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Abstract—We introduce three soft-decision demodulation
channel-optimized vector quantizers (COVQs) to transmit analog
sources over space–time orthogonal block (STOB)-coded flat
Rayleigh fading channels with binary phase-shift keying (BPSK)
modulation. One main objective is to judiciously utilize the soft
information of the STOB-coded channel in the design of the
vector quantizers while keeping a low system complexity. To
meet this objective, we introduce a simple space–time decoding
structure that consists of a space–time soft detector, followed by
a linear combiner and a scalar uniform quantizer with resolu-
tion . The concatenation of the space–time encoder/modulator,
fading channel, and space–time receiver can be described by a
binary-input, 2 -output discrete memoryless channel (DMC).
The scalar uniform quantizer is chosen so that the capacity of
the equivalent DMC is maximized to fully exploit and capture
the system’s soft information by the DMC. We next determine
the statistics of the DMC in closed form and use them to design
three COVQ schemes with various degrees of knowledge of the
channel noise power and fading coefficients at the transmitter
and/or receiver. The performance of each quantization scheme is
evaluated for memoryless Gaussian and Gauss–Markov sources
and various STOB codes, and the benefits of each scheme is
illustrated as a function of the antenna-diversity and soft-decision
resolution . Comparisons to traditional coding schemes, which
perform separate source and channel coding operations, are also
provided.

Index Terms—Channel-optimized vector quantization, convolu-
tional codes, diversity, joint source-channel coding, multiantenna
fading channels, soft-decision demodulation, space–time coding,
wireless communications.

I. INTRODUCTION

SPACE–TIME orthogonal block (STOB) coding [3], [32]
was recently developed to improve the error performance

of wireless communication systems. Like many other error pro-
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tection schemes1 that are designed in the spirit of Shannon’s
separation theorem [26], space–time codes are designed to op-
erate on uniform independent and identically distributed (i.i.d.)
bit streams. However, Shannon’s separation theorem does not
take into consideration constraints on system complexity and
delay. As real-world communication systems are constrained,
systems with independent source and channel codes, known as
tandem coding systems, may have inferior performance com-
pared with systems which perform source and channel coding
jointly. This issue was quantitatively studied, for example, in
[19], where joint source-channel coding was shown to outper-
form tandem coding for systems having delay or complexity
below a certain threshold. Furthermore, in a recent information
theoretic study [35], it was shown that the joint source-channel
coding reliability function (the error exponent of optimal joint
source-channel coding) can be twice as large as the tandem
coding reliability function (the error exponent of concatenated
optimal source and channel coding) for a large class of discrete
memoryless source and channel pairs.

Joint source-channel coding may be implemented in various
ways. When the input to the space–time encoder is a nonuni-
form binary sequence, maximum a posteriori (MAP) detection
may be applied to enhance detection and improve system per-
formance. For single-input single-output (SISO) systems, joint
source-channel coding via MAP detection is studied, for ex-
ample, in [2], [21], [23], [25], and [29]. For STOB-coded chan-
nels, this problem is considered in [6], where a closed-form ex-
pression for the pairwise error probability (PEP) of symbols that
undergo STOB coding and MAP detection is derived and signif-
icant improvements are shown over maximum-likelihood (ML)
detection. Another joint source-channel coding approach is the
optimization of index assignment in vector quantizers. This ap-
proach is studied in [7], [13], and [34] for SISO channels. The
study in [7] considers hard decoding and applies a simulated
annealing based algorithm to minimize the distortion caused by
the channel noise via optimizing the index assignment.

In this paper, we consider the transmission of contin-
uous-alphabet (analog) sources over channels with multiple
transmit and multiple receive antennas. We employ channel-op-
timized vector quantizers (COVQs), which are other joint
source-channel coders for compressing the source while ren-
dering it robust against channel errors. COVQ design was
originally studied in [8], [14] for arbitrary discrete memoryless
channels. In [1] and [22], COVQ with soft-decision demodula-

1Throughout this paper, by “error protection scheme,” we mean the wider
class of techniques, which includes classical error-correction codes as well as
diversity (such as space–time modulation) codes.

1053-587X/$20.00 © 2006 IEEE



3936 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 10, OCTOBER 2006

tion was implemented for channels with Rayleigh flat fading,
and white and colored additive Gaussian noise and intersymbol
interference, respectively. In [28] and [30], COVQ systems
with optimal and suboptimal soft-decoding based on Hadamard
matrices were introduced and studied.

