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On the Optimal Performance in Asymmetric Gaussian
Wireless Sensor Networks With Fading

Hamid Behroozi, Fady Alajaji, and Tamds Linder

Abstract—We study the estimation of a Gaussian source by a Gaussian
wireless sensor network (WSN) where L distributed sensors transmit
noisy observations of the source through a fading Gaussian multiple access
channel to a fusion center. In a recent work Gastpar, [“Uncoded trans-
mission is exactly optimal for a Simple Gaussian Sensor Network,” IEEE
Trans. Inf. Theory, vol. 54, no. 11, pp. 5247-5251, Nov. 2008] showed that
for a symmetric Gaussian WSN with no fading, uncoded (analog) trans-
mission achieves the optimal performance theoretically attainable (OPTA).
In this correspondence, we consider an asymmetric fading WSN in which
the sensors have differing noise and transmission powers. We first present
lower and upper bounds on the system’s OPTA under random fading. We
next focus on asymmetric networks with deterministic fading. By com-
paring the obtained lower and upper OPTA bounds under deterministic
fading, we provide a sufficient condition for the optimality of the uncoded
transmission scheme for a given power tuple P = (P,, P,,..., Pr).
Then, allowing the sensor powers to vary under a weighted sum constraint
(this includes the sum-power constraint as a special case), we obtain a
sufficient condition for the optimality of uncoded transmission and provide
the system’s corresponding OPTA.

Index Terms—Gaussian multiple access channel with fading, joint
source-channel coding, power-distortion tradeoff, remote source coding,
sensor networks, uncoded transmission.

[. INTRODUCTION

We consider the estimation of a memoryless Gaussian source by a
Gaussian wireless sensor network (WSN) where L sensors observe the
source signal X corrupted by additive independent noise. The overall
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Fig. 1. A Gaussian wireless sensor network (WSN) with fading.

system is depicted in Fig. 1. The sensors communicate information
about their observations through a fading Gaussian multiple access
channel (MAC) to a single fusion center (FC). The fading coefficients
are not known by the encoders but are available at the FC. The encoders
are distributed and cannot cooperate to exploit the correlation between
their inputs. Each encoder is subject to a transmission cost constraint.
The FC aims to reconstruct the main source X at the smallest cost in
the communication link. Our interest lies in determining the optimal
power-distortion region, with the fidelity of estimation at the FC mea-
sured by the mean squared-error (MSE) distortion. Specifically, for a
given L-tuple of sensor powers P = (P, P», ..., Pr), we seek to de-
termine the system’s minimum achievable distortion which we refer to
as the optimal performance theoretically attainable (OPTA).

In [1] and [2], it is proved that uncoded transmission is exactly
optimal for symmetric Gaussian WSNs with a finite number of sensors
and no fading. Uncoded transmission in this case (and in the rest of
this correspondence) means scaling the encoder input subject to the
channel power constraint and transmitting without explicit channel
coding. Note that the separate source and channel coding theorem of
Shannon [3] does not hold for this problem [1], [2]. In the case of
deterministic fading, lower and upper bounds on the minimum distor-
tion are presented in [1], [2], and [4], and for random fading, bounds
are also presented in [4] and [5]. The minimum achievable distortion
under a sum-power constraint for the uncoded transmission scheme in
the WSN with deterministic fading is presented in [6]. The optimality
of uncoded transmission in some other multiuser communication
systems was recently shown in [7] and [8].

For the asymmetric fading Gaussian WSN, the following important
issues remain unknown: Under either random or deterministic fading,
what is the system’s OPTA? Also, What is the optimal coding strategy
that achieves OPTA? Our main contributions in this correspondence
are as follows: First, by applying the idea of maximum correlation co-
efficient, illustrated in [9]-[11], we generalize the OPTA lower bound
in [1] to an asymmetric Gaussian WSN with random fading. We show
that the new bound is a tighter lower bound on the OPTA than that of
[5] for a Gaussian WSN with random fading. We also analyze the un-
coded transmission scheme and provide an upper bound on the OPTA
for a given set of sensor powers. These two bounds constitute an ex-
tension of the bounds given for deterministic fading case in [1] and
[2]. We next specialize the results to the case of deterministic fading.
We establish a condition under which the lower and upper bounds on
the system’s OPTA coincide, hence making the uncoded transmission
scheme optimal. We next allow the sensor powers to vary under a linear
combination of powers (LCP) constraint. Aside from being a natural
generalization of the sum-power constraint, the LCP constraint explic-
itly allows to introduce weight coefficients that reflect the potentially
differing costs of supplying power to individual sensors. Our final con-
tribution is to provide sufficient conditions for the optimality of un-

1053-587X/$26.00 © 2010 IEEE
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coded transmission under a given LCP constraint and determine the
system’s corresponding OPTA.

