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a b s t r a c t

We provide a set of counterexamples for the monotonicity of the Newton–Hewer method (Hewer,
1971) for solving the discrete-time algebraic Riccati equation in dynamic settings, drawing a contrast
with the Riccati difference equation (Caines and Mayne, 1970).
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1. Introduction

This note investigates the monotonicity properties of iterative
ethods for solving the discrete-time algebraic Riccati equation

DARE), which is given by

= A⊤PA − A⊤PB(B⊤PB + R)−1B⊤PA + Q . (1)

As is well-known, given the discrete-time linear control system

x(t + 1) = Ax(t) + Bu(t), x(0) = x0,

where x(t) ∈ Rn and u(t) ∈ Rm are the system’s state and
controller at time t ≥ 0, respectively, A ∈ Rn×n, B ∈ Rn×m, and
the cost function

J(u) =

∞∑
t=0

(
x(t)⊤Qx(t) + u(t)⊤Ru(t)

)
,

where Q ∈ Rn×n, R ∈ Rm×m are positive-definite matrices, and
assuming the controllability of the system (A, B) and observability
of (A,Q 1/2), the optimal controller which minimizes J is given by

u∗(t) = −(B⊤PB + R)−1B⊤PAx(t),
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where P satisfies (1), see, e.g., equation (3.3-21), p. 54 in Anderson
and Moore (1990).

There are several classical iterative methods for solving the
DARE in the literature, including the ones proposed in Caines
and Mayne (1970), Hewer (1971), algebraic methods (Rodman &
Lancaster, 1995), and semi-definite programming (Balakrishnan &
Vandenberghe, 2003). In particular, these iterative methods gen-
erate a sequence of positive-definite matrices which converges to
the solution of the DARE. Our main focus in this paper is on two
commonly used methods, the so-called Riccati difference equation
(Caines & Mayne, 1970), which provably converge to the fixed
point solution of the DARE, and what we call the Newton–Hewer
method which was introduced by Hewer in Hewer (1971), and
uses a Newton-based update to generate a sequence of positive-
definite matrices which monotonically converge to the solution
of the DARE when initialized at a stable policy. Let us describe
these in more detail:

The Riccati difference equation is given by

Pt+1 = A⊤PtA − A⊤PtB(B⊤PtB + R)−1B⊤PtA + Q .

t has been shown that the right hand side of this dynamics is
onotone as a function of Pt , in the sense that Pt ⪰ P̂t ⪰ 0 implies

t+1 ⪰ P̂t+1 ⪰ 0, see De Souza (1989, Lemma 3.1). Furthermore,
his dynamics is monotone as a function of (A, B,Q , R) in the
ollowing sense: If Pt ⪰ P̂t ⪰ 0 and(
Q A⊤

A −BR−1B⊤

)
⪰

(
Q̂ Â⊤

Â −̂B̂R−1̂B⊤

)
, (2)

hen Pt+1 ⪰ P̂t+1 ⪰ 0, see Freiling, Jank, and Abou-Kandil
1996), Wimmer (1992). Notably and important to the discussion
e will have in the next section, as long as (2) is satisfied, this
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onotonicity property holds even when the parameters A, B,Q , R
are time-varying.

The Newton-Hewer method (Hewer, 1971) is given by

Pt+1 = A⊤

t Pt+1At + K⊤

t RKt + Q ,

At = A − BKt , (3)

Kt = (B⊤PtB + R)−1B⊤PtA,

and it has been shown that if the system is controllable, by
initializing with a stable K0; i.e., ρ(A − BK0) < 1, where ρ(·)
enotes the spectral radius, Pt converges monotonically, i.e., P1 ⪰

2 ⪰ . . . ⪰ P∗, where P∗ is the solution of (1).
The monotonicity property of the Riccati difference equation

as been used to derive a robust stability condition for finite-
orizon robust LQR problem (Zou & Gupta, 2000). In addition,
boundedness result for the solution of the Riccati difference
quation has been derived using this property (De Nicolao, 1992;
reiling et al., 1996). These applications motivate us to ask the
atural question whether the Newton–Hewer dynamics has the
onotonicity property that Riccati difference equation enjoys.
e will show in this note that this is not the case in general,

.e., Pt ⪰ P̂t ⪰ 0 does not necessarily imply Pt+1 ⪰ P̂t+1 ⪰ 0,
y providing two counterexamples, each aimed to demonstrate a
acet of this lack of monotonicity.

. Counterexamples

The construction of our examples is done for the scalar case,
nd for this reason, we write the Newton-Hewer dynamics in this
cenario. We assume that Q are R are positive real numbers, and
o not change with time. By setting n = m = 1, the dynamics (3)
an be written as:

t+1 =
A2B2P2

t R + QB4P2
t + 2QB2PtR + QR2

(PtB2 + R + AR)(PtB2 + R − AR)
.