We consider a multiple-input multiple-output (MIMO)
system used in conjunction with STOB coding. Our proposed
system adds only two blocks, with modest computational needs,
to a conventional space–time coded system. It is well known
that for STOB codes with perfect channel state information
available at the receiver, the MIMO channel can be explicitly
decomposed into a set of independent parallel SISO channels
with chi-squared fading [4], [5], [27]. However, when the
system has multiple receive antennas, it is not obvious how to
extend hard decoding to soft-decision demodulation.2 There-
fore, an important task is the proper processing of the received
signals from the different antennas. We propose to address this
problem by performing space–time soft-decoding followed by
linear combining at the receiver. The linear combiner has the
following key advantages: 1) it has a very simple structure,
2) it allows the COVQ index transition probabilities to be
determined in closed form, 3) its output is continuous, making
soft-decision demodulation possible, and 4) its outputs are
sufficient statistics and do not cause loss of soft information.
Inspired by the work in [1] and [22], we use soft-decision
demodulation as opposed to soft-decoding methods such as in
[28] to exploit the soft information available at the output of
the linear combiner. Our choice is motivated by several factors.
First, soft-decision demodulation may be implemented via a
-bit uniform quantizer at the receiver (not to be confused with

the COVQ blocks at the transmitter and the receiver), which
makes the task of decoding computationally simple. In contrast,
the first version of soft decoding in [28] needs the computation
of trigonometric functions and matrix multiplication and the
second version also requires matrix inversion. Second, we
observe that the performance of our decoder converges to that
of soft decoding as the resolution of the soft-decision de-
modulator grows to infinity. It also requires less computational
complexity (although its storage complexity may be higher).

We show that the concatenation of the space–time en-
coder, the MIMO channel, the space–time soft-decoder, the
combiner, and the uniform scalar quantizer is equivalent to a
binary-input, -output discrete memoryless channel (DMC)
used times, where and are the quantizer dimension
and rate, respectively. The step size of the uniform quantizer
used for soft-decision demodulation is numerically selected
so that the capacity of the equivalent DMC is maximized
for each value of the channel signal-to-noise ratio (CSNR).
This is a suboptimal criterion, but as the simulation results of
[22] demonstrate, there is a substantial correlation between
maximizing channel capacity and minimizing distortion.3 We
show that the transition probabilities of this equivalent DMC

2As it is detailed in (3) and (4), the space–time soft-decoded signals at dif-
ferent receive antennas have various noise powers. The received signals should
then be properly combined according to some optimality criterion.

3In a related work [12], it is shown that for Gaussian channels, maxi-
mizing the channel capacity also minimizes the overall (mean-squared error)
distortion.

can be expressed in terms of the symbol PEP of the ML-de-
coded STOB coded channel. Hence, these probabilities can be
determined using the results of [4].

We design three soft-decision demodulation COVQs for
the equivalent DMC. The first COVQ is the classical COVQ
which assumes that the index transition probabilities are known
at both the transmitter and the receiver. The encoder and de-
coder codebooks are determined iteratively using the modified
generalized Lloyd algorithm (GLA) [11]. As the CSNR is not
always available at the transmitter, we consider the design
of two fixed-encoder adaptive-decoder (FEAD) COVQs. In a
FEAD COVQ, the encoder is designed for a fixed CSNR and
the decoder, which can estimate the channel fading coefficients
and the CSNR, adapts itself to the channel conditions. Our
first FEAD COVQ uses only the knowledge of the CSNR at
the receiver (as in [31]), while the second one, which we call
the on-line FEAD COVQ, employs also the knowledge of the
channel fading coefficients at the receiver and, as a result, it
outperforms the FEAD COVQ. An important feature of FEAD
COVQ is that its decoder codebooks are computed in terms of
the transmitter parameters, and not through a training process
as for classical COVQ. Therefore, this method does not need a
large memory at the receiver to store a different codebook for
each value of the CSNR. We demonstrate that with a proper
choice of the design CSNR, the performance loss of FEAD
COVQ can be significantly reduced as compared with the
classical COVQ.

Throughout this paper, denotes a scalar entry at row
and column of a deterministic matrix . The element of
a deterministic vector will be denoted by . Similarly, scalar
random variable is an entry of a random matrix and is
a random vector whose element is . Some constants are
also indicated by italic capitals, but their difference from scalar
random variables should be clear from the context.

