
3474 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 5, MAY 2022

Zero-Delay Lossy Coding of Linear Vector Markov
Sources: Optimality of Stationary Codes and Near

Optimality of Finite Memory Codes
Meysam Ghomi, Tamás Linder , Fellow, IEEE,

and Serdar Yüksel , Member, IEEE

Abstract— Optimal zero-delay coding (quantization) of
R

d-valued linearly generated Markov sources is studied under
quadratic distortion. The structure and existence of deterministic
and stationary coding policies that are optimal for the infinite
horizon average cost (distortion) problem are established.
Prior results studying the optimality of zero-delay codes for
Markov sources for infinite horizons either considered finite
alphabet sources or, for the R

d -valued case, only showed the
existence of deterministic and non-stationary Markov coding
policies or those which are randomized. In addition to existence
results, for finite blocklength (horizon) T the performance of
an optimal coding policy is shown to approach the infinite time
horizon optimum at a rate O( 1

T
). This gives an explicit rate of

convergence that quantifies the near-optimality of finite window
(finite-memory) codes among all optimal zero-delay codes.

Index Terms— Quantization, zero-delay coding, networked
control systems.

I. INTRODUCTION

IN TIME-SENSITIVE applications (such as networked
control systems), causality in encoding and decoding is

a natural limitation. With this motivation, in this paper
we consider optimal zero-delay lossy coding for R

d-valued
Markov sources. In the zero-delay coding problem, the encoder
encodes a source without delay and transmits it to a decoder
which also operates without delay.

We assume that the source {Xt}t≥0 is a time-homogenous
R

d-valued discrete-time Markov process. For such a process,
the distribution of {Xt}t≥0 is uniquely determined by the
initial distribution π0 (i.e., the distribution of X0) and the
transition kernel P (dxt+1|xt).

The encoder encodes (quantizes) the source samples and
transmits the encoded versions to a receiver over a dis-
crete noiseless channel with finite input and output alphabet
M := {1, 2, . . . , M}. The encoder is defined by a coding
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policy Π, which is a sequence of Borel measurable functions
{ηt}t≥0 with ηt : Mt×(Rd)t+1 → M. At time t, the encoder
transmits the M-valued message

qt = ηt(It)

where I0 = X0, It = (q[0,t−1], X[0,t]) for t ≥ 1. Throughout
the paper we use the notation q[0,t−1] = (q0, . . . , qt−1) and
X[0,t] = (X0, X1, ..., Xt). The set of admissible coding
policies, denoted by ΠA, is the collection of all such zero-
delay policies. Note that for fixed q[0,t−1] and X[0,t−1], as a
function of Xt, the encoder ηt(q[0,t−1], X[0,t−1], · ) is a Borel
measurable mapping of R

d into the finite set M. Therefore,
at each time t ≥ 0, as noted in [2], the coding policy
selects a quantizer Qt : R

d → M based on past information
(q[0,t−1], X[0,t−1]), and then quantizes Xt as qt = Qt(Xt).
Because of this, we refer to Π as a quantization policy.

The decoder without any delay generates the reconstruction
Ut using decoder policy γ = {γt}t≥0, where the γt : Mt+1 →
U , are measurable functions for t ≥ 0, with U ⊂ R

d being the
reconstruction alphabet. Thus Ut is given by

Ut = γt(q[0,t]).

In the finite horizon problem the goal is to minimize the
average cumulative cost (distortion) for a time horizon T ∈ N

given by

J(π0, Π, γ, T ) := EΠ,γ
π0

[
1
T

T−1∑
t=0

c0(Xt, Ut)

]
, (1)

over the set of all admissible policies ΠA, where c0 : R
d ×

U → R is a nonnegative Borel measurable cost function
(distortion measure) and EΠ,γ

π0
denotes expectation with initial

distribution π0 for X0, under the quantization policy Π and
receiver policy γ.

In the infinite horizon problem, the goal is to minimize the
long-term average cost (distortion) given by

J(π0, Π, γ) := lim sup
T→∞

EΠ,γ
π0

[
1
T

T−1∑
t=0

c0(Xt, Ut)

]
,

over all admissible policies.
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A. Brief Literature Review and Contributions

Two important structural results for the finite horizon
problem (1) have been developed by Witsenhausen [3], and
Walrand and Varaiya [4]. These results are stated in the
following two theorems. We adopt the presentation given
in [2].

Theorem 1 ([3]): For the finite horizon problem, any zero-
delay quantization policy Π = {ηt} can be replaced, without
any loss in performance, by a policy Π̂ = {η̂t} which only
uses q[0,t−1] and Xt to generate qt, i.e., such that qt =
η̂t(q[0,t−1], Xt) for all t = 1, . . . , T − 1.

For a complete, separable, and metric (Polish) space X and
its Borel sets B(X ), let P(X ) denote the space of probability
measures on (X ,B(X )) equipped with the topology of weak
convergence. Given a quantization policy Π, for all t ≥ 1 let
πt ∈ P(Rd) be the regular conditional probability defined by

πt(A) := P (Xt ∈ A|q[0,t−1])

for any Borel set A ∈ B(Rd).
The following result is by Walrand and Varaiya [4] where

finite-alphabet sources were studied. In [6] this result was
extended to the more general case of R

d-valued sources.
Theorem 2 ([4], [6]): For the finite horizon problem,

any zero-delay quantization policy can be replaced, without
loss in performance, by a policy which at any time t =
1, . . . , T − 1 only uses the conditional probability measure
πt = P (dxt|q[0,t−1]) and Xt to generate qt. In other words,
at time t such a policy η̂t uses πt to select a quantizer
Qt = η̂(πt), where Qt : R

d → M, and then qt is generated
as qt = Qt(Xt).

We call a policy of the type in Theorem 2 a
Walrand-Varaiya-type policy. Such a policy is also called
a Markov coding policy. In the literature several results
related to zero delay coding and causal coding are available.
Notably, [7] and [8] consider causal lossy source coding where
the reconstruction of the present source sample is restricted to
be a function of the present and past source samples, while
the code stream itself may be non-causal and have variable
rate. In [7] it was shown that for memoryless sources, causal
source coding cannot achieve any of the vector quantization
advantages. In addition, [7] also showed that for stationary
memoryless sources, an optimal causal coder can be replaced
by one that time shares between at most two memoryless
coders, without loss in performance. In [9], results on causal
coding by Neuhoff and Gilbert are extended to (stationary)
sources with memory, under high resolution conditions for
mean squared error distortion.

Structural results for the finite horizon coding problem
have been developed in a number of papers. As mentioned
before, the classic works by Witsenhausen [3] and Walrand
and Varaiya [4], which use two different approaches, are of
particular relevance. An extension to the more general setting
of non feedback communication was given by Teneketzis [5],
and [6] also extended these results to more general state
spaces; see also [2] and [30] for a more detailed overview.
Optimal zero delay coding of Markov sources over noisy
channels without feedback was considered in [5] and [31].

We refer to [32]–[34] for further results on zero-delay or causal
coding in multi-user systems.

In this paper we also investigate how fast the optimum finite
blocklength (time horizon) distortion converges to the opti-
mum (infinite horizon) distortion. An analog of this problem
in block coding is the speed of convergence of the finite block
length encoding performance to Shannon’s distortion rate
function. For stationary and memoryless sources, this speed of
convergence was shown to be of the type O

(
log T

T

)
[10], [11].

See also [12] for a detailed literature review and further finite
blocklength performance bounds.

