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Abstract
An online policy learning problem of linear control systems is studied. In this problem,
the control system is known and linear, and a sequence of quadratic cost functions is
revealed to the controller in hindsight, and the controller updates its policy to achieve
a sublinear regret, similar to online optimization. A modified online Riccati algorithm
is introduced that under some boundedness assumption leads to logarithmic regret
bound. In particular, the logarithmic regret for the scalar case is achieved without
boundedness assumption. Our algorithm, while achieving a better regret bound, also
has reduced complexity compared to earlier algorithms which rely on solving semi-
definite programs at each stage.

Keywords Online linear quadratic control · Online optimal control · Riccati
equation · Newton–Hewer Riccati update · Logarithmic regret

1 Introduction

Decision making based on predictions is a cornerstone of engineering, economy, and
social sciences. Examples, including portfolio selection [2, 3], transportation and traf-
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fic control [4], power engineering [5], manufacturing and supply chain management,
showpromising achievements and have received considerable attention in recent years,
see, e.g., [6–8]. The problem setting that we address in this paper belongs to a class of
decision making problems known as online optimization. The literature on this sub-
ject is extremely rich and its connections to many other areas of learning have been
explored in recent years [8–14].

Unlike the general setting of online optimization, where the decisions of the learner
are solely chosen according to a time-varying cost function, inmany realistic scenarios
the learner’s decisions involve a control system, where the decisions not only incur
a cost at the present time, but also change the system state and incur a cost at the
future. Examples include power supply management in the presence of time-varying
energy costs due to demand fluctuations and tracking of an adversarial target. In this
problem setting, decisions are assumed to be a function of the current state which
is referred to as a policy. In order to assess the performance of policies over time,
a regret is defined as the difference between the accumulated costs incurred by the
control actions made in hindsight using previous states and the cost incurred by the
best fixed admissible policy when all the cost functions are known in advance. Similar
to online optimization, the objective is to design algorithms to generate policies which
make the regret function grow sublinearly. Clearly if the cost functions were available
to the decision maker, the problem discussed above would reduce to the classical
optimal control problem.

The problem setting here is similar to the one studied in [15] where an online
version of linear quadratic Gaussian control is introduced. In particular, in [15] an
online gradient descent algorithm with a fixed learning rate is proposed, where in
each iteration, a projection onto a bounded set of positive-definite matrices is taken,
which itself relies on solving a semi-definite program. Under the assumptions that the
underlying system is controllable, the cost functions are bounded, and the covariance
of the disturbance is positive-definite, it is proved that the regret is sublinear, and grows
asO(

√
T ), where T is the time horizon. Other closely related works are [16] and [17],

where the cost functions are assumed to be general convex and globally Lipschitz
functions. In contrast to [15], the noise assumed in [16] is adversarial, and [17] achieves
a regret bound of O((log(T ))7). In these works, the generated control actions, which
lead to a sublinear regret bound, are linear feedbacks which rely on a finite history of
the past disturbances. Similarly, in another recent work [18] a fixed (known) system
with adversarial disturbances and fixed (known) quadratic cost functions is assumed,
and a regret bound of O((log(T ))3) is achieved.

Here, we point out a wider set of literature related to our work. First, we note that
one can think about the underlying control system as a dynamical constraint on the
optimization problem. Considering control systems as constraints is also classical in
the context of model predictive control [19]. Although we tackle dynamic constraints
in this work, we should emphasize that online optimization problems with static con-
straints, known only in hindsight, also play a key role in various settings and have
generated interest in recent years [20–22].

Our work is also related to the framework of Markov decision processes (MDPs),
where the system transition to the next state is defined through a probability distribu-
tion. Moreover, a reward is given to the decision maker for each action at each state.
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This framework is classical in reinforcement learning, where the objective is to learn
the optimal policy which yields the maximum reward [23]. It is also worth pointing
out that there is another key role that regret minimization has played recently, bringing
learning and control theory together, in the context of robust control, adaptive control,
and system identification. Here, the regret enters through the lack of perfect knowl-
edge of the model, and research efforts focus on generating algorithms for updating
models in a data-driven fashion [24, 25]. Finally, our setting is also related to online
optimization in dynamic environments [26], where the decisions are constrained in
dynamics chosen by the environment. However, the objective of [26] is to study the
impact of model mismatch on the overall regret, whereas in this paper the decisions
are input to a control system, which impacts the way the decisions affect the future
outcomes through its dynamics.

1.1 Contributions

We consider the problem of online linear quadratic Gaussian optimal control, where
the control system is linear and known and the cost function is quadratic and time-
varying and only becomes available in hindsight. In contrast to [15], where an online
algorithm using semi-definite programming update is designed to generate the control
policies, we employ a control-theoretic approach and introduce an online version of a
classical iterative Riccati update, known as the Newton–Hewer [27] update. Using this
update, which is less known than the classical Riccati difference equation [28], is key in
developing our algorithm. This algorithm, which employs only a few matrix addition
and multiplication operations in each time step, has reduced complexity compared to
the one using semi-definite programming in each time step and is easier to implement.
Our main result is a O(log T ) regret bound for the online linear quadratic Gaussian
optimal control problem, improving the O(

√
T ) bound of [15] and the O((log(T ))7)

bound of [17] for time horizon T , under some boundedness assumption. Indeed, the
technical part of our result relies on characterizing the interplay between a notion of
stability for the sequence of control policies and boundedness of the solutions of the
proposed Riccati update. In addition to our prior work [1], our observation shows
that the latter boundedness property, which follows for the Riccati difference equation
frommonotonicitywith respect to the underlying parameters, cannot be obtained using
monotonicity; in fact, the Newton–Hewer updates can fail to be monotone in this
setting [29]. This being said, for the scalar case, we are able to prove the boundedness
property, yielding the stronger result that initializing the control policy to be stabilizing
is enough to guarantee boundedness of the solutions of the proposed online Riccati
update. We will demonstrate why the argument for the scalar case cannot be extended
to the non-scalar case.We provide numerical results to illustrate this issuewhile adding
different numerical results to show that the uniform boundedness assumption is not
a strong assumption for our algorithm which achieves a sublinear regret in practical
problems. In addition, we compare the regret of our algorithm with the regret of the
Follow-the-Leader Algorithm through numerical examples.
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1.2 Notation

We let R denote the set of real numbers and R
n×m denote the set of n × m real

matrices. We use lowercase letters for vectors and uppercase letters for matrices. We
denote by ‖ · ‖ the Euclidean norm on vectors and its corresponding operator norm on
real matrices. We denote by A� the transpose of matrix A. Thus ‖A‖ = σmax(A) =√

λmax(A�A), where σmax(A) is the largest singular value of A and λmax(A�A) is
the largest eigenvalue of A�A. Trace of matrix A is denoted by Tr(A). If A is an
n × n real matrix with eigenvalues λ1, . . . , λn , then the spectral radius of ρ(A) of
A is ρ(A) = max{|λ1|, . . . , |λn|}. We use A � B to indicate that A − B is positive
semi-definite.

2 Problem formulation

We start by describing the problem of online optimization for the class of linear control
systems with quadratic cost. Let us recall this setting.

2.1 Discrete-time linear quadratic Gaussian control

The discrete-time linear quadratic Gaussian (LQG) control problem is defined as
follows, see for instance [30]: Let xt ∈ R

n and ut ∈ R
m be the control state and the

control action at time t , respectively, with initial state x1. The system dynamics are
given by

xt+1 = Axt + But + wt , t ≥ 1 (2.1)

where A ∈ R
n×n , B ∈ R

n×m , and {wt }t≥1 are i.i.d. Gaussian noise vectors with zero
mean and covariance W ∈ R

n×n (wt ∼ N (0,W )). It is assumed that the initial value
is Gaussian x1 ∼ N (m, X1) and is independent of the noise sequence {wt }t≥1. The
cost incurred in each time step t is a quadratic function of the state and control action
given by x�

t Qt xt + u�
t Rtut , where Qt ∈ R

n×n and Rt ∈ R
m×m are positive-definite

matrices. The total cost after T time steps is given by

JT (x1, u1, . . . , uT ) = E

[

x�
T QT xT +

T−1∑

t=1

(
x�
t Qt xt + u�

t Rtut
)
]

.