The rest of this paper is organized as follows. Section II re-
views STOB coding and then describes the system components
and their design in detail. The three soft-decision demodula-
tion COVQ schemes are presented in Section III. Section IV
provides numerical results, and the conclusions are given in
Section V.

II. SYSTEM COMPONENTS

The system block diagram is shown in Fig. 1. A COVQ en-
coder forms a vector of dimension from the incoming scalar
source samples. It then encodes at a rate of bits per sample
(bps) into a binary index of length bits. Encoding is speci-
fied by the decision regions , which form
a partition of the -dimensional space, using the rule that
if . Index is then sent over the channel and received as
index . The COVQ decoder simply uses , the element
in the codebook, to reconstruct as . The goal in COVQ
design is to minimize the expected value of through
finding the optimal partition and codebook.

Our objective is to model the concatenation of the blocks
between the encoder and the decoder of the vector quantizer by
a discrete channel and then design efficient vector quantization



BEHNAMFAR et al.: CHANNEL-OPTIMIZED QUANTIZATION 3937

Fig. 1. System block diagram, where every � bits in a kr-bit index I is transmitted via a space–time codeword S, received as RRR, and space–time soft-decoded as
~RRR. For simplicity, we have assumed here that � = kr.

systems for this channel. The system is designed so that it ju-
diciously incorporates the soft information of the STOB-coded
channel and admits a closed-form expression for the COVQ
transition probabilities. This is achieved by designing a soft-de-
cision space–time receiver which consists of a space–time soft
detector, followed by a linear combiner (whose output provides
sufficient statistics to compute the conditional COVQ index
probabilities), and a simple -bit scalar uniform quantizer
(whose cell size is chosen so that the capacity of the equivalent
discrete channel is maximized). As a result of the simple
memoryless structure of our receiver and due to the space–time
code’s orthogonality, we obtain that the equivalent discrete
channel is indeed a binary-input -output memoryless channel
whose distribution can be easily determined analytically in
terms of the system parameters. In the following, we describe
the system components in detail.

A. MIMO Channel

The communication system considered here employs
transmit and and receive antennas. The channel is assumed
to be Rayleigh flat fading so that the path gain from transmit
antenna to receive antenna , denoted by , has a unit-vari-
ance i.i.d. Rayleigh distribution. We assume that the receiver
has perfect knowledge of the path gains. It is also assumed that
the channel is quasi-static, meaning that the path gains remain
constant during a space–time codeword transmission, but vary
in an i.i.d. fashion among codeword intervals. The additive
noise at receive antenna and symbol interval , , is as-
sumed to have a zero-mean unit-variance Gaussian distribution,
denoted by . Based on the above, for a CSNR at each
receive antenna, the signal at receive antenna at symbol in-
terval can be written as ,
for , where is the codeword length and the
space–time modulated symbols are simulta-
neously transmitted (see Section II-B). In matrix form, we have

(1)

We assume that the noise, signal, and fading coefficients are
statistically independent of each other.

B. Space–Time Orthogonal Block Codes

Let be a vector of consecutive constella-
tion points and be the space–time code cor-
responding to it, where indicates transposition. In the case of

STOB codes, we have , where is the coding gain and
, where is the identity matrix and

represents complex conjugate transposition. As an example,
for the real code in [32, eq. (4)], and , and
for Alamouti’s code [3], and . Our system
uses binary phase-shift keying (BPSK) modulation with base-
band signals located at 1 and 1. It can be shown (see [4] and
[16]) that when the signal constellation is real, we have

(2)

where , , and
is a matrix which is derived from the row of ,

and it has orthogonal columns (see [16]), i.e., ,
with . Therefore, multiplying (2) from the left by

yields the following at the output of the space–time soft-
decoder:

(3)

where . Note that each entry of is associ-
ated with only one transmitted symbol in . It is not difficult to
show that

i.i.d. (4)

It follows that the space–time-coded symbol can be detected
by only considering the entry of the vectors , .
For our application, this will imply that the bits corresponding
to a COVQ index can be detected independently.

It can be shown (see, for example, [4], [5], and [20]) that the
PEP of a pair of STOB-coded BPSK symbols and under
ML decoding is given by

(5)

where is the Gaussian error
function, and .
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C. Soft-Decision Demodulation and the Equivalent DMC

Similar to other COVQ-based systems, the decoder of the
system proposed in this paper is “memoryless” in the sense that
its output is a function of only one transmitted index, as op-
posed to (a subset of) the entire stream of indices. The optimal
receiver, in terms of minimizing the mean-square error (MSE),
is therefore given by

(6)

where we have assumed for simplicity that (a similar but
slightly more complicated expression for holds for ).
The soft decoder in [28] builds a relationship in terms of the
Hadamard transform between each centroid and the
bits of its corresponding encoder output index . The decoder
then maps the received noisy bits at the decoder back into es-
timates of the source vectors. Here, we propose a suboptimal
receiver (based on [22]) which has low complexity and also ex-
ploits (in part) the soft information available in channel output.