A large body of work involves convex analytic or informa-
tion theoretic relaxation of the operational problem presented
above, where the constraint on the number of bits is replaced
with entropy (which may replace the fixed-rate with variable-
rate constraints) or mutual information constraints (which
has a more relaxed, Shannon theoretic infinite-dimensional,
interpretation); see [30, Section 5.4] for a detailed discussion.
In this case, the analysis often relies on deriving lower bounds
and upper bounds on the optimal performance, or establishing
asymptotic tightness conditions.

For lower bounds, primary methods build on Shannon
lower bounding techniques (and the Gaussian measure’s
extremal properties), entropy-power inequality based bounds,
or a sequential-rate distortion theoretic formulation where
the minimization of directed mutual information is per-
formed over causal kernels as in [13], and which has
been investigated further in a series of recent publications
including [14]–[19], [25]–[29].

Related to the above, when an actual channel is present,
using channel-source coding separation based methods via
the rate-distortion function and Shannon capacity dualities
also leads to useful bounds. Perhaps the earliest papers
giving such formulations are [35], [36] and [37]. Transmis-
sion over scalar Gaussian channels has been also studied
in [35], [38] and [39], where the error exponents were shown
to be unbounded (and the error probability was shown to
decrease at least doubly exponentially in the block-length).
Transmission of linear Gaussian sources over Gaussian chan-
nels (a matched pair, in the sense of rate-distortion achieving
and capacity achieving properties of Gaussian models), in the
scalar setup was considered in [40], [41], where the latter
arrived at tightness of information theoretic inequalities; this
result has been re-discovered later but also with some general-
izations (e.g., [20] is a recent work considering linear systems
and Gaussian channels in the presence of side information).

For upper bounds, methods based on high-rate quantization
(and the corresponding uniform quantization and space filling
analysis), dithering (allowing for uniformization), and entropy-
power inequalities (further refining Gaussian based bounds)
have been studied; see e.g., [18], [21]–[24], [27])

In this paper we study linear Markovian systems driven
by noise and consider the quadratic cost (mean squared
distortion). Even though such systems are likely the most
important and commonly adopted ones in applications (in sys-
tems and control theory, signal processing, and in estimation
theory), their analysis in the context of zero-delay coding are
quite challenging since the costs are not bounded. Accordingly,
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we will develop a number of results to address these technical
challenges. To make the presentation accessible, many of the
technical results will be presented in the appendix.

1) Contributions: We assume that the R
d-valued source is

a linearly generated stable Markov process and consider zero-
delay quantization policies where the quantizers have convex
codecells and the cost function is the squared distortion. Under
these assumptions, our main result, Theorem 4, demonstrates
the existence of globally optimal deterministic and time-
invariant (stationary) Markov policies. In addition, we also
show that the (optimum) performance of such a policy for a
finite time horizon T converges to the infinite-horizon optimal
performance at a rate O( 1

T ).
The following papers studying the infinite horizon average

cost optimality in the fixed-rate zero-delay quantization are
most relevant to our work:

• In [42] a formulation for optimal average-cost zero-
delay coding as an infinite horizon optimal stochastic
control problem was introduced; this formulation has
been an inspiration for our analysis. In particular, in [42] a
stochastic control formulation of zero-delay quantization
was given under more restrictive assumption than in this
paper: the set of admissible quantizers in that paper
was restricted to the set of nearest neighbor quantizers,
and other conditions were placed on the dynamics of
the system. In contrast, we impose the more relaxed
assumption that the quantizers have convex codecells (this
class of quantizers includes the set of nearest neighbor
quantizers). Furthermore the proof technique used in [42]
relies on the fact that the source is partially observed
unlike in our case. As noted in [6], for the partially
observed case, the structure of the encoder decoder pairs
considered in [42] is suboptimal since the measurements
are not Markovian.

• In [43], the source was assumed to have finite alphabet;
however, in our case the source is taking values in R

d

and in this sense the present paper generalizes [43] to
the technically more demanding continuous source case.
On the other hand, [43] established a global optimality
result with no restrictions on the structure of quantizers.
Here, we impose codecell convexity for technical reasons.

• Finally, in [2] only the optimality of deterministic and
non-stationary encoding policies, or of randomized and
stationary policies were established, and here we prove
the optimality and existence of stationary and determin-
istic quantization policies and also obtain convergence
rates for finite-memory codes, thereby generalizing [2]
in these two aspects.

The paper is organized as follows. In Section II, after
reviewing some definitions we transform the problem into
Markov decision process (MDP) framework, and we provide
some preliminary results. The main result, Theorem 4, is
presented in Section III; to prove it we consider the discounted
infinite horizon problem followed by infinite horizon average
cost problem and the proof of Theorem 4. Some background
material on MDPs along with useful lemmas and theorems are
presented in Appendix A. Finally, some proofs are relegated
to Appendix B.

II. PRELIMINARIES AND SOME SUPPORTING RESULTS

In this section we present some properties of quantizers,
from a different viewpoint than is usual in source coding, that
will be important in the sequel.

A sequence of probability measures {μn} on R
d is said

to converge weakly to μ ∈ P(Rd) if for every continuous
and bounded f : R

d → R, we have
∫

Rd f(x)μn(dx) →∫
Rd f(x)μ(dx).

For μ, ν ∈ P(Rd), the total variation metric is defined as

�μ − ν�TV = sup
g:�g�∞≤1

∣∣∣∣
∫

Rd

g(x)μ(dx) −
∫

Rd

g(x)ν(dx)
∣∣∣∣
(2)

where the supremum is over all measurable real g such that
�g�∞ = sup

x∈Rd

|g(x)| ≤ 1.

Definition 1 ([44]): The space of probability measures with
finite second moment is

P2(Rd) := {μ ∈ P(Rd) :
∫

�x�2μ(dx) < ∞}
where � · � denotes the Euclidean (l2) norm.

Definition 2 ([44]): The order-2 Wasserstein distance for
two probability distributions μ, ν ∈ P2(Rd) is defined as

ρ2(μ, ν) = inf
λ∈H(μ×ν)

(∫
Rd×Rd

�x − y�2λ(dx, dy)
) 1

2

,

where H(μ × ν) denotes the set of probability measures on
R

d × R
d with first marginal μ and second marginal ν.

For compact subsets of R
d, the Wasserstein distance of

order 2 metrizes the weak topology on the set of probability
measures on R

d (see [44, Theorem 6.9]). For non-compact
subsets, weak convergence combined with convergence of
second moments (that is of

∫ �x�2μn(dx) → ∫ �x�2μ(dx))
is equivalent to convergence in order-2 Wasserstein distance.

Definition 3: An M -cell quantizer Q on R
d is a (Borel)

measurable mapping Q : R
d → M. We let Q denote the

collection of all M -cell quantizers on R
d.

Observe that each Q ∈ Q is uniquely characterized by its
quantization cells (or bins) Bi = Q−1(i) = {x : Q(x) =
i}, i = 1, . . . , M which form a measurable partition of R

d.
Definition 4: An (admissible) quantization policy Π =

{ηt}t≥0 belongs to ΠW (i.e., it is a Walrand-Varaiya type
policy) if there exist a sequence of mappings {η̂t} of the
type η̂t : P(Rd) → Q such that for Qt = η̂t(πt) we have
qt = Qt(Xt) = ηt(It).

Suppose we use a quantizer policy Π = {η̂t} ∈ ΠW . Then,
using standard properties of conditional probability, building
on [2] we can obtain the following filtering equation for the
evolution of πt:

πt+1(dxt+1) =
P (dxt+1, qt|q[0,t−1])

P (qt|q[0,t−1])

=

∫
Rd πt(dxt)P (qt|πt, xt)P (dxt+1|xt)∫

Rd

∫
Rd πt(dxt)P (qt|πt, xt)P (dxt+1|xt)

=
1

πt(Q−1
t (qt))

∫
Q−1

t (qt)

πt(dxt)P (dxt+1|xt).