The remainder of this correspondence is organized as follows.
In Section II, we present the system model and problem statement.
Section III provides lower and upper bounds on the OPTA in an asym-
metric Gaussian WSN with random fading. In Section IV, we consider
deterministic fading and provide matching conditions by comparing
lower and upper bounds on the system’s OPTA. For uncoded trans-
mission, an optimal power allocation under an LCP constraint and a
sufficient condition for its optimality are also obtained. Conclusions
are presented in Section V.

II. PROBLEM STATEMENT

We consider a simple Gaussian WSN, illustrated in Fig. 1, where a
team of L sensors observe independent noisy versions of the memory-
less Gaussian source {X[%]}}_,. The underlying source {X[k]}}_,
is a sequence of independent and identically distributed (i.i.d.) real-
valued Gaussian random variables of mean zero and variance o % . For
each observation time k = 1, 2, 3,. . ., the noisy observations are given
by

1k] = X[kl +Vi[k], 1=1,....L (N
where {Vi[k]}}_, is a sequence of i.i.d. Gaussian random vari-
ables of mean zero and variance ‘7%”1 which is independent of
{X[k]};_,. We represent the first » instances of {X[k]},., and
{Y1[k]},~, by the data sequences X" = (X[1], X[2],..., X[n]) and
Y = (Vi[1], Yi[2), - .., Yi[n]), respectively. The correlated sources
Y are not co-located and their observers cannot cooperate to directly
exploit their correlation. Instead, the sequences Y;" are separately
encoded to ¢; (Y;") = U® where the ¢, are encoder functions in the
form

o :R"—=R", 1=1,2,....L. ?2)

T

Each transmitted sequence U;
to 7, i.e.,

is assumed to be average-power limited

%ZE[ILG[W] <P. 1=12... L 3)
D k=1

The sensors communicate the coded sequences to the decoder through
a fading MAC. In fact, each transmitted signal U; is multiplied by a
real-valued fading random variable b;,1 = 1,2, ..., L. The b; are not
known to the encoders but are available to the decoder. The fading
coefficients have non-zero mean and are independent of each other and
of the U; random variables. The time-k output of the channel is given
by

Wk = wi[kIU[K] + Z[K] 4)

=1

where the channel noise { Z[k]}}_, is an ii.d. sequence of Gaussian
random variables of mean zero and variance ¢% that is independent
of X", V"™, and the fading coefficients. Based on the channel output
W™ = (W[1],..., W]n]), the FC forms an estimate X" of the main
source X ". Fidelity between X" and X" is measured by the average

N 2
squared error distortion, A = (1/n)E [2;11 (X U] - X []]) ] The

reconstructed signal can be described as X™ = 1 (W™, "), where the
decoder function is a mapping

w - R" x R!LL — R". (5)

Let F() (P1, Pa,..., Pr) denote all encoder and decoder functions
(¢1,...,9L, %) that satisfy (2)—(5). For a particular coding scheme
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(¢1,...,¢1,%), the performance is determined by the cost vector
P = (P, P2,..., Pr) and the incurred distortion A. For any target
distortion D > 0, the power-distortion region P(D) is defined as
the convex closure of the set of all achievable power-distortion pairs
(P, D), where a power-distortion pair (P, D) is achievable if for
any § > 0, there is an no(8) such that for all n > no(6) there
exists (@1,...,9L,%0) € Flm (P1, Pa,...,P.) with distortion
A < D + 6. Our aim is to investigate the power-distortion region of
this fading Gaussian WSN and present lower and upper bounds on its
OPTA, which is defined for a fixed P as

Duin(P) = inf {D | (P, D) € P(D)}. (6)

We also aim to derive optimality conditions for uncoded transmission in
the sense of achieving the OPTA. In addition, we want to minimize the
MSE distortion given a linear combination of powers (LCP) constraint,
ie.,

minimize

D(P)
5 ap <0 @

=1

subject to

where D(P) is the distortion of the uncoded transmission scheme using
power allocation P = (Py,...,Pr)and 8; > 0,1 = 1,..., L. This
form of constraint is a slight generalization of the sum-power constraint
which explicitly allows to introduce weight coefficients for the poten-

tially differing costs of supplying power to individual sensors.