1) Soft-Decision Demodulation: Linear Combining and
Scalar Quantization: Many communication systems employ
hard-decoding in processing the received signals of space–time
coded systems and so do not exploit the soft information avail-
able at the space–time soft-decoder outputs . Methods that
exploit soft information can provide significant performance
gains. In our case, in addition to using the soft information
efficiently, the solution should allow the COVQ index transition
probabilities to be determined in closed form, since this is
required for the COVQ design and encoding phases. As we
illustrate below and in Section IV, linear combining has both
of the above properties.

In order to employ the signals of all receive branches, we use
Bayes’ law to see, from (2), that the conditional index proba-
bility in (6) is equal to

(7)

where and denote unconditional and conditional
probability density functions (pdf’s) and is the vector of
BPSK symbols that correspond to index . We have assumed
that in the above derivation and we have treated the
general case in the Appendix. The above shows
that the sum of the ’s conveys all the information in channel
output that is required by the optimal decoder in (6). In other

words, to employ the information contained in the received
signals , it is enough (and optimal) to add the entries in
each column of and the combiner should therefore compute

for .
In order to make the blocks that follow the combiner inde-

pendent of the fading coefficients and the CSNR, we use a nor-
malized version of the combiner output which is given by

(8)

With the above choice, the output of the combiner will be equal
to

(9)

where is i.i.d. additive Gaussian noise
characterized by

(10)

The linear combiner output is next fed into a “uniform”
scalar quantizer which acts as the soft-decision demodulator.
Let us indicate the decision levels of this quantizer by ,
where is the number of the codewords. As can take
any real value, the quantizer should have two unbounded deci-
sion regions. The decision regions of the uniform quantizer are
given by

if
if
if

and the quantization rule is simply

if

The use of a nonuniform scalar quantizer may lead to im-
proved overall system performance at the cost of a significant
increase in complexity, since the determination of the nonequal
step-sizes that maximize the capacity of the equivalent discrete
channel will require an exhaustive numerical search. Note that
when (i.e., hard-decoding), the above linear combiner
together with the -bit quantizer reduce to a symbol-to-symbol
ML decoder.

2) Transition Probabilities of the Equivalent DMC: For
COVQ design, we need to derive the transition probabilities of
the -input -output discrete channel represented by the
concatenation of the space–time encoder, the MIMO channel,
the space–time soft-decoder, the linear combiner, and the
uniform quantizer. Since the detection of bits that correspond
to each quantizer index is decoupled as explained below (4),
we note that the discrete channel is equivalent to a binary-input

-output DMC used times. We shall refer to this discrete
channel as the “equivalent DMC.”
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TABLE I
CAPACITY (IN BITS/CHANNEL USE) OF THE DMC DERIVED FROM q-BIT SOFT-DECISION DEMODULATION OF BPSK-MODULATED SPACE–TIME-CODED MIMO
CHANNEL WITH K = 2 AND L = 1.� IS THE STEP SIZE THAT MAXIMIZES THE CAPACITY AND q IS THE NUMBER OF SOFT-DECISION DEMODULATION BITS

The required set of the transition probabilities for the binary-
input -output DMC are , where is a data bit and
takes values in the set . Decision is made in
favor of the codepoint if the output of the linear combiner
falls into the interval of length . Using (9) and
(10), we can write

(11)

where is the BPSK signal which corresponds to . The ex-
pectation over of each of the above functions can be
determined using (5) to yield

(12)

where is defined in (5). Note that the DMC transition prob-
ability matrix is symmetric in the sense of [10].

For our -dimensional COVQ with rate shown in Fig. 1,
we denote the natural binary representation of the index of a
decision region by and that of a codevector by

. The COVQ index transition probabilities
can hence be computed as

(13)

with given in (12).

