pairings are related by the formula

eE1,N ◦ (ψ × ψ) = eεE2,N
.

In other words, the surface (Z ′N,ε)/Q serves as a coarse moduli scheme for the moduli functor
ZN,ε : Schemes/Q → Sets defined by

ZN,ε(S) = {(E1, E2, ψ) : E1, E2 are elliptic curves over S and
ψ : E1[N ]

∼→ E1[N ] is an S-isomorphism
with det(ψ) = ε}/(isomorphisms).

This modular interpretation can be used to understand:

• Mazur’s Question on isomorphisms between mod N Galois representations attached to
elliptic curves.

→ construction of ∞’ly many such isomorphisms for N = 11 (cf. Kani-Rizzo[6])

→ explanation of the examples of Kraus/Oesterlé[9], Halberstadt/Kraus[4] for N = 7.

• Frey’s Conjecture (↔ Asymptotic Fermat Conjecture) and Darmon’s Conjectures and
other related conjectures; cf. Frey[2].

• Moduli problems of curves of genus 2 with elliptic differentials (and related Hurwitz
spaces).
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The Geometry of Modular Diagonal Quotient Surfaces
1. Singularities

Since ∆ε has finitely many fixed points on YN , the quotient surfaces ZN,ε have finitely many
isolated (cyclic) quotient singularities. (The basic properties of such singularities is explained
in Barth/Peters/van de Ven[1], p. 84.) As was shown in Kani-Schanz[8] (cf. also Hermann[5]),
the surface ZN,ε has for N ≥ 5:

r0 = h(−4N2) singularities lying over P 0 × P 0 ∈ Y1

r1 = h(−3N2) singularities lying over P 1 × P 1 ∈ Y1

r∞ = s∞(Γ1(N)) singularities lying over P∞ × P∞ ∈ Y1

(and no other singularities). Here, h(D) denotes the number of (positive-definite) primitive
binary quadratic forms of discriminant D < 0 and s∞(Γ) denotes the number of cusps of
Γ ≤ SL2(Z). In addition, P 0, P 1 and P∞ ∈ X(1) denote the three ramification points of the
G-cover π : X(N)→ X(1) ' P1. Thus, (ZN,ε)sing = S0 ∪ S1 ∪ S∞, where Sk denotes the set
of singularities above P k × P k for k = 0, 1,∞.

By using the above modular description, the finite singularities (i.e. those in Z ′N,ε) are
precisely the CM-points on the surface ZN,ε which have extra automorphisms. There are
actually two types: the Heegner CM-points S+

k and the anti-Heegner CM-points S−k , which
are defined as follows.

• The Heegner CM-points are those whose modular description has the form
(Ek, Ek, h|Ek[N ]) with h ∈ End(Ek), where End(Ek) = Z[θk] with θk ∈ Aut(Ek)
of order 2k + 2. (Thus, End(Ek) = Z[i],Z[

√
−3], for k = 0, 1, respectively.)

Alternately, these points correspond to the solutions of the congruence equation
qk(x, y) ≡ ε (mod N) (modulo the action of σk). Here qk(x, y) = x2 + kxy + y2,
for k = 0, 1, and σ0 =

(
0 −1
1 0

)
, σ1 =

(
0 −1
1 1

)
∈ SL2(Z/NZ).

• The anti-Heegner CM-points are those whose modular description has the
form (Ek, Ek, ψPh|Ek[N ]) with h ∈ End(Ek). Here ψP is the automorphism of
End(Ek[N ]) which interchanges the two vectors of a normal basis {P, θk(P )}
of Ek[N ]. Such points correspond to the solutions of the congruence equation
qk(x, y) ≡ −ε (mod N) (modulo the action of σk).

2. The Desingularization Z̃N,ε of ZN,ε
Construction. As is well-known (cf. [1], p. 80ff), a cyclic quotient singularity may be
desingularized by replacing it by a chain of P1’s. The number and self-intersection numbers
of these curves depends on the (modified) continued fraction expansion of n

q
, where (n, q) is

the type of the singularity. For example,

each z ∈ S0 is resolved by one (−2)− curve
each z ∈ S+

1 is resolved by one (−3)− curve
each z ∈ S−1 is resolved by two (−2)− curves (intersecting transversely)

However, the resolution of the singularities S∞ at infinity is more involved and does not have
such a simple description (cf. [8].) Thus, if Lε denotes the total number of curves added to
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the smooth part (ZN,ε)sm of ZN,ε, then we have

Lε = r0 + 2r1 − s1,1,ε + L∞,ε,

where s1,1 = #S+
1 and L∞ denotes the total number of irreducible curves needed to resolve

the singularities at infinity.