III. INFORMATION-THEORETIC OPTA BOUNDS IN THE
PRESENCE OF RANDOM FADING

We present lower and upper bounds on the OPTA in an asym-
metric Gaussian WSN with random fading. The lower bound is based
on analyzing the remote source coding scenario, where the sensor
observations are given to one common encoder; then applying the
data processing as well as Jensen’s inequalities and finally using the
idea of maximum correlation coefficient, illustrated in [9]-[11]. The
upper bound is based on analyzing uncoded transmission which is the
transmission of scaled versions of the sensors observations.

A. Lower Bound

Proposition 1: A lower bound on the OPTA in an asymmetric
Gaussian WSN with random fading is

D1ni11 2 D(,' é DS 1 + (8)

&)
D* = — + 5) ) (9)
° (‘7‘2\ Z UC”,)

P P;
(0’;2\ + a%/l) (0’;2\ + a%/j)

and the expectations are taken with respect to the distribution of the
fading random variables b;.

Proof: See the proof for [4, Theorem 1]. This bound is an exten-

sion of [1, Theorem 4] to the random fading case. |

Next we compare the bound of Proposition 1 with the lower bound

presented in [5] and demonstrate that our bound is strictly tighter as
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long as at least one of the sensor observation noise variances a%/l is
nonzero.
The lower bound presented in [5], which is for the case where the

sensors observations have the same noise level a%/rl == O-%/L =
0%, can be expressed for a general asymmetric WSN as
2 2 1
IXTL Y, P
* =1 Vi
Dlower(LePtot) = DO 1+ (11)

L’ .
0% 4 Pt l; E[|bi]]

where it is assumed that there is a total power constraint in the commu-
nication channel, ie., 1/n )] _, Zszl E[|U,[¥] 2] < Piot, and Pios
denotes the average total sensor power available per observation vector

(U{",...,Ul"). Let us denote
L
(Tf = (TZZ + ZPIE“blm
=1
I L PP
+20% S B E b)) —
= = (0§( + 0"2/1) (03( + J%fj)
and

L
03 =0% + Pt y_ E[lti|’]

=1

where Piot = Zle P,. By comparing (8) and (11), we observe that
the only difference is in the denominator. The lower bound of (8)
is in the form Dy, = Dj (1 + (%02 Zle (I/J%vl))/af) while
Diower(L, Prot) = D (1 +(oko Sk, (10, ))/ag). We want
to show that ¢ < 3. Since the o7, are non-negative, we have

PP,
(0'42\' + 0'%,1) (o'%( + o'%,j)

L L
<23 N |EBER)|VEP. (2
=1 y>1
Thus,
9 L
03 = a7 > Pux S Ellf] = 3 RE(bif’]

l;l , =1

- ZZZ‘E[b,]E[bj] VPP,
=1 y>1
L L

= S PEP) - Y RE]

Jj=11=1 =1
9 L

- QZZ‘E[ZN] Eb,| VPP,
=1 53>1

L L

=>> (BEW] + PJ-Enbm)

=1 5>I1
9 L

=23 S |BWI E )| VAP, (13)
=1 53>1
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Fig. 2. The estimation distortion versus the transmission power, P} = P, =
P. We assume that 03, = o}, = 5,0% = 100 and 03, = 30.

‘We have

%(nEnbm + PjEnbzﬁ) > /P, (b Elb, )

> | Bl El,]

PP

where the first inequality is due to the arithmetic-geometric mean in-
equality and the second inequality follows from the Cauchy—Schwarz
inequality. Thus, a term-by-term comparison in (13) shows that the
difference is non-negative, proving that o3 > ¢7. Moreover, the in-
equality in (12) implies that 5 > o7 as long as at least one of the (7%3
is positive. Therefore, the lower bound of (8) on Drin is tighter than
(11); the improvement is mainly due to the maximization of the corre-
lation coefficients.
1) Numerical Examples:

1) We consider a symmetric WSN consisting of two sensors and
evaluate the resulting lower bounds numerically. We assume that
E[5:]*] = FE[b2]’] = 4, E[b1] = FE[b2] = 1. The estima-
tion distortion bound is plotted as a function of the power level
P, = P, = P in Fig. 2. We observe that the distortion is a
decreasing function of P and that the lower bound D, of (8)
is tighter than the lower bound Di,wer of (11). Specifically, if
we calculate the percentage of the relative distortion gap (i.e.,
(D¢ — Diower )/ Diower %) versus the value of P, we observe that
Dy performs 20% better (tighter) than Djoye, for P > 1.5.