D. Step Size of the Uniform Quantizer at the Decoder

The final design parameter of the system is , the step size of
the uniform quantizer at the receiver. For a given soft-decision
resolution and CSNR , we numerically select the
which maximizes the capacity of the equivalent DMC. This is
a suboptimal criterion since our ultimate goal is minimizing the
MSE, not maximizing the capacity, but as the simulation results
of [22] demonstrate, there is a strong correlation between having
a high channel capacity and reduced MSE distortion.

For a given soft-decision resolution and CSNR , we deter-
mine the step size which maximizes the capacity of the DMC
by maximizing the mutual information between the DMC input
and output. Because the channel transition probability matrix
is symmetric, a uniform input distribution achieves channel ca-
pacity [10]. Note that the step-size does not depend on the rate
or dimension of the COVQ (used to quantize the source), and is
only a function of and the CSNR. As a typical set of results,
we list, in Table I, the capacity of the equivalent DMC versus
the “optimal” step-size of the uniform quantizer for Alamouti’s
[3] dual transmit single receive setup. Similar results can be de-
rived for systems with a different number of transmit antennas,
receive antennas, or space–time codes. As shown in Fig. 2, when
the step-size is very small (close to zero) or very large, soft-de-
cision demodulation does not significantly increase channel ca-
pacity. We also note that if the CSNR is high, soft-decision de-
modulation is not very beneficial in terms of improving channel
capacity. However, for moderate and low CSNRs, and with the
optimal choice of , soft-decision demodulation significantly
increases channel capacity. For example, at CSNR 2 dB in
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Fig. 2. DMC capacity versus the step size of the uniform quantizer, K = 2,
L = 1.

Table I, there is a 15% benefit in using soft-decision demodu-
lation with 5 bits. Also note that the channel capacity in-
creases less than 1% from to , even for severe
channel conditions. This shows that typically achieves
most of the capacity gain offered by soft-decision demodula-
tion. Finally, we note, as expected, that as , the value of

, which maximizes the capacity of the DMC, goes to zero.

III. QUANTIZATION WITH SOFT-DECISION DEMODULATION

A. Soft-Decision Demodulation COVQ

The transition probability given in (13) can be used in the
modified generalized GLA algorithm [11] to design a soft-deci-
sion demodulation COVQ for space–time-coded MIMO chan-
nels as explained below. Every input -tuple is encoded at a
rate of bits per sample (bps). Therefore, the input space is
partitioned into subsets. As we use BPSK modu-
lation, a vector of real-valued signals is received for every
transmitted index. This vector is soft-decision decoded at a rate
of bits per dimension. Therefore, each -dimensional source
vector is decoded to one of the codevectors. The
input space partitioning and the codebook are optimized based
on two necessary conditions for optimality using training data

as follows.
• The nearest neighbor condition: For a fixed codebook and

, the optimal partition is

(14)

where is a training vector, is
the codebook, is the squared Euclidean distance
between and , and ties are broken according to a preset
rule.

• The centroid condition: Given a partition
, the optimal codebook is

(15)

where is the number of the training vectors in .
Note that the above steps do not increase the overall distor-

tion. As distortion is bounded from below, convergence to a
local minimum is therefore guaranteed via an iterative execu-
tion of the above two steps.

Training consists of using the above conditions iteratively to
update the codebook until the average training distortion given
by

converges, where is the index of the partition cell to which
belongs.

B. Fixed-Encoder Adaptive-Decoder Soft-Decision
Demodulation COVQ

Equations (5) and (11)–(13) show that the CSNR should be
known at both the transmitter and the receiver to compute the
COVQ index transition probabilities. The CSNR can be esti-
mated at the receiver and then fed back to the transmitter. As
the feedback path may not always be available, it is of partic-
ular interest to consider the case where no information about the
channel state is available to the transmitter. In [31], an FEAD
COVQ is proposed which addresses this issue for a different
setup involving hybrid digital–analog SISO transmission sys-
tems. In the following, we show how to design a FEAD COVQ
for the soft-decision decoded STOB-coded channel. In addition
to having multiple antennas, our FEAD COVQ differs from the
one in [31] in that we have a digital channel (instead of a hy-
brid digital-analog channel). The block diagram of the FEAD
COVQ looks the same as in Fig. 1. The key difference is that
here the encoder partition matches a “design CSNR” and the
receiver codebook is adapted to the actual CSNR. The encoder
uses a design codebook to find its partition via

Because we assume complete lack of information at the trans-
mitter, the encoder codebook is designed assuming the
channel is hard decoded (i.e., that ).