We consider controllers of the form ut = πt (xt ), where the function πt : Rn → R
m

is called a policy. This assumption does not restrict generality, as the optimal policy
will provably be of this form [30]. It is well known that under the assumption that the
control system is stabilizable, and the cost matrices Qt and Rt are positive-definite,
the optimal policy is a stabilizing linear feedback of the state, which will be described
next.
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2.2 Discrete algebraic Riccati equation

In the classical LQG problem, where all the cost functions are known, the optimal
policy can be obtained by dynamic programming, and is a linear function of the state.
In particular, ut = −Kt xt , where Kt is given by the equation

Kt = (B�Pt+1B + Rt )
−1B�Pt+1A,

and Pt+1 is a sequence of positive-definite matrices obtained iteratively, backwards in
time, from the dynamic Riccati equation:

Pt = A�Pt+1A − A�Pt+1B(B�Pt+1B + Rt )
−1B�Pt+1A + Qt (2.2)

with the terminal condition PT = QT .
For the infinite-horizon problem with the assumption that Qt = Q and Rt = R are

fixed, and under the assumptions that

(i) R is positive-definite
(ii) (A, B) is stabilizable, i.e., there exists a linear policy π(x) = −Kx such that the

closed-loop system xt+1 = (A− BK )xt is asymptotically stable: ρ(A− BK ) <

1,
(iii) (A,C) is detectable where Q = C�C , [i.e., if ut → 0 and Cxt → 0 then,

xt → 0],

it is well known that the optimal policy is unique, time invariant, and is a linear function
of the state [31], i.e., ut = −K �xt . Here K � is given by

K � = (B�P�B + R)−1B�P�A, (2.3)

where P� satisfies the discrete algebraic Riccati equation (DARE):

P� = A�P�A − A�P�B(B�P�B + R)−1B�P�A + Q. (2.4)

Moreover, Pt given by (2.2) converges to P� as t → ∞ [30]. By using the policy
K �, we have that xt+1 = (A− BK �)xt + wt . The optimal policy K � is guaranteed to
be stabilizing i.e. ρ(A − BK �) < 1. Here, xt converges to a stationary distribution,
i.e., xt converges weakly to a random variable x which has the same distribution as
(A−BK �)x+wt , so that we haveE[x] = E[(A−BK �)x+wt ], which impliesE[x] =
0, and the covariancematrix X = E[xx�] satisfies X = (A−BK �)X(A−BK �)�+W ,
see e.g., [15].

2.3 Problem setting

We now define the problem we study in this work, following [15]. In online linear
quadratic control, the sequence of cost matrices {Qt }t≥1 and {Rt }t≥1 are not known in
advance and Qt and Rt are only revealed after choosing the control action ut . Since it
is not possible to find the optimal policy before observing the whole sequence of cost
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matrices {Qt }t≥1 and {Rt }t≥1, the decision maker faces a regret. Here, we assume
that the control system (A, B) is stabilizable, and the cost matrices Qt and Rt are
positive-definite and uniformly bounded over t ≥ 1. As the optimal policy for the
system with these assumptions is given by a stabilizing linear feedback, we use the
set of stabilizing linear feedback functions as the set of admissible policies.

Let xt ∈ R
n and ut ∈ R

m be the control state and controller action at time t ≥ 1. The
controller uses a linear feedback policy ut = −Kt xt and commits to this action after
observing xt . Then the controller receives the positive-definite matrices Qt ∈ R

n×n

and Rt ∈ R
m×m , and suffers the cost

Jt (Kt ) = E

[
x�
t Qt xt + u�

t Rtut
]
. (2.5)

The objective is to design an algorithm to generate a sequence of policies {Kt }t≥1
such that the regret function, which is defined as

R(T ) =
T∑

t=1

Jt (Kt ) − min
K∈K

T∑

t=1

Jt (K ), (2.6)

where K is the set of stabilizing policies, grows sublinearly in T . In other words,
the average regret over time converges to zero. Before stating our main results, we
provide a brief review of the iterative Riccati updates that we employ to design our
main algorithm.

2.4 Iterative methods for solving the discrete algebraic Riccati equation

Several methods for solving DARE exist in the literature, including iterative methods
[28], algebraic methods [32], and semi-definite programming [33]. Our work is based
on iterative methods, and in particular, two techniques that we review here. The first
is given in [28], where one runs the recursion

Pt+1 = A�Pt A − A�Pt B(B�Pt B + R)−1B�Pt A + Q.

It is shown that under the assumption that (A, B) is stabilizable and (A,C) is
detectable, where Q = C�C , the sequence {Pt } converges to the unique solution
of DARE.

A second approach, studied by [27], uses the following idea: Let Pt be the solution
of the equation

Pt = (A − BKt )
�Pt (A − BKt ) + K�

t RKt + Q, (2.7)

where

Kt = (B�Pt−1B + R)−1B�Pt−1A,
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starting from a stabilizing policy K1. Then under the assumption that (A, B) is sta-
bilizable and (A,C) is detectable, where Q = C�C , the sequence {Pt } converges to
the solution of DARE and the rate of convergence is quadratic, i.e.,

‖Pt − P�‖ ≤ C‖Pt−1 − P�‖2

whereC > 0 is a constant. In what follows, wemodify this algorithm and use it for the
online linear quadratic Gaussian problem. We present our algorithm after reviewing
some salient properties of stabilizing policies. Similar to [15], we use the notion
of strong stability, which allows us to analyze the rate of convergence of the state
covariance matrices under our proposed algorithm.

3 Strong stability

A key property that we require before introducing our algorithm is the notion of strong
stability and sequential strong stabilitywhich are similar to the ones in [15]. The notion
of strong stability is defined as follows.

Definition 1 A policy K is called stabilizing if ρ(A− BK ) < 1. A policy K is (κ, γ )-
strongly stabilizing (for κ > 0 and 0 < γ ≤ 1) if ‖K‖ ≤ κ , and there exist matrices
L and H such that A − BK = HLH−1, with ‖L‖ ≤ 1 − γ and ‖H‖‖H−1‖ ≤ κ .

Note that every (κ, γ )-strongly stabilizing policy K is stabilizing, since thematrices
A − BK and L are similar and hence ρ(A − BK ) = ρ(L) ≤ (1 − γ ). Lemma 1
shows that every stabilizing policy is (κ, γ )-strongly stabilizing for some κ > 0 and
0 < γ ≤ 1.

Lemma 1 [15, Lemma B.1.] Suppose that for a linear system defined by A, B, a
policy K is stabilizing. Then there are parameters κ > 0, 0 < γ ≤ 1 for which it is
(κ, γ )-strongly stabilizing.

We refer the reader to [15, Lemma B.1] for a proof of this lemma.
Under the assumption of (κ, γ )-strong stability of policy K , the state covariance

matrices Xt = E[xt x�
t ] converge exponentially to a steady-state covariance matrix

X̂ , which satisfies

X̂ = (A − BK )X̂(A − BK )� + W .

Lemma 2 provides the details.

Lemma 2 [15, Lemma 3.2] Let the pair (A, B) be stabilizable, and assume the con-
troller uses a fixed (κ, γ )-strongly stabilizing policy K , i.e., for t ≥ 1, we have
ut = −Kxt . Let Xt be the covariance matrix of xt . Then the sequence {Xt }t≥1 con-
verges to the steady-state covariance matrix X̂ , and in particular, for any t ≥ 1,

‖Xt+1 − X̂‖ ≤ κ2e−2γ t‖X1 − X̂‖.
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We refer the reader to [15, Lemma 3.2] for a proof.
In order to obtain a similar result for the change of the state covariance matrices

using a sequence of different (κ, γ )-strongly stabilizing policies {Kt }t≥1, we need to
define a notion of sequential strong stability, which is presented next.

Definition 2 Asequence of policies {Kt }t≥1 is sequentially (κ, γ )-strongly stabilizing,
for κ > 0 and 0 < γ ≤ 1, if there exist sequences of matrices {Ht }t≥1 and {Lt }t≥1
such that

A − BKt = Ht Lt H
−1
t

for all t ≥ 1, with the following properties:

– ‖Lt‖ ≤ 1 − γ and ‖Kt‖ ≤ κ;
– ‖Ht‖ ≤ β and ‖H−1

t ‖ ≤ 1/α with κ = β/α and α > 0 and β > 0;
– ‖H−1

t+1Ht‖ ≤ 1 + γ .