(3)
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Thus πt+1 depends only on πt, Qt, and qt, which implies
that πt+1 is conditionally independent of (π[0,t−1], Q[0,t−1])
given πt and Qt . Thus, {πt} can be viewed as P(Rd)-valued
controlled Markov process [45] (see also Appendix A), with
Q-valued control {Qt} having transition kernel P (dπ�|π, Q)
determined by (3). The average cost up to time T −1 is given
by (see also [2])

EΠ
π0

[
1
T

T−1∑
t=0

c(πt, Qt)

]
= inf

γ
J(π0, Π, γ, T ), (4)

where

c(πt, Qt) :=
M∑
i=1

inf
u∈U

∫
Q−1

t (i)

πt(dx)c0(x, u). (5)

For the mean squared distortion c0(x, u) = �x−u�2 (which
is our focus), the optimum receiver γt at time t is explicitly
given by

γt(i) =
1

π(Q−1
t (i))

∫
Q−1

t (i)

xπt(dx), i = 1, . . . , M. (6)

Definition 5 ([2]): Let G denote the set of all probability
measures on R

d admitting densities that are bounded by C
and Lipschitz with constant C1.

In [2, Lemma 3] it is shown that G is closed in P(Rd).
Note that G is also closed in P2(Rd), since the Wasserstein
convergence is stronger than the weak convergence. Let Z :=
G ∩ P2(Rd), be the intersection of G and P2(Rd).

Remark 1: Due to our assumptions on the source {Xt} (see
Section III), the distribution of Xt+1 has (conditional) density
function φ(·|x) given Xt = x, which is positive everywhere,
bounded, and Lipschitz uniformly in x. Thus (with appropriate
constants C and C1), P (dxt+1|xt) ∈ G for all xt ∈ R

d and
thus the filtering equation (3) implies that under any policy
Π ∈ ΠW , we have πt ∈ G for all t ≥ 0 if π0 ∈ G. The
assumptions on the source will also imply that πt has finite
second moment (with probability one) for all t ≥ 0 if π0 has
finite second moment (see (18)), so we obtain πt ∈ Z for all
t ≥ 0 if π0 ∈ Z . Thus we can make Z the state space of our
Markov decision process.

From now on, we restrict the set of quantizers to quantizers
having convex cells [2]. Formally, this quantizer class Qc is
defined by

Qc = {Q ∈ Q : Q−1(i) ⊂ R
d is convex for i = 1, . . . , M}.

Thus, we replace Q with Qc in Definition 4 to obtain the new
class of policies denoted by ΠC

W .
Definition 6: We denote by ΠC

W the set of all quantization
policies Π = {η̂t} ∈ ΠW such that η̂t : P(Rd) → Qc,
i.e., Qt = η̂t(πt) ∈ Qc for all t ≥ 0. Furthermore, ΠC

WS

denotes the set of all quantization policies in ΠC
W that are

stationary, i.e., the policy {η̂t} does not depend on the time
index t.

Remark 2:
(i) The set ΠC

W is called the set of Markov quantization
policies and ΠC

WS is called the set of stationary Markov
quantization policies.

(ii) The convex codecell restriction may lead to suboptimality
in general; however it includes the class of nearest
neighbor quantizers studied in [42]. For multiresolution
scalar quantizers (MRSQ) and the squared error distortion
measure, [46], [47] showed that for discrete and contin-
uous sources (even with bounded continuous densities),
optimal fixed rate multiresolution scalar quantizers cannot
have only convex codecells, proving that the convex
codecells assumption leads to a loss in performance.
We introduce the convex codecell assumption for tech-
nical reasons; without this assumption the analysis of
recursive policies seems very hard. Indeed, the parametric
representation of convex codecell quantizers allowed [48]
to establish compactness and desired convergence prop-
erties. In particular, in the absence of such a condition,
it was shown in [48, p. 878] that the space of quantizers
is not closed under weak convergence.

Following [2] and [48], in order to facilitate the stochastic
control analysis of the quantization problem we will use an
alternative representation of quantizers. A quantizer Q : R

d →
M with cells {B1, . . . , BM}, can also be identified with the
stochastic kernel (regular conditional probability) on M given
R

d, also denoted by Q, defined by

Q(i|x) = 1{x∈Bi}, i = 1, . . . , M.

As in [2], [48], we say that a sequence of quantizers Qn

converges to Q at P ∈ P(Rd) if PQn → PQ, where μQ̄
denotes the probability measure on R

d×M induced by a μ ∈
P(Rd) and a conditional probability Q̄ on M given R

d. Here
we consider convergence in the order-2 Wasserstein distance.
We note that by [2, Lemma 2], the convergence of quantizers
with convex codecells holds simultaneously for all admissible
input probability measures in Z and accordingly we will not
need to specify P explicitly.

The following lemma shows the compactness of Qc in
the order-2 Wasserstein topology. The proof is given in
Appendix B.

Lemma 1: Qc is compact in the order-2 Wasserstein topol-
ogy at any input P ∈ Z .

From now on we assume the mean squared distortion
c0(x, u) = �x − u�2. The following lemmas are proved in
Appendix B.

Lemma 2: The cost function c(π, Q) is lower semi-
continuous in (π, Q), that is, when (πn, Qn) → (π, Q) (in
order-2 Wasserstein distance), then

lim inf
n→∞ c(πn, Qn) ≥ c(π, Q).

Also, c(π, Q) is continuous in Q for every fixed π ∈ Z , i.e.,
if Qn → Q, then c(π, Qn) → c(π, Q).

Recall the transition probability P (dπ�|π, Q) of our MDP
determined by the filtering equation (3).

Lemma 3: The function Pg(π, Q) :=
∫
P2(Rd)×Qc

g(π�)P (dπ�|π, Q) is continuous in (π, Q) (i.e. is continuous
when (πn, Qn) → (π, Q) in order-2 Wasserstein distance on
Z ×Qc), for every continuous bounded function g : Z → R.
Moreover, for any fixed π ∈ Z , Pg(π, Q) is continuous in
Q ∈ Qc for any continuous function g.
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In the theory of Markov decision processes (MDPs) (see
also Appendix A), the so-called measurable selection con-
dition ([45, Assumption 3.3.1]) guarantees the measurability
of the value function and existence of a minimizer ([45,
Theorem 3.3.5]). The following assumption, which is stated
for the Markov control model of our zero-delay quantization
setup, is referred to as the measurable selection condition.

Assumption 1: [45, Assumption 3.3.1] The Markov control
model and a given measurable function u : Z → R are such
that u∗ : Z → R defined by

u∗(π) := inf
Q∈Qc

(
c(π, Q) +

∫
Z

u(π�)P (dπ�|π, Q)
)

, π ∈ Z

is measurable and there exist a measurable η̂ : Z → Qc such
that for any π ∈ Z , Q = η̂(π) attains the minimum at π, i.e.,

u∗(π)=c(π, η̂(π))+
∫
Z

u(π�)P (dπ�|π, η̂(π)), for all π ∈ Z.

(7)

The following is a sufficient condition for the Assumption 1
to hold. Note that conditions (i)-(iii) hold in our setting by
Lemmas 1, 2, and 3. Therefore Theorem 3 below holds for
our model.

Condition 1:

(i) The quantizer space (i.e. action space) Qc is compact for
every fixed π.

(ii) The one-stage cost function c(π, Q) is lower semi-
continuous in (π, Q).