2) Now, we assume that the channel is not symmetric and plot the
distortion bounds as a function of the power level P, = P, = P
in Fig. 3 for two different fading parameters:

oE[|bi]’] =8, E[|b2|’] = 4, E[b1] = 0.2, E[ba] = 1.5
e E[b1]*] =35, E[[b|*] = 20, E[b1] = 2, E[b2] = 4.

Again, we observe that the lower bound D, is tighter than the
lower bound D)ower.

3) We next consider an asymmetric WSN. We assume that 0'%/'2 =
ot + 7, P1 = Py =20, E[|b1]*] = E[|b2|’] = 4, and E[b1] =
E[bs] = 1 and plot the estimation distortion bounds as a function
of v in Fig. 4. There is almost a fixed gap between D¢ and Diower-
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Fig. 4. The estimation distortion versus the value of v = o}, — o7, . We
assume that P, = P, = 20,0%,1 =10,0% =100ando? = 15

B. Upper Bound: Analyzing Uncoded Transmission

By analyzing the uncoded transmission in our Gaussian WSN, we
next present an upper bound on the OPTA. In this approach, each sensor
transmits its observation by simply scaling it to its power constraint,
ie., Uilk] = \/Pi/(0% + o¢,)Yi[k]. The received signal at the FC is
then given by

L
Wik =Y { /(Ti:%%bl[k] (X[E] + v,[z;])} + Z[k].

Since the encoding is memoryless, the optimal (minimum
mean-squared error) estimator is easy to obtain. By evaluating
the resulting MSE distortion, we obtain an upper bound on the min-
imum achievable distortion, which is summarized in the next lemma.

Lemma 1: An upper bound on the OPTA in a Gaussian WSN with
random fading can be expressed as

Plo'%/l‘bl|2

. L
oz + Y
=1

0'% + S)-r\b

02 402
A2 X'V
Dmin § Duncoded = JXE

(14)
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Fig.5. Percentage of the relative distortion gap versus the sum-power Pi;. We
assume that L = 2, 0% = 1,0% = 1, Pi = P». The fading coefficients are
taken as k X d—3-°, where k is a normalization constant satisfying E[b,] = 1
and d is drawn uniformly from the interval [1, 1.5].
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Fig. 6. The MSE estimation distortion versus the total number of sensors, L,
under a uniform power schedule. The fading coefficients are taken as k X d =33,
where d is drawn uniformly from the interval [1, 6] and k is a normalization
constant satisfying E[b;] = 1. We assume that Py, = 2,0% = 1,0% =1,
0'3,[ =1(forl =1,...,L).

where

L L
Q=205 )Y bid,

=1 j>I

PP
(aﬁ( —I—U%,l) (U§(+ (T%,j)

L
-I-Z P |b)?
=1

1s)
and the expectation is with respect to the fading random variables, b;.

In the following, we provide some examples in order to compare the
lower and upper bounds numerically.

First, we consider a Gaussian WSN with L = 2 sensors, where
a%a = 1 (for! = 1,...,L). The fading coefficients of the channels
are taken as k x d~*, where k is a normalization constant chosen
to satisfy E[b;] = 1 and d is a random variable uniformly distributed
on the interval [1, 1.5]. In Fig. 5, we plot the percentage of the relative
distortion gap (i.e., (Duncoded — D¢)/Duncoded %) versus the sum-
power Po¢ assuming a uniform power schedule. We note that the gap
is less than 6% for all values of Pios.

Fig. 6 shows the lower and upper bounds on the OPTA versus the
total number of sensors, L under a uniform power schedule and a sum-
power Pi¢ = 2. The fading coefficients are taken as & x d3->, where d
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is drawn uniformly from the interval [1, 6] and k is a normalization con-
stant satisfying E[b;] = 1. We observe that the gap between the lower
and upper bounds decreases as the total number of sensors increases.