The importance of this notion of stability is demonstrated in Lemma 3.

Lemma 3 Let the pair (A, B) be stabilizable, and suppose that the controller uses
ut = −Kt xt for t ≥ 1 and where {Kt }t≥1 is sequentially (κ, γ )-strongly stabilizing
with κ > 0 and 0 < γ ≤ 1. For each Kt , let X̂t be the corresponding steady-state
covariance matrix, i.e., X̂t satisfies X̂t = (A− BKt )X̂t (A− BKt )

� +W and assume
that ‖X̂t+1 − X̂t‖ ≤ ηt with ηt > 0, for all t ≥ 1. Let Xt be the corresponding state
covariance matrix at time t, starting from some initial X1 � 0. Then for t ≥ 1,

‖Xt+1 − X̂t+1‖ ≤ κ2e−2γ 2t‖X1 − X̂1‖ + κ2
t−1∑

s=0

e−2γ 2sηt−s .

The proof is similar to [15, Lemma 3.5], but we include it for completeness.

Proof By definition, for all t ≥ 1, we have that

Xt+1 = (A − BKt )Xt (A − BKt )
� + W ,

X̂t = (A − BKt )X̂t (A − BKt )
� + W .

Subtracting the equations, substituting A− BKt = Ht Lt H
−1
t and rearranging yields

H−1
t (Xt+1 − X̂t )(H

−1
t )� = Lt H

−1
t (Xt − X̂t )(H

−1
t )�L�

t .

Let �t = H−1
t (Xt − X̂t )(H

−1
t )� for all t ≥ 1. Then the above can be written as

�t+1 = (H−1
t+1Ht Lt )�t (H

−1
t+1Ht Lt )

�

+ (H−1
t+1)(X̂t − X̂t+1)(H

−1
t+1)

�.

Taking the norms yields

‖�t+1‖ ≤ ‖Lt‖2‖H−1
t+1Ht‖2‖�t‖ + ‖H−1

t+1‖2‖X̂t − X̂t+1‖
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≤ (1 − γ )2(1 + γ )2‖�t‖ + ηt

α2

≤ (1 − γ 2)2‖�t‖ + ηt

α2 ,

and by unfolding the recursion, we obtain

‖�t+1‖ ≤ (1 − γ 2)2t‖�1‖ + 1

α2

t−1∑

s=0

(1 − γ 2)2sηt−s

≤ e−2γ 2t‖�1‖ + 1

α2

t−1∑

s=0

e−2γ 2sηt−s .

Using Xt − X̂t = Ht�t H�
t now, we have that

‖Xt+1 − X̂t+1‖ ≤ e−2γ 2t‖�1‖‖Ht+1‖2 + ‖Ht+1‖2
α2

t−1∑

s=0

e−2γ 2sηt−s

≤ κ2e−2γ 2t‖X1 − X̂1‖ + κ2
t−1∑

s=0

e−2γ 2sηt−s,

which concludes the proof. �
We now proceed with some key results that we later use to ensure strong stability

for the sequence of policies generated. Suppose that a sequence of positive-definite
matrices Pt is generated recursively as

Pt = (A − BKt )
�Pt (A − BKt ) + Q̄t + K�

t R̄t Kt , (3.1)

where

Kt+1 = (B�Pt B + R̄t )
−1B�Pt A (3.2)

and where R̄t ∈ R
m×m and Q̄t ∈ R

n×n are given positive-definite matrices for all
t ≥ 1, and K1 is an initial stabilizing policy. The reason for this update will become
clear as part of our algorithm in Sect. 4. The key point we wish to make here is that
under the assumption of uniform boundedness of the matrix sequence {Pt }t≥1, and the
stability of matrix Kt , for all t ≥ 1, the sequence {Kt }t≥1 is uniformly (κ, γ )-strongly
stabilizing, with appropriate choices of κ and γ .

Proposition 1 Assume that for t ≥ 1, Qt , Rt � μI and Pt � ν I , where μ, ν > 0
and {Pt }t≥1 is the sequence of matrices obtained as the solution of (3.1), and assume

that the policy Kt given by (3.2) is stabilizing for all t ≥ 1. Define κ̄ =
√

ν
μ
. Then the

sequence {Kt }t≥1 is uniformly (κ̄, 1/2κ̄2)-strongly stabilizing.
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Proof By the assumption of stability and since Qt � μI , we have that

Pt = (A − BK )�Pt (A − BK ) + Q̄t + K� R̄t K

� (A − BK )�Pt (A − BK ) + μI , (3.3)

where we have used the positive-definiteness of K� R̄t K . In particular, this means that
Pt � μI for all t . On the other hand, assuming Pt � ν I , we have

μI � Pt � ν I . (3.4)

Given that Pt is positive-definite and nonsingular, we can define Lt = P1/2
t (A −

BK )P−1/2
t . Multiplying (3.3) by P−1/2

t from both sides, we obtain I � L�
t Lt +

μP−1
t � L�

t Lt+κ̄−2 I . Thus L�
t Lt � (1−κ̄−2)I , so‖Lt‖ ≤ √

1 − κ̄−2 ≤ 1−κ̄−2/2.
Also, using (3.4) we have that

‖P1/2
t ‖‖P−1/2

t ‖ ≤ κ̄,

which finishes the proof. �
We now present a second useful result, where we show that under the additional

property that the rate of changes of sequence Pt is small (which we will be able to
establish for our proposed algorithm, see Lemma 5), one can obtain that the sequence
{Kt }t≥1 is sequentially strongly stabilizing.

Proposition 2 Assume that for t ≥ 1, Qt , Rt � μI and Pt � ν I , where μ, ν > 0
and {Pt }t≥1 is the sequence of matrices obtained as the solution of (3.1), and assume

that the policy Kt given by (3.2) is stabilizing for t ≥ 1. Let κ̄ =
√

ν
μ
, and suppose

that ‖Pt+1 − Pt‖ ≤ η for t ≥ 1 for some η ≤ μ/κ̄2. Then the sequence {Kt }t≥1 is
sequentially (κ̄, 1/2κ̄2)-strongly stabilizing.

Proof Proceeding as in the proof of Proposition 1, one can show that the matrix
Lt = P1/2

t (A − BKt )P
−1/2
t satisfies ‖Lt‖ ≤ 1 − 1/2κ̄2 with ‖P1/2

t ‖ ≤ √
ν and

‖P−1/2
t ‖ ≤ 1/

√
μ. To establish the sequential strong stability stated by Definition 2

it thus suffices to show that ‖P−1/2
t+1 P1/2

t ‖ ≤ 1+1/2κ̄2 for t ≥ 1. To this end, observe
that ‖Pt+1 − Pt‖ ≤ η, and that

‖P−1/2
t+1 P1/2

t ‖2 = ‖P−1/2
t+1 Pt P

−1/2
t+1 ‖

≤ ‖P−1/2
t+1 Pt+1P

−1/2
t+1 ‖ + ‖P−1/2

t+1 (Pt+1 − Pt )P
−1/2
t+1 ‖

≤ 1 + ‖P−1/2
t+1 ‖2‖Pt+1 − Pt‖

≤ 1 + η

μ
,

where the second inequality follow by the sub-multiplicative of matrix operator norm.
Hence, since η ≤ μ/κ̄2, then ‖P−1/2

t+1 P1/2
t ‖ ≤ √

1 + 1/κ̄2 ≤ 1 + 1/2κ̄2 as required.
�
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The above results rely on uniform boundedness of the sequence {Pt }t≥1, which we
assume throughout the paper. However, we can show that stability of K1 is enough
to guarantee this property in the scalar case, see Proposition A.1 in the Appendix.
Based on our extensive simulation studies, one of which is shown in Example A.3, we
believe that this property should hold only by assuming stability of K1 for the general
case. One of the main reason for the difficulty of establishing this result is the lack
of monotonicity of the evolutions of the Newton–Hewer dynamics with respect to the
underlying system parameter, a sharp contrast with the Riccati difference updates [28],
which we have recently reported in [29]. In this sense, the proof of Proposition A.1 for
the scalar case establishes the boundedness property of the sequence {Pt }t≥1 without
relying on monotonicity. We have outlined further details in Remark A.2.