(iii) The transition kernel P is such that

Pg(π, Q) :=
∫
P2(Rd)×Qc

g(π�)P (dπ�|π, Q)

is continuous in (π, Q) for every continuous and bounded
g on Z .

Theorem 3: [45, Theorem 3.3.5] Condition 1 implies
Assumption 1 for any nonnegative measurable u : Z → R.
Moreover if, u is nonnegative and lower semi-continuous then
the function u∗ in (7) is lower semi-continuous.

III. INFINITE HORIZON PROBLEM OF LINEAR SYSTEMS

UNDER QUADRATIC COST

We consider the linear system given in the following
assumption.

Assumption 2: The source {Xt} can be expressed in the
linear stochastic realization form

Xt+1 = AXt + Wt, (8)

where A is a d× d real matrix and Wt is an independent and
identically distributed (i.i.d.) vector noise sequence which is
independent of X0. Moreover, assume the following:
(i) The maximum singular value of A, denoted by α, is less

than 1 (i.e. maximum eigenvalue of the matrix A�A is
less than 1, where A� is the transpose of the matrix A).

(ii) U = R
d.

(iii) The cost for the pair (x, u) is given by c0(x, u) =
�x − u�2.

(iv) The Wt have a common probability density function ϕ
that is positive, bounded, and Lipschitz continuous.

(v) σ2 := E[�Wt�2] < ∞.
(vi) The initial distribution π0 for X0 admits a density such

that Eπ0 [�X�2] < ∞ or it is a point mass π0 = δx0 .

Note that assumption (iv) implies that for each fixed x ∈ R
d,

the distribution of Xt+1, (i.e. Ax + Wt), has (conditional)
density function φ(·|x) which is positive everywhere, bounded,
and Lipschitz uniformly in x. Thus (with appropriate constants
C and C1) we have φ(dy|x) ∈ G for all x ∈ R

d, where
G ⊂ P(Rd) was defined in Definition 5. As we observed in
Remark 1, this implies that πt ∈ Z for all t ≥ 0.

For any initial distribution π0 ∈ Z , the long-term (infinite-
horizon) minimum cost (distortion) of a quantization policy
Π ∈ ΠC

W is

J(π0, Π) := lim sup
T→∞

EΠ
π0

[
1
T

T−1∑
t=0

c(πt, Qt)

]

and the optimal cost over all policies in ΠC
W is

J(π0) := inf
Π∈ΠC

W

J(π0, Π).

Our main result is the following theorem.
Theorem 4:

(i) Under Assumption 2, for any initial distribution π0

J(π0, Π∗) = inf
Π∈ΠC

W

J(π0, Π) = min
Π∈ΠC

W S

J(π0, Π). (9)

That is, there exists a deterministic and stationary policy
Π∗ ∈ ΠC

WS that achieves the minimum above.
(ii) Furthermore, the finite horizon distortion of the optimal

policy Π converges to its infinite horizon distortion at a
rate O( 1

T ); in particular, for all π0 and T ≥ 1,∣∣∣∣∣ 1T EΠ∗
π0

[
T−1∑
t=0

c(Qt, πt)

]
− J(π0, Π∗)

∣∣∣∣∣ ≤ K(π0)
T

,

where K(π0) < ∞ only depends on π0.

We will prove the theorem in Section III-B after obtaining
auxiliary existence and optimality results for the easier-to-
handle discounted cost problem in the next section.

A. The Discounted Cost Problem

The discounted cost for some β ∈ (0, 1) and time horizon
T ≥ 1 is defined as

Jβ(π0, Π, T ) := EΠ
π0

[
T−1∑
t=0

βtc(πt, Qt)

]
, (10)

and for the infinite horizon case,

Jβ(π0, Π) := EΠ
π0

[ ∞∑
t=0

βtc(πt, Qt)

]
,

where c(πt, Qt) is defined in (5).
The goal is to find optimal policies that achieve

Jβ(π0) := inf
Π∈ΠC

W

Jβ(π0, Π). (11)
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We call Jβ the discounted value function of the MDP. Let us
define

Jβ(π0, T ) := inf
Π∈ΠC

W

Jβ(π0, Π, T ),

so that we have

Jβ(π0) ≥ lim sup
T→∞

Jβ(π0, T ). (12)

Since Jβ(π0, T ) is monotonically increasing in T , the limit
superior becomes a limit and thus

Jβ(π0) ≥ lim
T→∞

Jβ(π0, T ). (13)

Let v : Z → R be lower semicontinuous and define the
operator H by

(Hv)(π) := min
Q∈Qc

(
c(π, Q) + β

∫
Z

v(π1)P (dπ1|π, Q)
)

.

(14)
Note that H indeed maps lower semicontinuous functions into
lower semicontinuous functions by Theorem 3. The discounted
cost optimality equation (DCOE) is defined by

v(π) = (Hv)(π), π ∈ Z. (15)

The following theorem is a version of a widely used result
in the theory of Markov decision processes.

Theorem 5: Suppose Assumption 2 holds. Then, the value
function Jβ(π0) is a fixed point of the operator H, i.e.

Jβ = HJβ. (16)

Furthermore, there exists a deterministic stationary policy Π =
{η̂} ∈ ΠC

WS that is optimal, i.e., Jβ(π0) = Jβ(π0, Π) for all
π0 ∈ Z and this policy satisfies for all π0 ∈ Z ,

Jβ(π0) = c(π0, η̂(π0))+β

∫
Z

Jβ(π�)P (dπ�|π0, η̂(π0)). (17)

Since our setup is quite non-standard, we will have to give
a separate proof of Theorem 5 after stating and proving some
preliminary result. In what follows Eπ0 [�Xt�2] denotes the
second moment of Xt when X0 ∼ π0 and Eπ0 [�X�2] =
Eπ0 [�X0�2] =

∫
Rd �x�2π0(dx).

Lemma 4: For every initial distribution π0 ∈ Z , the value
function Jβ(π0), and hence also Jβ(π0, T ), is uniformly
bounded as

Jβ(π0, T ) ≤ Jβ(π0)

≤ 1
1 − β

(
Eπ0 [�X�2] +

1
1 − α

σ2

)
.

Proof: Note that the receiver defined in (6) minimizes∫ �x − γ(Q(x))�2π(dx) over all γ and hence,

c(π, Q) = min
γ

∫
Rd

�x − γ(Q(x))�2π(dx) ≤
∫

Rd

�x�2π(dx).

On the other hand, by the properties of the process we have,

Eπ0 [�Xt�2]
= Eπ0 [�AXt−1 + Wt−1�2]
= Eπ0 [Xt−1A

�AXt−1 + W �
t−1Wt−1]

≤ Eπ0 [α�Xt−1�2] + σ2

≤ Eπ0 [α
t�X0�2] + (αt−1 + . . . + α + 1)σ2

≤ Eπ0 [�X�2] +
1

1 − α
σ2 < ∞. (18)

Therefore, we can bound Jβ(π0) as

Jβ(π0) ≤ Jβ(π0, Π) ≤ EΠ
π0

[ ∞∑
t=0

βtc(πt, Qt)

]

≤ EΠ
π0

[ ∞∑
t=0

βt�Xt�2

]

≤ 1
1 − β

(
Eπ0 [�X�2] +

1
1 − α

σ2

)
. (19)

This together with (13) yields the lemma.
The following is a key equicontinuity lemma which is

related to, but different from, Lemma 1 in [43]. The proof
is also related to the approach of Borkar [49] (see also [50]
and [42]), but our argument is different (and more direct) since
the absolute continuity conditions in [49] are not applicable
here due to quantization. As in [42], in the proof we will
enlarge the space of admissible coding policies to allow for
randomization at the encoder. Since for a discounted infinite
horizon optimal encoding problem optimal policies are deter-
ministic even among possibly randomized policies, allowing
randomness does not change the optimal performance.