Before closing this section, we point out that, using some algebraic
manipulations, it is not hard to show that if (Tﬁl = 0, the lower bound of
(8) and the upper bound of (14) agree under some conditions (see the
proof of Corollary 1 in Section IV-A, presented in Appendix A). This
means that uncoded transmission can achieve the optimal performance
if the fading coefficients stay constant over the duration of transmis-
sion. This may apply to situations where the network conditions change
very slowly. In the remainder of this work, we investigate the Gaussian
WSN with such deterministic channel gains.

IV. DETERMINISTIC FADING SYSTEM

A. Optimality Condition for Uncoded Transmission

Assume that the fading coefficients b; are fixed non-zero constants
known at the fusion center. The lower bound of (8) and the upper bound
of (14) can be expressed as follows:

2 2 L

oXTL Y >2

=1 Vi
027 + Q.

1

Dl!lill ZDi :D; 1+ (16)

9 I 2 2
JXx 2 Pioy, |bi]
Dmin <Duncocec = N a + 17 17
= Pt @é+m><z 2 tve, ) O
where

L

. 2
Q, = ZPIJ%/[ |b1|2/((7§< + 0'%,,»[ )+ (Z bi/Pio% [(o% + o'%,l )) .
=1

=1

In the symmetric case, where 63, = --- =0}, = oy andPy =--- =
Pr = P, the lower bound (16) and the upper bound (17) coincide if
by = -+ = br, = b. Hence, we obtain the OPTA for the symmetric
Gaussian WSN under deterministic and identical fading. This is the
same result as recently established by Gastpar in [2] with by = --- =
br, = 1.

Corollary 1: For the asymmetric network with deterministic fading,
the lower bound (16) and the upper bound (17) coincide if and only if

P 2 P
— = =bov —_. 18
P L ey, Y

Proof: See Appendix A. |
Hence, for a given set of powers, P, if (18) is satisfied then the dis-
tortion achieved by the uncoded transmission is the smallest possible
achievable distortion. Note that (18) is both necessary and sufficient
for the upper and lower bounds to coincide, but it is only a sufficient
condition for the optimality of uncoded transmission.

2
by v,y

B. Optimal Power Allocation for Uncoded Transmission Under an
LCP Constraint

In a WSN, many sensor devices are battery-powered and thus power
constrained. Therefore, minimizing power consumption is critical in
extending the lifetime of the individual sensor nodes and the entire net-
work. A sum-power constraint has a direct impact on the network life-
time since it is imposed on the power consumption of all sensors taken
together. However in some applications, in order to prevent excessive
power consumption for individual sensors, or due to differing power
supply capabilities at the sensors, individual power constraints for each
sensor may also be desirable. This motivates us to combine cost coef-
ficients with the sum-power constraint and consider a complexity con-
straint consisting of a an LCP. These cost coefficients might depend on
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the sensors’ location and battery lifetime and can be assigned by the
fusion center.

We thus herein consider an optimal power allocation for the uncoded
transmission in order to minimize the MSE distortion under an LCP
constraint, i.e.,

minimize  D(P)
L

S BP<Q

=1

19)

subject to

where D (P) is the distortion of the uncoded transmission scheme using
power allocation P = (Py,...,Pr)and 3; > 0,1 =1,.... L.

In [6], by applying the Lagrange multiplier method, it was shown
that the optimal distortion sum-power tradeoff | Duncoded, Z,L:] P;)
for the uncoded scheme can be expressed as follows:

—1

L
1 1
Duncodea(Puon) = | = +3° ' 20)
X

2 °z 2 2
=1 0y, + Froh? (UX'FUV,)

where Piot = Z,":l P, is the sum-power. This tradeoff is also given in
[2, eq. (6)], for the case of equal variance observation noises and equal
channel gains. Since we want to compare lower and upper bounds on
OPTA under an LCP constraint (which subsumes the sum-power con-
straint), we first need to provide closed form expressions of the optimal
power allocation for the LCP case. The proof of the next lemma, which
we omit, is based on an application of the Lagrange multiplier method.
Note that as a special case, the lemma also yields the formula (20) for
the minimum distortion under the sum-power constraint derived in [6].