4 The online Riccati algorithm

We outline our main algorithm in this section. Our assumptions are as follows:

Assumption 3 Throughout we assume that

– The pair (A, B) is stabilizable.
– The cost matrices Qt and Rt are positive-definite and μI � Qt , μI � Rt , and
Tr(Qt ) ≤ σ , Tr(Rt ) ≤ σ , for some σ > μ > 0 for all t ≥ 1.

– For the noise covariance matrix W we have that ω = Tr(W ) < ∞.

Algorithm 1 Online Riccati Update
Input: The system matrices A and B, initial state x1, time horizon T , parameters ν, μ, κ = √

ν/μ, γ =
1/(2κ2), σ

Output: A sequence of stabilizing policies {Kt }Tt=1
1: Initialize K1 to be stabilizing
2: for each t = 1, 2, · · · , T :
3: receive xt
4: use controller ut = −Kt xt and receive Qt and Rt
5: update R̄t = t−1

t R̄t−1 + 1
t Rt , Q̄t = t−1

t Q̄t−1 + 1
t Qt

6: update Pt as the solution of

Pt = (A − BKt )
�Pt (A − BKt ) + Q̄t + K�

t R̄t Kt

7: Reset:
8: if t = t� := ⌈ 4κ3‖B‖

γμ

(
2σκ + 2κ3‖B‖σ(1+κ2)

γ

)
+ 1

⌉
:

9: Initialize � = 0, P̂0 = Pt� , and K̂0 = Kt�

10: while ‖P̂� − P̂�−1‖ >
(

2σ
‖B‖ + 4κ2σ(1+κ2)

γ

)
/t� :

11: � ← � + 1
12: K̂� = (B� P̂�−1B + R̄t� )−1B� P̂�−1A
13: P̂� satisfies P̂� = (A − BK̂�)

� P̂�(A − BK̂�) + Q̄t� + K̂�
�
R̄t� K̂�

14: return Pt� = P̂�

15: return Kt+1 = (B�Pt B + R̄t )−1B�Pt A
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A formal description is given in Algorithm 1. We provide an informal description.
We start froma stabilizing policy K1; the existence of K1 is provided by the assumption
of stabilizability of the control system. At each time step t ≥ 1, the controller uses the
policy ut = −Kt xt after observing xt , then the cost matrices Qt and Rt are revealed,
and the controller updates Pt and Kt using the average of the history of Qt s and Rt s
through (2.7). There is a technical step in our algorithm, which we call the “reset” step
and describe in detail later in the proof; this step allows us to show that using these
updates the change of the norm of the policies isO(1/t), and this gives a regret bound
O(log(T )). Before we state the algorithm, we need to elaborate on the parameters
used.

Remark 1 (Parameters used in Algorithm 1) Our algorithm naturally uses parameters
μ and σ , stated in Assumption 3. For the reset step, we also need (an estimate on) the
strong stability parameters κ and γ , which are defined in Algorithm 1. Proposition 1
plays a key role in that regard, as it states that as long as we can estimate a uniform
bound on the sequence Pt , we can obtain these parameters. In the scalar case, we
know this uniform bound by Proposition A.1; in other cases, given that the parameters
are not needed in the early steps of the algorithm, one can envision that we can run
our algorithm with a large estimate on this bound and adjust it if necessary. Extending
PropositionA.1 to vector cases,which is an avenue of our current research,will remove
this restriction all together.

5 Main results

We are now in a position to state our main contribution, providing a logarithmic bound
for the regret (2.6). We have opted not to explicitly display the bound as part of the
statement; this can be found in (5.34).

Theorem 1 Suppose that the tuple (A, B, {Qt }Tt=1, {Rt }Tt=1,W ) satisfies Assump-
tion 3. Suppose that the matrices Pt generated by Algorithm 1 are uniformly bounded.
Then we have that

R(T ) = O(log(T )).

The rest of this section is devoted to proving Theorem 1. The proof is quite involved,
and for this reason we find it useful to provide a brief description to help the reader
navigate through the proof. Our first technical result Lemma 4 shows that Algorithm 1,
as long as it is initialized at an stabilizing policy, iteratively produces stabilizing
polices. This step is analogous to the classical result of [27] for the case where the
cost objective matrices Qt and Rt are fixed. Recall that, by Proposition 1, stability
of policies Kt is required to establish strong stability. A technical part of this proof
demonstrates the reason why we need the reset step of the algorithm to ensure that the
sequence of policies {Pt+1 − Pt } decay as m/t , for some m > 0. Using this and by
rewriting the regret using trace products, we establish a set of bounds in Lemmas 6, 7,
and 8 which eventually yield the result.
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Proof of Theorem 1:

We first provide a straightforward reformulation of the regret function. For matrices
A and B of appropriate size, let A • B = Tr(A�B). Then

R(T ) =
T∑

t=1

E

[
x�
t Qt xt + u�

t Rtut
]

−
T∑

t=1

E

[
x†t

�
Qt x

†
t + x†t

�
K †�Rt K

†x†t
]

=
T∑

t=1

(Qt + K�
t Rt Kt ) • Xt −

T∑

t=1

(Qt + K †�Rt K
†) • X†

t (5.1)

As a result, we have that

R(T ) =
T∑

t=1

(Qt + K�
t Rt Kt ) • (Xt − X̂t ) (5.2)

+
T∑

t=1

(Qt + K�
t Rt Kt ) • X̂t −

T∑

t=1

(Qt + K ��Rt K
�) • X̂� (5.3)

+
T∑

t=1

(Qt + K ��Rt K
�) • X̂� −

T∑

t=1

(Qt + K †�Rt K
†) • X̂† (5.4)

+
T∑

t=1

(Qt + K †�Rt K
†) • (X̂† − X†

t ), (5.5)

where K † is the fixed optimal policy for the system (A, B, {Qt }Tt=1, {Rt }Tt=1,W ),
Xt = E[xt x�

t ] is the covariance matrix of xt when the system follows policies Kt

generated by Algorithm 1, X̂t is the steady-state covariance matrix using the policy
Kt , i.e. X̂t satisfies

X̂t = (A − BKt )X̂t (A − BKt )
� + W ,

and

X†
t = E[x†t x†t

�]

is the covariance matrix of the state x†t at time t when the system uses policy K † at
each time t ; similarly, X̂† is the steady-state covariance matrix using the policy K †,
i.e., X̂† satisfies

X̂† = (A − BK †)X̂†(A − BK †)� + W . (5.6)

K � is the solution to DARE and X̂� is the steady-state covariance matrix using policy
K �. From now on, we use the notation At = A − BKt to simplify the presentation.
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Note that by the following computation we show that (5.4) is negative. Since X̂�

and X̂† are fixed, we have that

T∑

t=1

(Qt + K ��Rt K
�) • X̂� −

T∑

t=1

(Qt + K †�Rt K
†) • X̂†

= T (Q̄T + K �� R̄T K
�) • X̂� − T (Q̄T + K †� R̄T K

†) • X̂†

= T (P� − A��P�A�) • X̂� − T (P† − A†�
P†A†) • X̂†

= T (P� • X̂� − P� • A� X̂�A��
) − T (P† • X̂† − P† • A† X̂†A†�

)

= T (P� • X̂� − P� • (X̂� − W )) − T (P† • X̂† − P† • (X̂† − W )

= T (P� − P†) • W ≤ 0,

where P� and P† satisfies P = (A − BK )�P(A − BK ) + Q̄T + K� R̄T K for
K = K � and K = K †, respectively, and we have used this fact in the second equality,
the cyclic property of the trace in the third equality, and (5.6) in the fourth equality.
By [27, Theorem 1], P� � P† and we have the result.

We start with our first technical result, which shows that Algorithm 1 produces
stabilizing polices. This step is similar to the classical result of [27] for the case where
the cost objective matrices Qt and Rt are fixed. Recall that stability of policies Kt is
required to establish strong stability, see Proposition 1.

Lemma 4 Suppose that the pair (A, B) is stabilizable and let the sequence {Kt }t≥1
be generated by Algorithm 1, starting from a stabilizing policy K1. Then policy Kt

remains stabilizing for all t ≥ 1.