By taking derivative, it can be shown that Pt+1 as a function of Pt
is increasing for Pt > P∗ and decreasing for Pt < P∗, where P∗ is
the solution to (1). For a stable policy Kt , Pt will be larger than P∗

and monotonicity holds (Hewer, 1971). We have depicted Pt+1 as
function of Pt in Fig. 1, and it can be observed that the Newton-

Hewer dynamics is increasing for Pt ≥ P∗, where P∗ is at the
ntersection of the line Pt = Pt+1 and Newton-Hewer dynamics.
e now show that if the system has time-varying Q and R, the

tabilizability properties of the controller do not necessarily imply
hat the system is monotone, drawing a contrast with the Riccati
ifference equation.
To this end, note that this graph depends on A, B, R and Q , and

f one of these parameters changes, P∗ and the graph will change.
o elaborate on this, we use Fig. 2 where we have depicted Pt+1
s a function of Pt for two different Newton-Hewer dynamics
ith (A, B, R,Q ) = (1, 1, 1, 1) and (A, B, R,Q ) = (1, 1, 1, 2). In
ig. 2, the P∗

1 and P∗

2 refer to the solution to the DARE (1) for the
ystems (A, B, R,Q ) = (1, 1, 1, 1) and (A, B, R,Q ) = (1, 1, 1, 2),
espectively. If Qt = 1,Qt+1 = 2 and Kt are such that P∗

1 <

Pt < P∗

2 , then the system for the next time step uses the orange
graph to update Pt+1, and the reader can observe – we prove
this with carefully chosen numerical values below – that this can
lead to failure of monotonicity, i.e., Pt ≤ P̂t does not necessarily
imply Pt+1 ≤ P̂t+1. Note that the system will remain monotone if
Qt+1 < Qt for all t , in case the other system parameters A, B, and R
remain fixed. Using this observation, we now explicitly construct
the counterexample.

Example 2.1 (Consider the Dynamics (3)). Let the system be scalar,
i.e., n = m = 1, and let A = 1, B = 1, R = 1 be fixed and
Q be time-varying. Let P be the sequence generated by (3) at
t t

2

Fig. 1. Pt+1 as a function of Pt is shown for (A, B, R,Q ) = (1, 1, 1, 1) of
Newton-Hewer dynamics and Riccati difference equation.

Fig. 2. Pt+1 as a function of Pt is shown for (A, B, R,Q ) = (1, 1, 1, 1) and
(A, B, R,Q ) = (1, 1, 1, 2) of Newton-Hewer dynamics.

each time step. Given that A, B, R are fixed, Pt is a function of
{Q1,Q2, . . . ,Qt} and K0, where K0 is a stable policy at time 0. Let
t be the sequence generated by (3) with A = 1, B = 1, R = 1

and Q̂t and K0. We claim that Pt ≥ P̂t does not necessarily imply
hat Pt+1 ≥ P̂t+1.

To prove this claim, we need to chose K0 properly. Let

0 =
√
3 − 1,

which is a stabilizing policy. Hence, by (3) we have

P1 =
K 2
0 R1 + Q1

1 − (A − BK0)2
=

4 − 2
√
3 + Q1

4
√
3 − 6

.

iven this

1 =
BP1A

B2P1 + R1
=

4 − 2
√
3 + Q1

2
√
3 − 2 + Q1

,

P2 =
K 2
1 R2 + Q2

1 − (A − BK1)2

=
(8 − 4

√
3)Q1 + (16 − 8

√
3)Q2 + (Q2 + 1)Q 2

1
√

2
√

4( 3 − 1)Q1 + Q1 − 68 + 40 3
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Fig. 3. This graph shows the Newton-Hewer dynamics for a system starts with
1 = 1 and Qt = 2 for t > 1 (dotted line), Newton-Hewer dynamics for a
ystem with Qt = 2 for all t (dashed line) and Riccati difference dynamics with
1 = 1 and Qt = 2 for t > 1 (solid line).

Fig. 4. Newton-Hewer dynamics for two systems with the same (A, B, R,Qt ) and
different initial condition K0 .

+
4(

√
3 − 1)Q1Q2 + 28 − 16

√
3

4(
√
3 − 1)Q1 + Q 2

1 − 68 + 40
√
3
.

Now let Q1 = 1 and Q2 = 2 then P1 = 1.6547, and P2 = 2.7835.
f we choose Q̂1 = 2 and Q̂2 = 2, then P̂1 = 2.7321, and
3

2 = 2.7321. This demonstrates that given P̂t ≥ Pt , it does not
follow that P̂t+1 ≥ Pt+1. Fig. 3 shows the sequence Pt (dotted
ine) and P̂t (dashed line) where Q1 = 1 and Qt = 2 for t ≥ 2
nd Q̂t = 2. Furthermore, the sequence P̃t which is generated by
he Riccati difference equation with initialization P̃1 = P1 and the
ame parameters Ã = A, B̃ = B, Q̃t = Qt , R̃ = R is shown (solid
ine) for six time steps. •

We conclude with providing an example which demonstrates
nother aspect of lack of monotonicity of Newton-Hewer dynam-
cs.

xample 2.2. We consider two dynamics with the same Q and
, albeit time-varying, but with different initial conditions K0.
imilar to the previous example, we assume n = m = 1,
nd A = 1, B = 1, R = 1 are fixed and Qt is time-varying.
e assume Qt is 1 for odd time steps and 1.1 for even time

teps. If we choose K0 = 0.7321 for the first system and K̂0 =

.6180 for the second system, we will have P1 = 1.6180 and
1 = 1.6547, and for the next time, we have P2 = 1.7351 and
2 = 1.7347, which shows that the monotonicity does not hold.
ig. 4 illustrates the behaviour of two dynamics at the next time
teps. •
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