The problem is then to adapt the decoder codebook according
to the actual CSNR value, while the encoder codebook remains
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fixed. Let us denote the encoder index by and the decoder
index by . The average distortion per dimension is given by

(16)

The goal in quantizer design is to derive the , which minimize
(16). This gives the optimal in the MMSE sense as

(17)

where denotes the mean of the samples in
and (17) follows because

. Note that the decoder can simply determine as

(18)

where . Also note that
and can be approximated in the training phase of the encoder
as follows:

(19)

From (17), we observe that unlike COVQ, given the encoder
means , the FEAD-COVQ does not require a training
phase to determine . In other words, the decoder codebook
is computed from the channel transition probabilities and the
encoder means via (17) and (18).

C. Online FEAD Soft-Decision Demodulation COVQ

One of the assumptions made in Section II-A is that the re-
ceiver has perfect knowledge of the channel fading coefficients
without error. In light of this assumption, we observe in (9) that
the output of the linear combiner has an identical form to the
output of an additive white Gaussian noise (AWGN) channel
with the variance of the additive noise known at the receiver
and given by (10). This motivates us to apply soft-decision de-
modulation directly on using the step-size derived in [22,
sec. II] for AWGN channels. The channel transition probabili-
ties, given the path gains matrix , are given by (11). We ex-
pect the online FEAD COVQ to outperform the FEAD COVQ
because it exploits the knowledge of the channel state informa-
tion in the COVQ decoding phase.

Note that the above derivation is valid if the channel fading
coefficients remain constant during the transmission time of an
index.

D. Asymptotic Optimality of the Proposed Decoding Method

It was shown in Section II-C-1) that using the “adder” struc-
ture for the combiner does not cause suboptimality (i.e., an op-
timal soft decoder for COVQ over STOB coded channels could
also use the same structure). As explained in the two previous
sections, the linear combiner output is quantized via a uni-
form quantizer with step size . The two sources of subopti-
mality in our decoding method are therefore the uniform scalar
quantizer itself and the way its step size is chosen. For finite ,
is not chosen in the optimal way, which would be minimizing the
overall distortion, because the relationship between and the
overall distortion seems to be complicated. The suboptimal na-
ture of the uniform quantizer becomes negligible as grows. In
fact, assuming that grows without bound and the quantizer res-
olution becomes finer (i.e., ), one can show
that the proposed system converges to the optimal soft decoding
(as opposed to soft-decision demodulation) COVQ as follows.

For simplicity, we assume that (a similar argument
holds for ). Let be an index
input to the proposed COVQ decoder. Recall that is formed by
the concatenation of integers (each of which
is represented by bits) that result from the soft-decision de-
modulation of . Given a source with a smooth
pdf , the centroid of the proposed COVQ with index
transition probabilities is given by (20)–(22), shown at
the bottom of the next page, which is the optimal decoder in (6)
and where we have made the simplifying assumption that in the
limit as , the joint pdf is constant
in the -dimensional cube of size and we have used (8) to
re-write (21) as (22).4 Using the above approach and (18), one
can verify that the FEAD COVQ is also optimal when .

IV. NUMERICAL RESULTS AND DISCUSSION

A. Implementation Issues

We consider the transmission of zero-mean unit-variance
i.i.d. Gaussian and Gauss–Markov sources over MIMO chan-
nels. 500 000 training vectors and 850 000 test vectors are
employed. Each test is performed five times, and the average
signal-to-distortion ratio (SDR) in decibels is reported. MIMO
systems with transmit and receive antennas are referred
to as systems. Alamouti’s code [3] is used for the
dual transmit-antenna systems. The real (rate 1) code of [32,
eq. (4)] is employed for the quad-transmit system to maximize
throughput and because our constellation is real.

Several training strategies were examined, and the best one
in terms of having consistent results and high training SDR was
used as follows. For any given COVQ rate , dimension , and

4The argument (20)–(22) can be made a rigorous proof under some regularity
conditions on the pdf f (�). For example, it suffices to assume that f (�) is
continuous, differentiable, and has a light tail.
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number of soft-decision demodulation bits , we first train a
-dimensional rate- VQ with the split algorithm [11]. We next

use the simulated annealing algorithm [7], which aims to mini-
mize the average end-to-end distortion for a given VQ codebook
through optimizing the assignment of indexes of the VQ code-
vectors. It can be shown that the cost function to be minimized
equals

where is the standard inner product and
is the one-to-one mapping

function to be optimized. Simulated annealing is used only at
the highest CSNR. We then use an approach similar to the one
in [9]; namely, we use the modified generalized Lloyd algorithm
to derive the COVQ codebooks starting from the highest CSNR
to the lowest, and vice versa. This method is referred to as the
“decrease–increase” (DI) method. Another way to obtain the
codebooks could be starting from the highest CSNR down to
the lowest, which we refer to as the “decreasing” method.