Proof We proceed by an induction argument. First, since the system is stabilizable,
there exists a stabilizing policy and hence we can choose K1 to be stabilizing, i.e. such
that ρ(A − BK1) < 1. Assume now that Kt is stabilizing, for some t ≥ 1. Then,
using (3.1), Pt is uniquely determined by

Pt =
∞∑

i=0

(A�
t )i (Q̄t + K�

t R̄t Kt )A
i
t . (5.7)

By a straightforward computation, we have that

A�
t Pt At + K�

t R̄t Kt

= (A − BKt )
�Pt (A − BKt ) + K�

t R̄t Kt

= A�Pt A − K�
t B�Pt A − A�Pt BKt + K�

t (B�Pt B + R̄t )Kt

= A�Pt A − K�
t (B�Pt B + R̄t )Kt+1 − K�

t+1(B
�Pt B + R̄t )Kt

+ K�
t (B�Pt B + R̄t )Kt

= A�Pt A + (Kt+1 − Kt )
�(B�Pt B + R̄t )(Kt+1 − Kt )

− K�
t+1(B

�Pt B + R̄t )Kt+1
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= A�Pt A + (Kt+1 − Kt )
�(B�Pt B + R̄t )(Kt+1 − Kt )

− K�
t+1B

�Pt A − A�Pt BKt+1 + K�
t+1(B

�Pt B + R̄t )Kt+1

= A�
t+1Pt At+1 + K�

t+1 R̄t Kt+1 + (Kt+1 − Kt )
�(B�Pt B + R̄t )(Kt+1 − Kt ),

where we have used (B�Pt B + R̄t )Kt+1 = B�Pt A in the third and fifth equalities.
Therefore, using this and (3.1), we have that

Pt = A�
t+1Pt At+1 + V , (5.8)

where

V = K�
t+1 R̄t Kt+1 + (Kt+1 − Kt )

�(B�Pt B + R̄t )(Kt+1 − Kt ) + Q̄t .

As a result,

Pt =
∞∑

i=0

(A�
t+1)

i (V )Ai
t+1, (5.9)

It is easy to observe that V is positive-definite. Now, using (5.7), since Kt is stabilizing,
the matrix Pt is finite. Using (5.9), and the fact that the left side of (5.9) is finite, we
have that ρ(At+1) < 1, i.e., Kt+1 is stabilizing, otherwise the sum on the right side
of (5.9) will diverge. �

In order to get a log(T ) regret bound, we need to have bounds of order O(1/t)
on ‖Pt − Pt−1‖, ‖X̂t − X̂t−1‖ and ‖Kt − Kt−1‖. Also, recall that such bounds are
essential for obtaining sequential strong stability using Proposition 2. The next lemma
and its corollary serves this purpose.

Lemma 5 Suppose that μI � Qt , Rt and Tr(Qt ),Tr(Rt ) ≤ σ . Let {Pt }t≥1 and
{Kt }t≥1 be the sequences of matrices generated by Algorithm 1, and assume that
the sequence {Kt }t≥1 is (κ, γ )-strongly stabilizing. Then we have ‖Pt+1 − Pt‖ ≤ m/t
for some m > 0, for t ≥ 1.

Proof Note that using (5.8), we have

Pt+1 − Pt = A�
t+1(Pt+1 − Pt )At+1 + K�

t+1(R̄t+1 − R̄t )Kt+1 + (Q̄t+1 − Q̄t )

− (Kt+1 − Kt )
�(B�Pt B + R̄t )(Kt+1 − Kt ). (5.10)

By the definition of Kt , we have the following identity:

Kt+1 − Kt = (B�Pt B + R̄t )
−1[B�(Pt − Pt−1)At + (R̄t−1 − R̄t )Kt

]
. (5.11)

Using this along with (5.10), we have that

Pt+1 − Pt = A�
t+1(Pt+1 − Pt )At+1 + K�

t+1(R̄t+1 − R̄t )Kt+1 + (Q̄t+1 − Q̄t )
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− [
B�(Pt − Pt−1)At + (R̄t−1 − R̄t )Kt

]�
(B�Pt B + R̄t )

−1 (5.12)

× [
B�(Pt − Pt−1)At + (R̄t−1 − R̄t )Kt

]
. (5.13)

By the stability of Kt+1, we have that

Pt+1 − Pt =
∞∑

i=0

(A�
t+1)

i Mt A
i
t+1

≤ ‖Mt‖
∞∑

i=0

(A�
t+1)

i Ai
t+1, (5.14)

where

Mt = K�
t+1(R̄t+1 − R̄t )Kt+1 + (Q̄t+1 − Q̄t )

− [
B�(Pt − Pt−1)At + (R̄t−1 − R̄t )Kt

]�
(B�Pt B + R̄t )

−1

× [
B�(Pt − Pt−1)At + (R̄t−1 − R̄t )Kt

]
.

Given the strong stability of Kt+1, we can write At+1 = Ht+1Lt+1H
−1
t+1. Hence, we

have that

‖
∞∑

i=0

(A�
t+1)

i Ai
t+1‖ ≤

∞∑

i=0

‖(A�
t+1)

i Ai
t+1‖

≤
∞∑

i=0

‖Ht+1‖2‖H−1
t+1‖2‖Lt+1‖2i

≤
∞∑

i=0

κ2(1 − γ )2i = κ2

1 − (1 − γ )2
≤ κ2

γ
,

where we used ‖Ht+1‖‖H−1
t+1|| ≤ κ and ‖Lt+1‖ ≤ 1 − γ . We now proceed to bound

Mt . We can write

‖Mt‖ = ‖K�
t+1(R̄t+1 − R̄t )Kt+1 + (Q̄t+1 − Q̄t )‖

+ ‖(B�Pt B + R̄t )
−1‖(‖B‖‖At‖‖Pt − Pt−1‖ + ‖(R̄t−1 − R̄t )Kt‖)2.

(5.15)

Using (5.14) and (5.15), we also have

zt+1 ≤ ct (ht zt + dt )
2 + et+1, (5.16)

where zt = ‖Pt − Pt−1‖, and

ct = κ2

γ
‖(B�Pt B + R̄t )

−1‖
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dt = ‖(R̄t−1 − R̄t )Kt‖

et+1 = κ2

γ
‖K�

t+1(R̄t+1 − R̄t )Kt+1 + (Q̄t+1 − Q̄t )‖
ht = ‖B‖‖At‖.

Using the fact that

‖Q̄t+1 − Q̄t‖ = 1

t + 1
‖(Qt − Q̄t )‖ ≤ 2

t + 1
max
t≥0

‖Qt‖ ≤ 2σ

t + 1
,

along with

‖R̄t+1 − R̄t‖ = 1

t + 1
‖(Rt − R̄t )‖ ≤ 2

t + 1
max
t≥0

‖Rt‖ ≤ 2σ

t + 1
,

and

‖(B�Pt B + R̄t )
−1‖ ≤ (λmin(Rt ))

−1 ≤ μ−1,

and ‖At‖ ≤ κ , we conclude

ct ≤ κ2/γμ, dt ≤ 2σκ

t
, and et ≤ 2κ2σ(1 + κ2)

γ t
, ht ≤ ‖B‖κ, (5.17)

for t ≥ 1. We next claim that there exists a time t� and a constant m > 0 such that
zt ≤ m/t for all t > t�.We use an inductive argument to prove this statement. The base
case will be proved later. Assume now that zt ≤ m/t ; we show that zt+1 ≤ m/(t +1).
First, note that if

m ≤ 2σ

‖B‖ + 4κ2σ(1 + κ2)

γ
,

for t ≥ t� = 4κ3‖B‖
γμ

(2σκ + 2κ3‖B‖σ(1+κ2)
γ

) + 1, using an elementary calculation, one
can observe that

κ2

γμ

(
κ‖B‖m

t
+ 2σκ

t

)2

+ 2κ2σ(1 + κ2)

γ (t + 1)
≤ m

t + 1
.

The claim then follows by noting that

zt+1 ≤ ct (ht zt + dt )
2 + et ≤ κ2

γμ

(
κ‖B‖m

t
+ 2σκ

t

)2

+ 2κ2σ(1 + κ2)

γ (t + 1)
,

where we have used (5.17).
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It remains to show that the condition we placed to obtain the last inequality, i.e., that
zt�+1 ≤ m/(t� + 1), is satisfied. To proceed with this, first note that t� is exactly the
reset time in Algorithm 1. Also, the evolution of P̂� in the reset part of the algorithm is
still according to (5.10). Since the matrices Qt and Rt are fixed in the reset part, {P̂�} is
a Cauchy sequence. Hence, by choosing � large enough, we have that ‖P̂� − P̂�−1‖ ≤
m/t�, terminating the reset stage of the algorithm; with slight abuse of notation, we let
P̂� be the outcome of the reset part of the algorithm. Note that at time t� the algorithm
implements Pt� = P̂�. In the next time step t�+1, the algorithmupdates Pt�+1 as usual,
using (3.1).We knowby the previous part of the proof that ‖Pt�+1−Pt�‖ ≤ m/(t�+1),
which shows that zt�+1 ≤ m/(t� + 1) is satisfied. To conclude the proof, note that we
can show that zt ≤ m̂/t , for all t ≥ 1, simply by selecting m̂ = max{m, t zt |t ≤ t�}.