Lemma 5: Suppose the source is generated as in (8) and
Assumption 2 holds. Then for any initial two distributions
μ0, ν0 ∈ Z , and any β ∈ (0, 1), we have

∣∣Jβ(ν0) − Jβ(μ0)
∣∣ ≤ (ρ2(ν0, μ0)

1 − α
+

2K1

1 −√
α

)
ρ2(ν0, μ0),

(20)

where K1 is a finite constant and ρ2(ν0, μ0) is the order-2
Wasserstein distance of the two initial distributions.

Proof: Consider the R
d × R

d-valued process
{(Xt, Yt)}t≥0 such that {Xt}t≥0 ∼ (ν0, P ), {Yt}t≥0 ∼
(μ0, P ), (X0, Y0) ∼ λ where λ ∈ P(Rd×R

d) with marginals
ν0 and μ0 respectively. We further assume identical noise
realization Wt for these processes. Assume without loss of
generality that Jβ(ν0) − Jβ(μ0) ≥ 0. Then∣∣Jβ(ν0) − Jβ(μ0)

∣∣ = Jβ(ν0) − Jβ(μ0)

= EΠx
ν0

[ ∞∑
t=0

βtc0(Xt, Ut)

]
− EΠy

μ0

[ ∞∑
t=0

βtc0(Yt, Ũt)

]
,

where we assume that Πx ∈ ΠC
W and Πy ∈ ΠC

W achieve
Jβ(ν0) and Jβ(μ0) respectively. (Note that we make this
assumption only for convenience; at this point we do not know
if such optimal policies exist. However, for any δ > 0 there
exist Πx, Πy ∈ ΠC

W such that Jβ(ν0, Πx) < Jβ(ν0) + δ and
Jβ(μ0, Πy) < Jβ(μ0) + δ and using such δ-optimal policies
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in the proof will lead to the same bound as in (20) since
δ > 0 can be arbitrarily small.)

Consider the following suboptimal encoding and decoding
policy for {Xt}: The encoder, in addition to observing the
source {Xt}, has access to the noise process {Wt} which is
independent of X0. Then the encoder can generate the source
Y0 through a simulation (which will be optimized later on
with an optimal Wasserstein coupling), and then produce Yt

for t ≥ 0 according to the following equation

Yt = At(Y0 − X0) + Xt. (21)

Then the encoder for {Xt} can use the quantizer policy Πy

and produce the same channel symbols q̃t as Πy and thus the
same reproduction sequence Ũt = γ̃t(q̃[0,t]) as the encoder and
decoder for {Yt}. Denote this suboptimal policy by Π̂. Then
we get the upper bound∣∣Jβ(ν0) − Jβ(μ0)

∣∣
≤ EΠ̂

ν0

[ ∞∑
t=0

βtc0(Xt, Ũt)

]
− EΠy

μ0

[ ∞∑
t=0

βtc0(Yt, Ũt)

]
.

Since β ∈ (0, 1) and c0(x, u) = �x − u�2, we have∣∣∣Jβ(ν0) − Jβ(μ0)
∣∣∣

≤
∞∑

t=0

Eλ

[∣∣∣X �
tXt + 2Ũt

�
(Yt − Xt) − Y �

t Yt

∣∣∣]

=
∞∑

t=0

Eλ

[∣∣∣X �
tXt + 2(Ũt − Yt + Yt)�(Yt − Xt) − Y �

t Yt

∣∣∣]

=
∞∑

t=0

Eλ

[∣∣∣�Xt − Yt�2 + 2(Ũt − Yt)�(Yt − Xt)
∣∣∣]

≤
∞∑

t=0

(
Eλ

[
�Xt − Yt�2

]

+ 2
(
Eλ

[�Xt − Yt�2
]
Eλ

[
�Ũt − Yt�2

]) 1
2
)
, (22)

where the last inequality follows from the Cauchy-Schwarz
inequality.

Since Ũt is produced by the optimal decoder for the source
Yt, if we use suboptimal reconstruction Ût = 0 for all t ≥ 0,
we get an upper bound

Eλ

[
�Ũt − Yt�2

]
≤ Eλ

[�Yt�2
]
,

and moreover, (18) implies

Eλ

[�Yt�2
] ≤ Eλ

[�Y0�2
]
+

1
1 − α

σ2. (23)

By (21) we can write

�Xt − Yt�2 = (X0 − Y0)�(At)�At(X0 − Y0),

so by the Assumption 2(i), we get that

�Xt − Yt�2 ≤ αt�X0 − Y0�2.

Since α < 1, (22) gives, with K2 := Eλ

[�Y0�2
]
+ 1

1−ασ2,∣∣∣Jβ(ν0) − Jβ(μ0)
∣∣∣

≤ Eλ

[ ∞∑
t=0

αt�X0 − Y0�2

]

+ 2
∞∑

t=0

(
√

α)t
√

Eλ [�X0 − Y0�2]
√

Eλ [�Yt�2]

≤
( ∞∑

t=0

αt

)
Eλ

[�X0 − Y0�2
]

+ 2
√

Eλ [�X0 − Y0�2]
∞∑

t=0

(
√

α)t
√

K2

=

(
1

1 − α

)
Eλ

[�X0 − Y0�2
]

+
(

2
√

K2

1 −√
α

)√
Eλ [�X0 − Y0�2].

By the definition of the Wasserstein distance, for any � > 0,
by suitably choosing the joint law λ of (X0, Y0), we have

Eλ

[�X0 − Y0�2
] ≤ ρ2

2(ν0, μ0) + �.

Since � was arbitrary, we get∣∣∣Jβ(ν0) − Jβ(μ0)
∣∣∣ ≤ (ρ2(ν0, μ0)

1 − α
+

2K1

1 −√
α

)
ρ2(ν0, μ0),

where K1 =
√

K2.
Given the equicontinuity result of Lemma 5, we have that

Jβ(π) is (uniformly) continuous. Note that the proof of the
lemma also applies almost verbatim to the finite horizon case
so that the bound in Lemma 5 also holds for the discounted
finite horizon optimal cost for all T ≥ 1, which implies that
the family of functions {Jβ(π, T ) : T ≥ 1} is (uniformly)
equicontinuous on Z .

Corollary 1: For any T ≥ 1, μ0, ν0 ∈ Z , and β ∈ (0, 1),∣∣Jβ(ν0, T ) − Jβ(μ0, T )
∣∣

≤
(

ρ2(ν0, μ0)
1 − α

+
2K1

1 −√
α

)
ρ2(ν0, μ0). (24)

Proof of Theorem 5: With Lemmas 1–3 and Theorem 3,
Condition 1 (the measurable selection condition) is satisfied
and the function v∗ is lower semi-continuous, so we can now
define the so-called value iteration (VI) updates recursively
(see, e.g., [45, (4.2.2)]): For any π ∈ Z , let

vn(π) = min
Q∈Qc

(
c(π, Q) + β

∫
Z

vn−1(π�)P (dπ�|π, Q)
)

,

(25)

for n ≥ 1 with v0(π) = 0 for all π. Since v0 ≡ 0 is continuous
for n = 1, we get that v1 = minQ c(π, Q), and since c(π, Q)
is lower semi-continuous and Qc is compact, we obtain that
v1 is also lower semi-continuous. For n ≥ 2, by Theorem 3,
the iterations are well defined and vn is lower semi-continuous
for all n.
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It is known that vn is the value function of the n-stage
discounted cost Jβ(π, Π, n) in (10) with zero terminal cost
(see [45, Chapter 4, p.45]), i.e.,

vn(π) = inf
Π∈ΠC

W

Jβ(π, Π, n) = Jβ(π, n) for all π ∈ Z.