Lemma 2 (Optimal Power Allocation for Uncoded Transmission
under an LCP Constraint): An optimal power allocation scheme for
the constraint 2 = Z{“zl B¢ P, is given by

(0% +0%)0

(7'2,-‘,-(72 27
ab? (sza%fl + 0% ( “blg i >)

P=X\Q=

where

. 2 2
(}z:Z f}l(‘TX'FUVl)

o2 +crz 2
— X Vv
=1 p2 <Q0'%,l +0LB < = 1>)
1

Substituting the optimal P; given in (21) into (17) yields an upper
bound on OPTA under the LCP constraint:

—1
L

1 1
Duncodod(gz) = 0_2 + -2 3,
X =1 07, + b.l%Q ((J'X +‘7V,)

Corollary 2 (Uncoded Transmission Optimality Conditions Under
an LCP Constraint): In an asymmetric Gaussian WSN with determin-
istic fading, uncoded transmission with the optimal power allocation
given in (21) is optimal in the sense of achieving the OPTA under an
LCP constraint if the following conditions hold

; (7€,L )
T Bk e

Proof: See Appendix B. |

V. CONCLUSION

We considered a distributed WSN where L noisy observations
of a memoryless Gaussian source are transmitted through a fading
Gaussian MAC to a decoder. The decoder wants to reconstruct the

Authorized licensed use limited to: Queens University. Downloaded on March 15,2010 at 10:24:02 EDT from IEEE Xplore. Restrictions apply.



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 4, APRIL 2010

main source with an average distortion D at the smallest possible
power consumption in the communication link. Our goal was to
characterize the power-distortion region achievable by any coding
strategy regardless of delay and complexity. We obtained a lower
bound on the system’s OPTA, i.e., its minimum achievable distortion
for a given set of powers (Pi, Pa, ..., Pr). Also, by analyzing the
uncoded transmission scheme, we provided an upper bound on the
OPTA. When specialized to the network with deterministic fading,
we provided sufficient conditions for the optimality of the uncoded
transmission. We also obtained an optimal power allocation in order
to minimize distortion for a given LCP constraint as well as an explicit
condition for the optimality of uncoded transmission under an LCP
constraint.

APPENDIX A
PROOF OF COROLLARY 1

Proof: We first rewrite the lower bound in (16) as

L ps2 |b ‘2 2
2 2 * 17y, 171 * Plo'
O'XO'Z+DUZW+DO Zbu/ 2ol
(=1 < ' X
D, = S
L Py \bl\‘ [P -
,a-
UZ + Z o2 +02 +a' Z b’ a" +o'

(23)

Comparing (23) with the upper bound in (17) reveals that the lower
bound and the upper bound coincide if and only if

P[O'V

2
2 * bl|
— D =D b .
(2 )z i 0X<z N X+«n,>

(24)

From the definition of Df we have (¢% — D§)/(0%D§) =
Zf: 1/ 0'%/[ . As aresult, the equality condition in (24) is equivalent to

9

L P <
:<Zb, ﬁ R

=1 X i

> L)y Dl
o P s

o
=1 Vi/ 1=t

Setting g1 = bioy, /P /(0% + 7%, ), we rewrite and simplify (25) as
Ny~ 9195
l ! ]
g =2
>4 (T4 =T

2
=1 Vi \j=# (=1 j>I

(26)

v

Comparing the coefficients of 1/ (0%;,0%;7) (I # j) on both sides of
(26) shows that the equality holds if and only if g7 + g5 = 2g1g,; this
is equivalent to g; = g; which is our condition in (18). ]

APPENDIX B
PROOF OF COROLLARY 2

Proof: From the proof of Corollary 1, a necessary condition for
the upper and the lower bound to coincide is that the equality in (25)
holds. Substituting the optimal F;’s in this condition and setting f; =
a%fl/ (QO’%/I + o280k + a%fl )/b;l), we obtain

L 2
>

=1 /1

flf]

l Vi

sgn(b;) sgn(b;)

(za)-x

ll]>[

27

2441

where sgn(x) = x/|x| is the sign of x. Subtracting 3, , f#/c¥, from
both sides in (27), we get

SEOIE SR W I

= v =1 ;51 v ’j

sgn(by) sgn(b;). (28)

Comparing the coefficients of 1/(a¢, 07, ) in both sides of (28) gives
that the equality holds if and only if

1+ sz = 2fif; sgu(by) sgn(b;).

Since f; > 0, the equality holds if and only if fi = f; and
sgn(b;) sgn(b;) = 1. Solving f; = f; implies that
2 2 P 2 2

B ox toy, B ox toy, 29)

0'%,»[ b? a a%/j b?
Combining (29) with sgn(b;) sgn(b;) = 1, we obtain (22) which com-
pletes the proof. ]
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