�
Corollary 1 Let X̂t be the steady-state covariance matrix using policy Kt generated
by Algorithm 1. Then we have ‖X̂t − X̂t−1‖ ≤ M/t + M ′/t2 for some M > 0 and
M ′ > 0 and for t ≥ 1.

Proof By the definition of X̂t , we have that

X̂t − X̂t−1 = At X̂t A
�
t − At−1 X̂t−1A

�
t−1

= At (X̂t − X̂t−1)A
�
t + (At − At−1)X̂t−1(At − At−1)

�

+ At−1 X̂t−1(At − At−1)
� + (At − At−1)X̂t−1A

�
t−1

= At (X̂t − X̂t−1)A
�
t + B(Kt − Kt−1)X̂t−1(Kt − Kt−1)

�B�

+ At−1 X̂t−1(Kt−1 − Kt )
�B� + B(Kt−1 − Kt )X̂t−1At−1.

Note that Lemma 5 can be used to bound Kt − Kt−1. Using (5.11), we have that

‖Kt+1 − Kt‖ ≤ ‖(B�Pt B + R̄t )
−1‖[‖B‖‖Pt − Pt−1‖‖At‖ + ‖R̄t−1 − R̄t‖‖Kt‖

]

≤ κ

μ
(‖B‖m̂ + 2σ)/t, (5.18)

where we have used ‖(B�Pt B + R̄t )
−1‖ ≤ μ−1, ‖At‖ ≤ κ , ‖Kt‖ ≤ κ , and m̂ is

given in the proof of Lemma 5. Using this ‖X̂t − X̂t+1‖ is bounded by M/t + M ′/t2,
where

M = 2κ6ω

μγ 2 ‖B‖(‖B‖m̂ + 2σ), (5.19)

and

M ′ = κ6ω

μγ 2 ‖B‖2(‖B‖m̂ + 2σ)2, (5.20)
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where we have used

‖X̂t−1‖ ≤ ‖W‖
∞∑

i=0

‖(A�
t−1)

i (Ai
t−1)‖ ≤ ωκ2

γ

�
The following lemmas will be used to derive bounds on the redundancy terms (5.2),
(5.3), and (5.5).

Lemma 6 Suppose that the tuple (A, B, {Qt }Tt=1, {Rt }Tt=1,W ) satisfies Assumption 3.
Suppose that the matrices Pt generated by Algorithm 1 are uniformly bounded, i.e.,

Pt ≤ ν I . Let κ =
√

ν
μ
and γ = 1/2κ2. Then for the covariance matrices Xt and X̂t ,

we have

T∑

t=1

(Qt+K�
t Rt Kt ) • (Xt − X̂t ) ≤ t�σ (1 + κ2) max

0<t≤t�
‖(Xt − X̂t )‖

+ 2κ4σ

(
‖Xt� − X̂t�‖ e−2γ 2t�

1 − e−2γ 2 + M ′π2

6(1 − e−2γ 2
)

+ M

1 − e−2γ 2 log
(T

t�

))
.

Proof For t ≥ t�, we have that ‖Pt+1−Pt‖ ≤ m/t ≤ μ/κ2. Then, using Proposition 2,

the matrices Kt are sequentially (κ, γ )-strongly stabilizing for t ≥ t� (κ =
√

ν
μ
and

γ = 1/(2κ2)). Using this by Lemma 3, we conclude that for t ≥ t�

‖Xt+1 − X̂t+1‖ ≤ κ2e−2γ 2(t+1−t�)‖Xt� − X̂t�‖ + κ2
t−t�∑

s=0

e−2γ 2sηt−s; (5.21)

hence we can separate (5.2) into two parts as follows:

T∑

t=1

(Qt + K�
t Rt Kt ) • (Xt − X̂t ) =

t�∑

t=1

(Qt + K�
t Rt Kt ) • (Xt − X̂t )

+
T∑

t=t�
(Qt + K�

t Rt Kt ) • (Xt − X̂t ).

By stability of policies Kt , the matrices Xt and X̂t are bounded and we have that

t�∑

t=1

(Qt + K�
t Rt Kt ) • (Xt − X̂t ) =

t�∑

t=1

Tr
[
(Qt + K�

t Rt Kt )(Xt − X̂t )
]
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≤
t�∑

t=1

Tr(Qt + K�
t Rt Kt )‖(Xt − X̂t )‖

≤ t�σ (1 + κ2) max
0<t≤t�

‖(Xt − X̂t )‖, (5.22)

where we have used

Tr(Qt + K�
t Rt Kt ) ≤ σ(1 + κ2)

Using (5.21), we have that

T∑

t=t�
(Qt + K�

t Rt Kt ) • (Xt − X̂t )

≤
T∑

t=t�
Tr(Qt + K�

t Rt Kt )‖(Xt − X̂t )

≤
T∑

t=t�
σ (1 + κ2)‖Xt − X̂t‖

≤ (σ (1 + κ2))κ2
T∑

t=t�

(
e−2γ 2t‖Xt� − X̂t�‖ +

t−t�∑

s=0

e−2γ 2sηt−s

)

≤ 2κ4σ(‖Xt� − X̂t�‖ e−2γ 2t�

1 − e−2γ 2 +
T∑

t=t�

t−t�∑

s=0

e−2γ 2sηt−s).

Note that by using Corollary 1, we have ηt = M/t+M ′/t , where M and M ′ are given
by (5.19) and (5.20). Consequently,

T∑

t=t�
(Qt + K�

t Rt Kt ) • (Xt − X̂t ) ≤ 2κ4σ‖Xt� − X̂t�‖ e−2γ 2t�

1 − e−2γ 2

+ 2κ4σ

T∑

t=t�

t−t�∑

s=0

e−2γ 2s
( M

t − s
+ M ′

(t − s)2

)
.

(5.23)

Next, by changing the order of summation we obtain

T∑

t=t�

t−t�∑

s=0

e−2γ 2s
( M

t − s
+ M ′

(t − s)2

)
=

T−t�∑

s=0

e−2γ 2s
T∑

t=s+t�

( M

t − s
+ M ′

(t − s)2

)

≤
T−t�∑

s=0

e−2γ 2s
(
M log

(T − s

t�

)
+ M ′π2

6

)
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≤ M ′π2

6(1 − e−2γ 2
)

+
T−t�∑

s=0

Me−2γ 2s log
(T

t�

)

≤ M ′π2

6(1 − e−2γ 2
)

+ M

1 − e−2γ 2 log
(T

t�

)
,

where we have used a logarithmic upper bound for
∑T−s

t=t� 1/t and the identity∑∞
t=1 1/t

2 = π2/6 in the second inequality. The third and fourth inequalities fol-
low by manipulating geometric series. Therefore, by substituting this inequality in
Equation (5.23) we obtain

T∑

t=t�
(Qt + K�

t Rt Kt ) • (Xt − X̂t ) ≤ 2κ4σ
(
‖Xt� − X̂t�‖ e−2γ 2t�

1 − e−2γ 2 + M ′π2

6(1 − e−2γ 2
)

+ M

1 − e−2γ 2 log
(T

t�

))
(5.24)

The result follow by adding (5.22) and (5.24). �
Lemma 7 Suppose that the tuple (A, B, {Qt }Tt=1, {Rt }Tt=1,W ) satisfies Assumption 3.
Suppose that the matrices Pt generated by Algorithm 1 are uniformly bounded, i.e.,

Pt ≤ ν I . Let κ =
√

ν
μ
and γ = 1/2κ2. Then the covariance matrices X̂t and X̂�

satisfy

T∑

t=1

(Qt + K�
t Rt Kt ) • X̂t −

T∑

t=1

(Qt + K ��Rt K
�) • X̂� ≤ ωlm̂

+ κ4ω

γμ3 (‖B‖m̂ + 2σ)2(1 + log(T )).