(26)

Note that, using the operator H defined in (14), we may
rewrite the DCOE (15) and the VI functions in (25) as

v = Hv, and vn = Hvn−1 for n ≥ 1, (27)

respectively.
In addition, note that since c(π, Q) is non-negative, H is

monotone, i.e., for u and u� if u ≥ u� then Hu ≥ Hu�. There-
fore, since we start from v0 = 0, then vn is a non-decreasing
sequence of lower semi-continuous functions. By (13) and (26)
we know that for all n ≥ 0,

Jβ(π) ≥ vn(π).

Thus vn is a non-decreasing and bounded sequence and hence
it converges pointwise to some function v. Since vn(π) =
Jβ(π, n), by Corollary 1 vn is continuous and the sequence
{vn : n ≥ 1} is a (uniformly) equicontinuous which con-
verges pointwise (on the metric space Z). Therefore, the limit
function v is continuous.

Now since both vn and v are continuous we have that,
by Lemma 2 and Lemma 3, the functions

V β
n (π, Q) :=

(
c(π, Q) + β

∫
Z

vn(π�)P (dπ�|π, Q)
)

and

V β(π, Q) :=
(

c(π, Q) + β

∫
Z

v(π�)P (dπ�|π, Q)
)

are continuous in Q, for each fixed π for all n ≥ 1.
Also, as vn ↑ v, by the dominated convergence theorem
V β

n (π, Q) ↑ V β(π, Q) for all (π, Q) ∈ Z × Qc. Thus by
[45, Lemma 4.2.4], we can change the order of limit and
minimum as

lim
n→∞ min

Q∈Qc

V β
n (π, Q) = min

Q∈Qc

V β
n (π, Q).

Since the left hand side is limn→∞ vn+1 = v and the right
hand side is Hv, we obtain the DCOE v = Hv, i.e., for all
π ∈ Z ,

v(π) = min
Q∈Qc

V β(π, Q)

= min
Q∈Qc

(
c(π, Q) + β

∫
Z

v(π�)P (dπ�|π, Q)
)

. (28)

According to Theorem 3, the measurable selection condition
Assumption 1 holds in (28) (with u∗ = u) and therefore there
exists a (measurable) η̂ : Z → Qc such that for all π ∈ Z ,

v(π) =
(

c(π, η̂(π)) + β

∫
Z

v(π�)P (dπ�|π, η̂(π))
)

. (29)

Thus to finish the proof of the theorem we need only show
that v = Jβ and that the stationary and deterministic policy

Π = {η̂} is optimal. This is done with the aid of the following
lemma which has a simple proof (see, e.g., [58, Lemma 5.4.4]).

Lemma 6: Assume v(π0) = limn→∞ Jβ(π0, n) satisfies
the DCOE v = Hv and the stationary and deterministic policy
Π = {η̂} is such that it satisfies (29). Assume furthermore that

lim
t→∞ βtEΠ

π0
[v(πt)] = 0, (30)

for all π0 ∈ Z , where {πt} is the state process of our MDP
with initial distribution π0 and policy Π. Then v(π0) = Jβ(π0)
and Jβ(π0, Π) = Jβ(π0) for all π0 ∈ Z , i.e., Π ∈ ΠC

WS is
an optimal policy.

Note that we have already shown that the first two condi-
tions of the lemma hold, so we have only to check that (30)
holds in our case. By the bound (19) in the proof of Lemma 4,
for any initial condition π0 and policy Π, we have

v(πt) ≤ Jβ(πt) ≤ 1
1 − β

(
Eπt [�X�2] +

1
1 − α

σ2
)

=
1

1 − β

(
EΠ

π0

[�Xt�2|q[0,...,t−1]

]
+

1
1 − α

σ2
)
.

Thus

EΠ
π0

[v(πt)] ≤ 1
1 − β

(
EΠ

π0

[�Xt�2
]
+

1
1 − α

σ2
)

≤ 1
1 − β

(
Eπ0

[�X0�2
]
+

2
1 − α

σ2
)
,

where the last inequality holds by (18). Therefore, since
β ∈ (0, 1),

lim
t→∞ βtEΠ

π0
[v(πt)] = 0.

In summary, we have shown that Jβ satisfies the DCOE and
there exists a stationary deterministic policy Π that is optimal.
This finishes the proof of Theorem 5.

B. Proof of Theorem 4

This section is devoted to proving our main result. The
proof is done by showing the existence of a so-called canonical
triplet for our MDP (see Definition 8 in Appendix A) which
in term, after checking that the conditions of Theorem 6 in
Appendix A, proves the existence of optimal stationary and
deterministic quantization policies and the stated convergence
rate. Due to the nature of the controlled Markov process
{πt, Qt} in our problem, verifying these sufficient conditions
is technically challenging.

In the following we present the proof of Theorem 4, our
main result.

Proof of Theorem 4: We will prove Theorem 4 via the
approach of vanishing discounted cost (see [45, Chapter 5.3]).
Recall that our state space is Z := G ∩ P2(Rd). In [2],
it was shown that, G is closed in P(Rd). Note that P2(Rd) =⋃

m∈N
Zm, where

Zm =
{

μ ∈ P2(Rd) :
∫

Rd

�x�2μ(dx) ≤ m

}
,

and this implies that Z is σ-compact.
Next note that by Lemma 5, the family of functions

hβ(π) := Jβ(π) − Jβ(μ), π ∈ Z, (31)
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with fixed μ ∈ Z is equicontinuous on Z . Theorem 5 in the
previous section proved that Jβ solves the equation

Jβ(π) = min
Q∈Qc

(
c(π, Q) + β

∫
Z

Jβ(π�)P (dπ�|π, Q)
)

.

(32)

With the definition of hβ and an elementary calculation we
can rewrite (32) as

(1 − β)Jβ(μ) + hβ(π)

= min
Q∈Qc

(
c(π, Q) + β

∫
Z

hβ(π�)P (dπ�|π, Q)
)

. (33)

Recall that by Lemma 4 for all β ∈ (0, 1), we have the
upper bound

(1 − β)Jβ(μ) ≤ Eμ[�X�2] +
1

1 − α
σ2,

which is independent of β.
Since the range of (1 − β)Jβ(μ), β ∈ (0, 1) is bounded,

there exists a limit point ρ∗ as β ↑ 1. Let β(l) be a sequence
such that

lim
l→∞

(1 − β(l))Jβ(l)(μ) = ρ∗.

(Note that ρ∗ depends on the fixed μ ∈ Z , but not on π.)
By the conditions on the state space Z , the equicontinuity
of hβ , and the Arzela-Ascoli theorem (see Theorem 7 in
Appendix A), there exists a subsequence {hβ(k)} of {hβ(l)}
which converges pointwise to a continuous function h

h(π) := lim
k→∞

hβ(k)(π), π ∈ Z. (34)

Then, (33) along the subsequence β(k) becomes

(1 − β(k))Jβ(k)(μ) + hβ(k)(π)

= min
Q∈Qc

(
c(π, Q) + β(k)

∫
Z

hβ(k)(π�)P (dπ�|π, Q)
)

. (35)

If we take the limit of (35) as k → ∞ we get

ρ∗ + h(π)

= lim
k→∞

min
Q∈Qc

(
c(π, Q) + β(k)

∫
Z

hβ(k)(π�)P (dπ�|π, Q)
)

.