Table II compares the results of the DI and descending
methods for various STOB coded systems. It is observed that
the DI method is mostly beneficial at low CSNR values. This is
because at low CSNR some encoder cells are empty. Empirical
results show that these cells are optimized more efficiently
through the CSNR-increasing loop.

B. COVQ for Various MIMO Channels

Fig. 3 plots the SDR curves of various COVQ-based
space–time coded systems as a function of the CSNR. Even at
the low COVQ dimension and rate considered here, the gain of
using MIMO channels over the SISO channel is obvious. For
example, at SDR 5 dB, the (2-1) system outperforms the
SISO system by 6 dB (for hard decoding) and is outperformed
by the (2-2) system by 4.3 dB. This figure also demonstrates
the effectiveness of our linear combiner. Note that as the signal

TABLE II
COMPARISON BETWEEN THE TRAINING SDR (IN DECIBELS) OF TWO COVQ

TRAINING METHODS FOR A UNIT-VARIANCE GAUSS–MARKOV SOURCE

(� = 0:9) CHANNEL-OPTIMIZED VECTOR QUANTIZED AT RATE 1.0 bps.
QUANTIZATION DIMENSION IS 2. THREE MIMO SYSTEMS ARE CONSIDERED

WITH (K � L) = (2� 1), (4-1), AND (2-2)

power collected by the (2-2) system is twice that of the (4-1)
system, the former has a better performance, although the diver-
sity gain of both of the systems is the same and equals .

We observe in Table I that soft-decision demodulation
becomes less beneficial as the CSNR grows. Increasing the
number of transmit or receive antennas results in a CSNR gain
due to space diversity. Therefore, we expect that increasing the
number of transmit or receive antennas would leave little room
for further enhancement through soft-decision demodulation.
It follows from (10) that between two systems with the same
diversity gain, coding gain , and CSNR , the one with fewer
transmit antennas has a higher SNR at its linear combiner

(20)

(21)

(22)
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Fig. 3. Simulated SDR in decibels for a zero-mean unit-variance
Gauss–Markov source (� = 0:9) vector quantized at rate 1 bps and
soft-decision decoded with q bits. Quantization dimension is 2.

output. In other words, given two systems with the same diver-
sity gain, the one with more transmit antennas obtains a larger
soft-decision demodulation gain. This result can be stated more
intuitively: systems with more receive branches collect more
signal power. Hence, the SNR at their linear combiner would
be higher, making soft-decision demodulation less effective.
This observation is supported by the simulations of Fig. 3: at
CSNR 4 dB, the soft-decision demodulation gain in SDR
is 0.29 dB for both of the (2-1) and (4-1) systems; this gain
reduces to 0.12 dB for the (2-2) system.

C. COVQ Versus Tandem (Separate) Coding

We next compare our COVQ-based system with traditional
tandem coding schemes which use separate source coding
and channel coding blocks with VQ and convolutional coding
(CC), respectively. We consider, in Fig. 4, a (2-1) system using
Alamouti’s code and quantization with dimension . The
overall rate is 3.0 bps, and hence there are six choices for the
(VQ, CC) code rates, namely, (0.5, 1/6), (1.0, 1/3), (1.5, 1/2),
(2.0, 2/3), (2.5, 5/6), and (3.0, 0). The first four convolutional
codes have 64 states and are nonsystematic with free distances
of 27 [18], 14, 10, and 5 [17]. For rate 5/6, we use a rate-com-
patible punctured convolutional (RCPC) code with a rate-1/2
mother code.5 Fig. 4 shows a typical behavior: the jointly
designed COVQ outperforms the substantially more complex
tandem systems almost everywhere. Further tests with i.i.d.
sources yield even more supportive results towards COVQ.

Note that if one aims to design an unequal error protection
(UEP) joint source-channel coder with the above separate

5The generator polynomials of the rate-1/6, 1/3, 1/2, and 2/3 convolutional
codes are given by (754, 644, 564, 564, 714, 574), (574, 664, 744), (634, 564),
and (3, 4, 5; 4 3 7). They are the strongest codes given in [17], [24] for the
given number of states. The generator polynomials are defined as in [17]. The
generator polynomials of the mother code for the rate-5/6 code are (554, 744)
and its puncturing matrix is given by [24].