Proof Using the fact that Qt = t Q̄t − (t − 1)Q̄t−1 and Rt = t R̄t − (t − 1)R̄t−1, we
have

(Qt + K�
t Rt Kt ) = (t Q̄t − (t − 1)Q̄t−1) + K�

t (t R̄t − (t − 1)R̄t−1)Kt

= t(Q̄t + K�
t R̄t Kt ) − (t − 1)(Q̄t−1 + K�

t R̄t−1Kt )

= t(Pt − A�
t Pt At ) − (t − 1)(Pt−1 − A�

t Pt−1At )

+ (t − 1)(Kt − Kt−1)
�(B�Pt−1B + R̄t−1)

−1(Kt − Kt−1),

(5.25)

where we have used (3.1) and (5.8) in the third equality. Note that

A�
t Pt At • X̂t = Tr(A�

t Pt At X̂t )

= Tr(Pt At X̂t A
�
t )

= Pt • At X̂t A
�
t
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= Pt • (X̂t − W )

= Pt • X̂t − Pt • W . (5.26)

Therefore, by multiplying (5.25) and X̂t we obtain

(Qt + K�
t Rt Kt ) • X̂t = t Pt • W − (t − 1)Pt−1 • W

+ (t − 1)(Kt − Kt−1)
�(B�Pt−1B + R̄t−1)

−1(Kt − Kt−1) • X̂t ,

where we have used (5.26) to cancel out some terms. Summing over t and using the
telescopic series for t Pt • W − (t − 1)Pt−1 • W , we obtain

T∑

t=1

(Qt + K�
t Rt Kt ) • X̂t ≤ T PT • W

+
T∑

t=1

(t − 1)(Kt − Kt−1)
�(B�Pt−1B + R̄t−1)

−1(Kt − Kt−1) • X̂t . (5.27)

On the other hand,

T∑

t=1

(Qt + K ��Rt K
�) • X̂� = T (Q̄T + K �� R̄T K

�) • X̂�

= T (P� − A��P�A�) • X̂�

= T (P� • X̂� − P� • A� X̂�A��
)

= T (P� • X̂� − P� • X̂� + P� • W )

= T P� • W . (5.28)

Therefore, by subtracting (5.28) from (5.27) we have

T∑

t=1

(Qt + K�
t Rt Kt ) • X̂t −

T∑

t=1

(Qt + K ��Rt K
�) • X̂� = T (PT − P�) • W+

+
T∑

t=1

(t − 1)(Kt − Kt−1)
�(B�Pt−1B + R̄t−1)

−1(Kt − Kt−1) • X̂t .

Note that P� is the solution of DARE when the cost matrices Qt = Q̄T and Rt = R̄T

are chosen to be fixed; it is the limit of the sequence Pt when Qt and Rt are chosen
to be Q̄T and R̄T , respectively. The rate of convergence is quadratic [27], i.e. there
exists C > 0 such that for all t ≥ 2,

‖Pt − P�‖ ≤ C‖Pt−1 − P�‖2 (5.29)
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and by a similar analysis, we also have

‖Pt+1 − Pt‖ ≤ C‖Pt − Pt−1‖2. (5.30)

Here we use a similar technique to bound ‖PT − P�‖. We can update the sequence
Pt after time T by starting at PT using (3.1), with Q̄t = Q̄T and R̄t = R̄T fixed for
t ≥ T . We hence have that

‖PT − P�‖ = lim
t→∞ ‖PT − Pt‖

≤ lim
t→∞

t−1∑

i=0

‖PT+i − PT+i+1‖

≤ lim
t→∞

t−1∑

i=0

C2i−1‖PT − PT+1‖2i

= ‖PT − PT+1‖ lim
t→∞

t−1∑

i=0

C2i−1‖PT − PT+1‖2i−1,

where we have used (5.29). For T ≥ t�, C‖PT − PT+1‖ < 1 and thus the sum
∑∞

i=0 C
2i−1‖PT − PT+1‖2i−1 is bounded by some finite value l > 0. Hence we have

T (PT − P�) • W ≤ Tω‖PT − P�‖ ≤ Tωl‖PT − PT+1‖ ≤ Tωlm̂

T
= ωlm̂, (5.31)

where we have used ω = Tr(W ) and ‖PT − PT+1‖ ≤ m̂/T by Lemma 5. We now
proceed by noting that

T∑

t=2

(t − 1)(Kt − Kt−1)
�(B�Pt−1B + R̄t−1)

−1(Kt − Kt−1) • X̂t

≤
T∑

t=2

(t − 1)Tr(X̂t )
1

(t − 1)2μ3 (‖B‖κm̂ + 2σκ)2

≤ κ2

γ
ω(‖B‖κm̂ + 2σκ)2

T∑

t=2

1

(t − 1)μ3

≤ κ4ω

γμ3 (‖B‖m̂ + 2σ)2(1 + log(T )), (5.32)

where we have used the bound in (5.18) on ‖Kt − Kt−1‖, and the bound for Tr(X̂t ).
Adding (5.32) and (5.31) completes the proof. �
Lemma 8 Suppose that the tuple (A, B, {Qt }Tt=1, {Rt }Tt=1,W ) satisfies Assumption 3.
Suppose that the matrices Pt generated by Algorithm 1 are uniformly bounded, i.e.,
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Fig. 1 The regret over time using the policies generated by Algorithm 1 and FLL algorithm

Pt ≤ ν I . Let κ =
√

ν
μ
and γ = 1/2κ2. Then we have

T∑

t=1

(Qt + K ��Rt K
�) • (X̂� − X�

t ) ≤ σ(1 + κ2)κ2

1 − e−2γ ‖X̂� − X�
1‖. (5.33)

Proof ‖K �‖ ≤ κ implies that Tr(Qt + K ��Rt K �) ≤ σ(1 + κ2). Moreover, by
Lemma 2, we have that

T∑

t=1

(Qt + K ��Rt K
�) • (X̂� − X�

t ) ≤ σ(1 + κ2)

T∑

t=1

‖X̂� − X�
t ‖

≤ σ(1 + κ2)

T∑

t=1

κ2e−2γ (t−1)‖X̂� − X�
1‖

≤ σ(1 + κ2)κ2 1

1 − e−2γ ‖X̂� − X�
1‖,

as claimed. �
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Fig. 2 The average regret over time using the policies generated by Algorithm 1, FLL algorithm and recent
cost policy for the first experiment

To conclude, by summing the right hand side of (5.22), (5.24), (5.32), (5.31), and
(5.33), we obtain the regret bound as follows,

R(T ) ≤
(
2κ4σ

M

1 − e−2γ 2 + κ4ω

γμ3 (‖B‖m̂ + 2σ)2
)
log(T )

− 2κ4σ
M

1 − e−2γ 2 log(t
�) + t�σ (1 + κ2) max

0<t≤t�
‖(Xt − X̂t )‖

+ 2κ4σ
(
‖Xt� − X̂t�‖ e−2γ 2t�

1 − e−2γ 2 + M ′π2

6(1 − e−2γ 2
)

)
+ ωlm̂

+ κ4ω

γμ3 (‖B‖m̂ + 2σ)2 + σ(1 + κ2)κ2

1 − e−2γ ‖X̂� − X�
1‖, (5.34)

which finishes the proof of Theorem 1
Note that the assumption of (κ, γ )-strongly stability in Theorem 1 will be satisfied

as long as the solutions to the online Riccati equation are uniformly bounded. In
particular, we do not need this assumption for the scalar case, see Proposition A.1.
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Fig. 3 The average regret over time using the policies generated by Algorithm 1, FLL algorithm and recent
cost policy for the second experiment

6 Simulation results

We provide simulation results for the proposed algorithm to illustrate its performance.
The control system dynamics are given by xt+1 = Axt + But + wt , where the pair
(A, B) is stabilizable, and A ∈ R

10×10 and B ∈ R
10×7, and wt is a Gaussian noise.