(36)

Define

Vk(π, Q) := c(π, Q) + β(k)
∫
Z

hβ(k)(π�)P (dπ�|π, Q),

V (π, Q) := c(π, Q) +
∫
Z

h(π�)P (dπ�|π, Q).

In the following we show that average cost optimality equa-
tion (ACOE) in Definition 8 in Appendix A holds, i.e.,

ρ∗ + h(π) = min
Q∈Qc

(
c(π, Q) +

∫
Z

h(π�)P (dπ�|π, Q)
)

,

for all π ∈ Z .
Lemma 7: Consider Vk(π, Q) and V (π, Q) defined above.

Then,

lim
k→∞

min
Q∈Qc

Vk(π, Q) = min
Q∈Qc

V (π, Q).

Proof: Let Q∗
k and Q∗ minimize Vk(π, Q) and V (π, Q)

respectively. Then by the definition of Vk and V , it suffices
to show that the upper bound in the following inequality
converges to zero as k → ∞:∣∣∣∣ min

Q∈Qc

(
c(π, Q) +

∫
Z

β(k)hβ(k)(π�)P (dπ�|π, Q)
)

− min
Q∈Qc

(
c(π, Q) +

∫
Z

h(π�)P (dπ�|π, Q)
)∣∣∣∣

≤ max
(∣∣∣ ∫

Z
β(k)hβ(k)(π�)P (dπ�|π, Q∗

k)

−
∫
Z

h(π�)P (dπ�|π, Q∗
k)
∣∣∣, (37)∣∣∣ ∫

Z
β(k)hβ(k)(π�)P (dπ�|π, Q∗)

−
∫
Z

h(π�)P (dπ�|π, Q∗)
∣∣∣), (38)

Since β(k) ↑ 1, it is enough to show that (37) and (38) go to
zero as k → ∞ with the β(k) multiplicative terms replaced
by 1.

Let

g(π) :=
(

ρ2(π, μ)
1 − α

+
2K1

1 −√
α

)
ρ2(π, μ), (39)

where μ ∈ Z is given from the definition of hβ in (31).
Observe that by Lemma 5,

|hβ(k)(π)| ≤ g(π) < ∞, (40)

for all π ∈ Z . Note that by choosing the joint measure so
that the marginals are independent, the Wasserstein distance
ρ2 can be upper bounded as

ρ2
2(π, μ) ≤ 2Eπ[�X�2] + 2Eμ[�X�2] < ∞. (41)

Now we show that the term in (37) converges to zero (the
convergence of (37) will follow from this proof too). Suppose
otherwise that for some � > 0 there exists a subsequence Q∗

kl

such that∣∣∣ ∫
Z

hβ(kl)(π
�)P (dπ�|π, Q∗

kl
) −

∫
Z

h(π�)P (dπ�|π, Q∗
kl

)
∣∣∣ ≥ �.

(42)

By the compactness of Qc there exists further subsequence
Q∗

kln
that converges to a quantizer Q̄ ∈ Qc. In the following

we prove that along the subsequence Q∗
kln

the term on the
left hand side of (42) goes to zero and reach a contradiction.
To do so, we use Lemma 10 in the Appendix. Note that by (40)
and (41), for all n ≥ 1 we have

|hβ(kln )(π)| ≤ g(π) ≤ g1(π), (43)

where

g1(π) :=
2

1 − α

(
Eπ[�X�2] + Eμ[�X�2]

)
+

2K1

1 −√
α

√
2Eπ[�X�2] + 2Eμ[�X�2]. (44)
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Furthermore, for any sequence {πn} ∈ Z , with ρ2(πn, π) →
0, we have that hβ(kln) continuously converges to h
(i.e. limn→∞ hβ(kln)(πn) = h(π)) since

|hβ(kln )(πn) − h(π)|
≤ |hβ(kln)(πn) − hβ(kln)(π)| + |hβ(kln)(π) − h(π)|
= |Jβ(kln)(πn) − Jβ(kln )(π)| + |hβ(kln )(π) − h(π)|
≤
(

ρ2(πn, π)
1 − α

+
2K1

1 −√
α

)
ρ2(πn, π)

+ |hβ(kln )(π) − h(π)| → 0, as n → ∞,

where the last inequality follows from Lemma 5. Since
Q∗

kln
→ Q̄ in order-2 Wasserstein distance and since g1 is

continuous for the order-2 Wasserstein convergence of its
argument, we have by Lemma 3,

lim
n→∞

∫
Z

g1(π�)P (dπ�|π, Q∗
kln

)=
∫
Z

g1(π�)P (dπ�|π, Q̄)<∞.

Hence the conditions of the generalized dominated conver-
gence theorem in Lemma 10 in Appendix A are satisfied,
which gives

lim
n→∞

∫
Z

hβ(kln )(π�)P (dπ�|π, Q∗
kln

) =
∫
Z

h(π�)P (dπ�|π, Q̄).

Since we also clearly have

lim
n→∞

∫
Z

h(π�)P (dπ�|π, Q∗
kln

) =
∫
Z

h(π�)P (dπ�|π, Q̄),

we obtain∫
Z

hβ(kln)(π�)P (dπ�|π, Q∗
kln

)−
∫
Z

h(π�)P (dπ�|π, Q∗
kln

) → 0,

which contradicts (42). Hence the term in (37) also goes to
zero and this concludes the proof.

Thus, by Lemma 7 we can change the order of limit and
minimum in (36), then we get

ρ∗ + h(π)

= min
Q∈Qc

lim
k→∞

(
c(π, Q) + β(k)

∫
Z

hβ(k)(π�)P (dπ�|π, Q)
)

= min
Q∈Qc

(
c(π, Q) +

∫
Z

h(π�)P (dπ�|π, Q)
)

= c(π, Q∗) +
∫
Z

h(π�)P (dπ�|π, Q∗).

Noting that Q∗ = Q∗
π is a function of π in the last equation

and defining η̂ : Z → Qc by η̂(π) = Q∗
π, we obtain that

(ρ∗, h, η̂) is a canonical triplet for which the ACOE holds (see
Definition 8 in Appendix A).

Now we are ready to apply Theorem 6 in Appendix A to
complete the proof of Theorem 4. For this recall that for all
π ∈ Z , by (43) and (44) we have

|hβ(π)| = |Jβ(π) − Jβ(μ)|
≤ 2

1 − α

(
Eπ[�X�2] + Eμ[�X�2]

)
+

2K1

1 −√
α

√
2Eπ[�X�2] + 2Eμ[�X�2]. (45)

Fix the initial distribution π0, let Π ∈ ΠC
W be arbitrary, and let

{πt} be the states generated by this policy. Since the inequality
in (45) holds for all π ∈ Z , in particular it holds for πT ∈ Z .
Thus, from (34) and (45) we get

|h(πT )| = lim
k→∞

|hβ(k)(πT )|

≤ 2
1 − α

(
EπT [�X�2]

+ Eμ[�X�2]
)

+
2K1

1 −√
α

√
2EπT [�X�2] + 2Eμ[�X�2].