Fig. 4. Jointly designed versus tandem coding schemes for a zero-mean unit-
variance Gauss–Markov source (� = 0:9). Quantization dimension is 2, and
the overall rate is 3.0 bps. K = 2 and L = 1.

Fig. 5. Simulated SDR in dB for an i.i.d. N (0; 1) source vector quantized at
rate 2.0 bps and soft-decision demodulated with q bits. Quantization dimension
is 2. K = 2 and L = 1.

coders (i.e., select the best tandem coder at each CSNR), one
needs to design an algorithm to allocate the source and channel
code rates for each given CSNR, thus increasing the complexity
of the UEP system. COVQ does not have this problem since
error protection in COVQ is built-in.

D. COVQ, FEAD COVQ, and Online FEAD COVQ

Fig. 5 demonstrates the performance of a (2-1) system quan-
tizing an i.i.d. source with various rate-2 bps FEAD
COVQs with dimension . A FEAD COVQ is one whose
design CSNR is dB. The FEAD VQ assumes that the channel
is noiseless; hence it has a lower computational complexity at
the encoder. The figure shows that such an assumption will lead
to a significant SDR loss at low to medium CSNRs. FEAD
COVQ also suffers from a considerable performance degrada-
tion at high CSNRs. It seems that assuming a midrange CSNR
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Fig. 6. Comparison among the COVQ, FEAD VQ, and online FEAD VQ for
a N (0; 1) Gauss–Markov source vector quantized at rate 1.0 bps and hard de-
coded. Quantization dimension is 2, K = 2, and L = 1.

of 8 dB (for the given MIMO system) will lead to reasonable
performance everywhere.

The three quantizers presented in this paper are compared in
Fig. 6, where a unit-variance Gauss–Markov source is quantized
with dimension 2 and rate 1 bps and sent over a (2-1) system.
The performance of the online and FEAD VQs (which are de-
signed for a noiseless channel) become closer as the CSNR
grows because the channel mismatch of the VQs decreases. The
online FEAD VQ maintains its gain over the FEAD VQ when
soft-decision demodulation is employed. The online FEAD VQ
encoder assumes the channel is noiseless CSNR . Never-
theless, at high CSNR, it slightly outperforms the COVQ, which
is designed for the exact CSNR. This is due to the exploitation
of the knowledge of the channel fading coefficients in the online
VQ decoding phase.

V. CONCLUSION

We presented three soft-decision demodulation COVQ-based
systems for communicating analog sources over STOB coded
multi-antenna channels. The proposed systems depend on
whether the actual CSNR is available to the transmitter and
whether the COVQ decoder is aware of the fading coeffi-
cients. The soft information of the channel is utilized through
space–time soft decoding, linear combining, and scalar uniform
quantization. Simple design methods were proposed for the
linear combiner and the uniform quantizer. It was shown that
using three soft-decision demodulation bits can achieve almost
all of the gain available through soft-decision demodulation.
This gain is very significant, specially when transmit diversity
is employed and/or when the source is correlated. For a dual
transmit antenna system and at SDR 5 dB, using a second
receive antenna results in 4.3-dB CSNR gain over a single-re-
ceive antenna system for a unit-variance Gauss–Markov source.
For the COVQ dimension and rates considered here, the use of
only two soft-decision demodulation bits results in typically
0.9-dB gain in CSNR over hard decoding. The COVQ-based
system was shown to outperform tandem systems that use
separate source and channel coding blocks.

APPENDIX

DERIVATION OF (7) IN GENERAL

For simplicity, it was assumed in (7) that each block of
bits, which forms a COVQ encoder index, is mapped to one
space–time codeword, i.e., . Here, we consider the gen-
eral case. We first give the derivation for . Let be a

-bit COVQ encoder index. We have (23) and (24), shown at
the bottom of the page, where is the vector of BPSK sym-
bols that correspond to the concatenation of the binary forms of

and and we have assumed in (23) that the COVQ indexes

(23)

(24)
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are independent (the memoryless assumption) and (24) follows
from (23) because, from (8)

hence the terms pertaining to in
form a multiplicative factor and cancel

out in (23). Notice that (24) also depends only on the sum of
the over all .

Furthermore, for the case , we can write ,
where and are integers. It is straightforward
to verify that in this case can be written in terms of the
product of terms as in (7) (one term per space–time codeword)
and one term as in (24).
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