The matrices A and B are chosen randomly with entry-wise i.i.d uniform distribution
on [−3, 3] and [−2, 2] respectively. We have considered three scenarios for the cost
functions. For the first experiment, thematrices Qt and Rt are generated randomlywith
the Wishart distribution with unit variance and 20 degrees of freedom. For the second
and third experiment, we followed the experiment setting of [15], where Qt = Q is
fixed as the identity matrix, while Rt is diagonal where some diagonal entries are 1,
while others are rt . For the second experiment, we assume that rt is randomly changing
over time with i.i.d uniform distribution on [0.1, 1], and for the third experiment, we
assume that rt is changing over time according to a random walk restricted to [0.1, 1]
taking steps of size 0.1,−0.1, 0, with probability 0.1, 0.1, 0.8, respectively. We ran
the algorithm with the stabilizing matrix K0 and X0 = 0 to generate a sequence
of matrices Kt , and we computed the regret and the average regret over time. We
compared our results with the ones stated in [15].

Figure 1 shows the regret over time for the online Riccati algorithm and the follow
the lazy leader (FLL) algorithm given in [15] for the first experiment. The results show
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Fig. 4 The average regret over time using the policies generated by Algorithm 1, FLL algorithm and recent
cost policy for the third experiment

that both algorithms behave similarly. Although [15] found a regret bound ofO(
√
T )

while we have achieved a regret bound ofO(log T ), this simulation result is expected,
since FLL uses the average cost matrices Qt and Rt over time and finds the optimal
Kt and uses it for the next time step, and the online Riccati algorithm uses a Riccati
update of the average cost matrices Qt and Rt over time.

Figures 2, 3 and 4 show the average regret of the online Riccati algorithm, FLL
algorithm, and the recent cost policy, where the optimal policy of recent cost matrices
is used for the next time step. The graphs show that the online Riccati algorithmworks
well for different scenarios, and as expected the recent cost policy is not a good strategy
and only works for the random walk scenario where the change in the cost function is
slow, as also indicated in [15], and we have plotted these for comparison.

A Appendix

Proposition A.1 Let n = m = 1 and let {Pt }Tt=1 be a sequence of positive numbers
generated by Equation (3.1) and (3.2) recursively, and assume that policy Kt is sta-
bilizing for all t ≥ 1. Then there exists ν > 0 such that Pt ≤ ν for all t ≥ 1.
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Proof Note that

Pt = (A − BKt )
2Pt + Q̄t + K 2

t R̄t ,

Since Kt is stabilizing using the stability of K1, c.f. Lemma 4, we have that

Pt = Q̄t + K 2
t R̄t

1 − (A − BKt )2
.

Now if you consider Pt as a function of Kt , by taking derivative of Pt with respect to
Kt and setting it to zero, we have that

Kt = −R̄t + A2 R̄t − B2 Q̄t +
√

(R̄t − A2 R̄t + B2 Q̄t )2 + 4A2B2 R̄t Q̄t

2AB R̄t

minimizes the Pt and the minimum admissible Pt which we denote by P̃t is given by

P̃t = A2 R̄t − R̄t + Q̄t B2 +
√

(R̄t − A2 R̄t − Q̄t B2)2 + 4B2 Q̄t R̄t

2B2 .

Now if we write Pt+1 as a function of Pt we have that

Pt+1 = Q̄t+1 + K 2
t+1 R̄t+1

1 − (A − BKt+1)2

= Q̄t+1 + ((B2Pt + R̄t )
−1BPt A)2 R̄t+1

1 − (AR̄t (B2Pt + R̄t )−1)2

= Q̄t+1(B2Pt + R̄t )
2 + B2P2

t A
2 R̄t+1

(B2Pt + R̄t )2 − A2 R̄2
t

.

By taking derivative of Pt+1 with respect to Pt , we conclude that for the admissible
Pt , i.e., Pt ≥ P̃t , the function Pt+1 is decreasing for Pt ≤ P̆t and increasing for
Pt ≥ P̆t [29], where P̆t is given by

P̆t =
(A2−1)R̄t+1 R̄t +B2 Q̄t+1 R̄t +

√
((A2−1)R̄t+1 R̄t +B2 Q̄t+1 R̄t )2+4B2 Q̄t+1 R̄t+1 R̄2

t

2B2 R̄t+1
.

Since Pt+1 is decreasing for Pt ≤ P̆t and increasing for Pt ≥ P̆t , its maximum is
achieved on the boundary. So we will check the value of Pt+1 for the point Pt at
infinity and at its admissible minimum P̃t . Now letting Pt goes to infinity, we have

Pt+1 = lim
Pt→∞

Q̄t+1(B2Pt + R̄t )
2 + B2P2

t A
2 R̄t+1

(B2Pt + R̄t )2 − A2 R̄2
t

= A2

B2 R̄t+1 + Q̄t+1,
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and for Pt = P̃t , we have

Pt+1 = Q̄t+1(B2 P̃t + R̄t )
2 + B2 P̃2

t A
2 R̄t+1

(B2 P̃t + R̄t )2 − A2 R̄2
t

One can observe that Pt+1 as a function of Rt has a similar behaviour. So for Pt+1 to
achieve its maximum, (P̃t , Rt ) should be minimum and (Qt+1, Rt+1) should be max-
imum. So if we let Qmax = max{Q̄1, Q̄2, · · · , Q̄T }, Qmin = min{Q̄1, Q̄2, · · · , Q̄T },
Rmax = max{R̄1, R̄2, · · · , R̄T }, Rmin = min{R̄1, R̄2, · · · , R̄T }, and

P̃min = A2Rmin − Rmin + QminB2 + √
(Rmin − A2Rmin − QminB2)2 + 4B2QminRmin

2B2 ,

we obtain that for all t > 0

Pt ≤ max
{ A2

B2 Rmax + Qmax,
Qmax(B2 P̃min + Rmin)

2 + B2 P̃2
minA

2Rmax

(B2 P̃min + Rmin)2 − A2R2
min

}

�
We illustrate in the next remark as to why the argument that we have used above

cannot be readily extended to non-scalar cases.

Remark A.2 The procedure that we have used above to prove boundedness of Pt relied
on studying the evolutions of Pt+1 as a function of Pt . When these quantities are not
scalars, one naturally aims to consider the norm of Pt+1 as a function of the norm of
Pt . However, an example can be constructed where Pt+1 as a function of Pt becomes
unbounded as Pt approaches the boundary of the set positive-definite matrices that
make Kt+1 unstabilizing. This does not happen in the scalar case since this boundary
is smaller than P̃t , the minimum achievable Pt . Figure 5 depicts the norm of Pt+1
for different trials of selecting Pt . For each trial, the Pt is chosen as Pt = P∗ + �,
where P∗ is the minimum achievable Pt for a stabilizing matrix Kt , and� is a positive
definite matrix. It can be seen that the norm of Pt+1 for some trials gets very large.
For example, for Pt

Pt =
⎛

⎝
18714 −312 291
−312 82149 −144
291 −144 14220

⎞

⎠ ,

the matrix A − BKt+1 has the eigenvalues

λ(A − BKt+1) =
⎛

⎝
−0.999996
0.002971

−0.000047

⎞

⎠ ,

and the first eigenvalue that is near 1, which makes the norm of Pt+1 around the order
of 7.7×108. However, in several simulations of online Riccati algorithm, we observed
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Fig. 5 This graph shows the norm of Pt+1 for different values of Pt � P∗. Pt can be near the boundary
that makes Kt+1 unstabilizing, and hence Pt+1 gets very large

that changes in Pt as a result of changes in bounded Q̄t and R̄ do not make Kt+1 to
get close to the unstabilizing policy boundary, and hence Pt+1 cannot get unbounded.
We will show this behaviour in the following experiment.

Example A.3 In order to observe the behaviour of matrices Pt over time, a linear
discrete-time control systemwith n = 7 states andm = 5 control actions is considered,
where the matrices (A, B) are fixed.

We used several trials, where for each trial a sequence of positive definite random
matrices Qt and Rt with Wishart distribution is generated and we used the online
Riccati algorithmwith different initialization K1 to generate the sequence Pt . Figure 6
shows the graph of the norm of Pt over time for each trial. Clearly, Pt stays bounded.
Similar property is observed in all our simulation studies. Understanding why this
boundedness occurs and if this is generally true is an important open problem, and
appears to be difficult in light of the previous remark.
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Fig. 6 The norm of Pt over time for 1000 trials is shown. For each trial, a sequence of matrices Qt and Rt
with Wishart distribution is generated and the sequence Pt is generated using the online Riccati algorithm
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