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This document is meant to be a substitute for page 489 of Rene Schoof’s 1985 paper, Elliptic Curves
Over Finite Fields and the Computation of Roots mod p. The motivation for this document is the
number of typographical errors in Schoof’s original work. Corrections are noted in boldface. No
responsibility is taken for the accuracy of this work!

• p. 488, middle (paragraph after equation (16):

If this gcd 6= 1 we have that a point P exists in E[l] with φ2
l P = ±qP ; we will return

to this case. If, on the other hand, this gcd equals 1, we have that τ 6= 0 in (12). In
testing (12) for ther values of τ , we can, when adding φ2

l (x, y) and q(x, y), apply the
version of the addition formula where the two points have distinct X-coordinates.

Case 1. This is the case where for some nonzero P ∈ E[l] we have that φ2
l P = ±qP .

If φ2
l P = −qP , for some nonzero P , we have by (3) that tφlP = 0, whence, since

φlP 6= 0, that t ≡ 0 (mod l). If φ2
l P = qP for some nonzero P we have by (3) that

(2q − tφl)P = 0 and φlP =
2q
t
P.

• p. 488, bottom (no corrections, but included for completeness since the text continues in the
next box):

If

gcd
(
(Xq −X)f2

w(X)(X3 +AX +B) + fw−1(X)fw+1(X), fl(X)
)

(w even),

gcd
(
(Xq −X)f2

w(X) + fw−1(X)fw+1(X)(X3 +AX +B), fl(X)
)

(w odd)
(17)

• p. 489, top:
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equals 1, we have that t ≡ 0 (mod l) otherwise, if

gcd
(

4(X3 +AX +B)(q−1)/2f3
w(X)− fw+2(X)f2

w−1(X) + fw−2(X)f2
w+1(X), fl(X)

)
,

gcd
(

4(X3 +AX +B)(q+3)/2f3
w(X)− fw+2(X)f2

w−1(X) + fw−2(X)f2
w+1(X), fl(X)

)(18)

(for w odd, resp. even) equals 1, we have that t ≡ −2w (mod l) else t ≡ 2w (mod l).
Case 2. This is the case where we know that φ2

l P and qP are neither equal nor opposite
for any P ∈ E[l]. In this case we will test which of the relations (12) holds with τ ∈ Z/lZx.
We have with P = (x, y) and k ≡ q (mod l) and 0 < k < l, that

φ2
l P + qP =

(
−xq2 − x+

Ψk−1Ψk+1

Ψ2
k

+ λ2,−yq2 − λ
(
−2xq

2 − x+
Ψk−1Ψk+1

Ψ2
k

+λ2

))
,

where

λ =
Ψk+2Ψ2

k−1 −Ψk−2Ψ2
k+1 − 4yq

2+1Ψ3
k

4Ψky
((
x− xq2

)
Ψ2
k −Ψk−1Ψk+1

) .

Note that the denominator of λ does not vanish on E[l] since Ψk has no zeros on E[l] and
since we are in Case 2. Let τ ∈ Z with 0 < τ < l; we have

τφlP =

(
xq −

(
Ψτ+1Ψτ−1

Ψ2
τ

)q
,

(
Ψτ+2Ψ2

τ−1 −Ψτ−2Ψ2
τ+1

4yΨ3
τ

)q)
.

In a way analogous to the computations above one can test, by computations in Fq[X], which
of the relations (12) holds by trying τ = 1, . . . , l − 1. The computations involve evaluating
polynomials modulo fl(X) and testing whether they are zero mod fl(X). We do not give all
the details; testing whether φ2

l + q = τφl holds on E[l] boils down to testing whether((
Ψk−1Ψk+1 −Ψ2

k

(
Xq2

+Xq +X
))

β2 + Ψ2
kα

2
)

Ψ2q
τ + Ψq

τ−1Ψq
τ+1β

2Ψ2
k and,

4Y qΨ3q
τ

(
α
((

2Xq2
+X

)
β2Ψ2

k −Ψk−1Ψk+1β
2+Ψ2

kα
2
)
− Y q2

β3Ψ2
k

)
−β3Ψ2

k

(
Ψτ+2Ψ2

τ−1 −Ψτ−2Ψ2
τ+1

)q(19)

are zero mod fl(X). Here

α = Ψk+2Ψ2
k−1 −Ψk-2Ψ2

k+1 − 4Y q2+1Ψ3
k

and
β =

((
X −Xq2

)
Ψ2
k −Ψk−1Ψk+1

)
4YΨk.

By the expressions (19) we understand the polynomials in Fq[X] one gets after eliminating
Y using (19) and, if necessary, by dividing the expressions by Y. The result is a polynomial
in Fq[X]. This completes the description of the second step of our algorithm.
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