Numerical Invariants. Many of the numerical invariants (such as the Betti, Hodge and
Chern numbers) of the desingularization Z̃N,ε were worked out in [8] (cf. also [5]). By
Theorem 2.6 of [8], these are given by a simple expression in terms of the following basic
invariants:

m, r0, r1, s1,1,ε, r∞, Gε, Sε, Lε

Here m = |G|, rk = #Sk, s1,1,ε = #S+
1 and Lε are as defined above. The other two invariants

Gε and Sε are defined in terms of the group characters h1 and ω afforded by G on the modules
H1(X(N),C) and H0(X(N), ωX(N)), respectively:

Gε = 1
4
(h1, h1) and Sε = 1

4
(h1, h1)− (ω, ω ◦ αε);

cf. [8], Remark 2.7 (together with Cor. 1.13). Note that the invariants m, rk and Gε depend
only on N , but not on ε. Moreover, the invariant Gε can be expressed in terms of the rk’s
via the formula

Gε =
m(N − 12)

144N
− 1 +

1

8
φ(N) +

1

8
r0 +

1

6
r1 +

1

4
r∞

On the other hand, the invariant Sε is not so easy to calculate since one has to compute
several Dedekind sums (of the form S(εn2, N/d)).

Betti numbers: These are the numbers bi = dimCH
i(Z̃N,ε,C), for i = 0, . . . , 4 :

b0 = b4 = 1, b1 = b3 = 0, b2 = 2 + 4Gε + Lε.

Hodge numbers: These are the numbers hp,q = dimCH
q(Z̃N,ε,Ω

p), for 0 ≤ p, q ≤ 2 :

h0,0 = b0 = 1

h0,1 = h1,0 = 1
2
b1 = 0

h0,2 = h2,0 = pg = Gε − Sε
h1,1 = 2 + 2Gε + 2Sε + Lε

h1,2 = h2,1 = 1
2
b3 = 0

h2,2 = b4 = 1

Chern numbers: These are the numbers

c2
1 = K2

ε = 8 + 8Gε − Lε − 12Sε and c2 = χtop = 4 + 4Gε + Lε.

Here Kε is the canonical class and χtop is the (topological) Euler characteristic of Z̃N,ε. In
addition, the signature of Z̃N,ε is given by

sign(Z̃N,ε) =
1

3
(c2

1 − c2) = 2pg − h1,1 + 2 = −4Sε − Lε.
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Rough Classification. By Theorem 3 of [8], the Kodaira dimension of Z̃N,ε is given by the
formula

κ(Z̃N,ε) = min(2, pg(Z̃N,ε)− 1),

where, as before, pg(Z̃N,ε) denotes the geometric genus of Z̃N,ε. In particular, Z̃N,ε is a
rational surface if and only pg = 0. Similarly, Z̃N,ε is of general type if and only if pg ≥ 3.

In fact, the rough classification type of the surface Z̃N,ε is completely determined by it
geometric genus pg. More precisely, by Theorem 4 of [8] (see also [5]) we have:

• Z̃N,ε is a rational surface if and only if pg(Z̃N,ε) = 0, and this is the case precisely
for N ≤ 5 or for (N, ε) = (6, 1), (7, 1) or (8, 1).

• Z̃N,ε is a (blown-up) elliptic K3-surface if and only if pg(Z̃N,ε) = 1, i.e. if and only
if (N, ε) = (6, 5), (7, 3), (8, 3), (8, 5), (9, 1) or (12, 1).

• Z̃N,ε is a (blown-up) elliptic surface with κ = 1 if and only if pg(Z̃N,ε) = 2. This
is the case for (N, ε) = (8, 7), (9, 2), (10, 1), (10, 3) or (11, 1).

• Z̃N,ε is a surface of general type if and only if pg(Z̃N,ε) ≥ 3, or equivalently, if
N ≥ 13 or if (N, ε) = (11, 2), (12, 5), (12, 7) or (12, 11).

Note: In the above lists, the parameter ε ∈ (Z/NZ)× is to be viewed as a representative of
the associated square class ε((Z/NZ)×)2 because Z̃N,ε′ ' Z̃N,ε, for any ε′ ∈ ε((Z/NZ)×)2.
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