(46)

Note that

Eπ0

[
EπT [�X�2]

]
= Eπ0

[
E[�XT �2|q[0,...,T−1]

]
= Eπ0 [�XT �2]

≤ Eπ0 [�X0�2] +
1

1 − α
σ2, (47)

where the inequality follows from (18). Now choose μ in the
definition of hβ as μ = π0. Then (47), (46), and Jensen’s
inequality give

EΠ
π0

[|h(πT )|] ≤ 2
1 − α

(
2Eπ0 [�X�2] +

1
1 − α

σ2

)

+
2K1

1 −√
α

√
4Eπ0 [�X�2] +

2
1 − α

σ2. (48)

Hence, we have

lim sup
T→∞

1
T

EΠ
π0

[h(πT )] = 0,

for all π0 and under every policy Π. Therefore by Theorem 6
there exists a deterministic stationary policy Π∗ ∈ ΠC

WS

that achieves the minimum in (9) simultaneously for all π0.
Furthermore, by Theorem 6

|J(π0, Π∗, T ) − J(π0, Π∗)|
≤ 1

T

(∣∣∣EΠ∗
π0

[h(πT )] − h(π0)
∣∣∣)

=
1
T

(∣∣∣EΠ∗
π0

[h(πT )]
∣∣∣) ≤ K(π0)

T
,

where the equality follows by the definition of h,

h(π0)= lim
k→∞

hβ(k)(π0)= lim
k→∞

(Jβ(k)(π0)−Jβ(k)(π0))=0,

and K(π0) is the upper bound in (48). This concludes the
proof of the second part of Theorem 4.

IV. CONCLUSION

In this paper we have considered the problem of zero-
delay coding of R

d-valued linearly generated Markov sources.
We have proved structural, existence, and converge rate results
for optimal zero-delay coding under the assumption that the
allowable quantizers have convex codecells. Applications to
closed-loop control systems, especially to optimal quadratic
control under information constraints for infinite horizons, see
e.g., [51]–[56], are currently under study.
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APPENDIX A

A. Average Cost Optimality in Markov Decision Processes

Let Z be a Borel space (i.e., a Borel subset of a complete
and separable metric space) and let P(Z) denote the set of all
probability measures on Z . A discrete time Markov control
model (Markov decision process) is a system characterized by
the 4-tuple (Z,A,K, c), where (i) Z is the state space, the set
of all possible states of the system; (ii) A (a Borel space) is the
control space (or action space), the set of all controls (actions)
a ∈ A that can act on the system; (iii) K = K( · |z, a) is the
transition probability of the system, a stochastic kernel on Z
given Z × A, i.e., K( · |z, a) is a probability measure on Z
for all state-action pairs (z, a), and K(B| · , · ) is a measurable
function from Z ×A to [0, 1] for each Borel set B ⊂ Z; (iv)
c : Z ×A → [0,∞) is the cost per time stage function of the
system, a Borel measurable function c(z, a) of the state and
the control.

Define the history spaces Ht at time t ≥ 0 of the Markov
control model by H0 := Z and Ht := (Z × A)t × Z .
Thus a specific history ht ∈ Ht has the form ht =
(z0, a0, . . . , zt−1, at−1, zt).

Definition 7 (Admissible Control Policy [45]): An admis-
sible control policy Π = {αt}t≥0, also called a randomized
control policy (more simply a control policy or a policy) is
a sequence of stochastic kernels on the action space A given
the history Ht. The set of all randomized control policies is
denoted by ΠA. A deterministic policy Π is a sequence of
functions {αt}t≥0, αt : Ht → A, that determine the control
used at each time stage deterministically, i.e., at = αt(ht).
The set of all deterministic policies is denoted ΠD . Note that
ΠD ⊂ ΠA. A Markov policy is a policy Π such that for
each time stage the choice of control only depends on the
current state zt, i.e., Π = {αt}t≥0 with αt : Z → P(A).
The set of all Markov policies is denoted by ΠM . The set
of deterministic Markov policies is denoted by ΠMD . A
stationary policy is a Markov policy Π = {αt}t≥0 such that
αt = α for all t ≥ 0 for some α : Z → P(A). The set
of all stationary policies is denoted by ΠS and the set of
deterministic stationary policies is denoted by ΠSD.

The transition kernel K, an initial probability distribution
π0 on Z , and a policy Π define a unique probability measure
PΠ

π0
on H∞ = (Z ×A)∞, the distribution of the state-action

process {(Zt, At)}t≥0. The resulting state process {Zt}t≥0

is called a controlled Markov process. The expectation with
respect to PΠ

π0
is denoted by EΠ

π0
. If π0 = δz , the point mass

at z ∈ Z , we write PΠ
z and EΠ

z instead of PΠ
δz

and EΠ
δz

.
In an optimal control problem, a performance objective J of
the system is given and the goal is to find the controls that
minimize (or maximize) that objective. Some common optimal
control problems for Markov control models are the following:

1) Finite Horizon Average Cost Problem: Here the goal is
to find policies that minimize the average cost

J(π0, Π, T ) := EΠ
π0

[
1
T

T−1∑
t=0

c(Zt, At)

]
,

for some T ≥ 1.

2) Infinite Horizon Discounted Cost Problem: Here the goal
is to find policies that minimize

Jβ(π0, Π) := lim
T→∞

EΠ
π0

[
T−1∑
t=0

βtc(Zt, At)

]
,

for some β ∈ (0, 1).
3) Infinite Horizon Average Cost Problem: In the more

challenging infinite horizon control problem the goal is
to find policies that minimize the average cost

J(π0, Π) := lim sup
T→∞

EΠ
π0

[
1
T

T−1∑
t=0

c(Zt, At)

]
.

The Markov control model together with the performance
objective is called a Markov decision process (MDP).

Definition 8 ([57]): Let h and g be measurable real functi-
ons on Z and let f : Z → A be measurable. Then (g, h, f) is
said to be a canonical triplet if for all z ∈ Z ,

g(z) = inf
a∈A

∫
Z

g(z�)K(dz�|z, a) (49)

g(z) + h(z) = inf
a∈A

(
c(z, a) +

∫
Z

h(z�)K(dz�|z, a)
)

(50)

and

g(z) =
∫
Z

g(z�)K(dz�|z, f(z)) (51)

g(z) + h(z) = c(z, f(z)) +
∫
Z

h(z�)K(dz�|z, f(z)). (52)

Equations (49)-(50) and (51)-(52) are called the canonical
equations. In case g is a constant, g ≡ g∗, these equations
reduce to

g∗ + h(z) = inf
a∈A

(
c(z, a) +

∫
Z

g(z�)K(dz�|z, a)
)

(53)

g∗ + h(z) = c(z, f(z)) +
∫
Z

h(z�)K(dz�|z, f(z)), (54)

and (53)-(54) is called the average cost optimality equation
(ACOE).

Theorem 6: [58, Theorem 7.1.1] Let (g, h, f) be a canon-
ical triplet. If g ≡ g∗ is a constant and

lim sup
T→∞

1
T

EΠ
z [h(zT )] = 0,

for all z and under every policy Π ∈ ΠA, then the stationary
deterministic policy Π∗ = {f} ∈ ΠSD is optimal so that

g∗ = J(z, Π∗) = inf
Π∈ΠA

J(z, Π),

where

J(z, Π) = lim sup
T→∞

1
T

EΠ
z

[
T−1∑
t=0

c(zt, at)

]
.

Furthermore,∣∣∣∣∣ 1T EΠ∗
z

T−1∑
t=0

c(zt, at) − g∗
∣∣∣∣∣ ≤ 1

T

(∣∣∣EΠ∗
z [h(zT )] − h(z)

∣∣∣) ,

i.e.

|J(z, Π∗, T ) − g∗| = |J(z, Π∗, T )− J(z, Π∗)|
≤ 1

T

(∣∣∣EΠ∗
z [h(zT )] − h(z)

∣∣∣) . (55)
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B. Auxiliary Results

Theorem 7: [59, Theorem 2.4.7] Let F be an equicontinu-
ous family of real functions on a compact space X and let fn

be a sequence in F such that the range of fn is compact. Then,
there exists a subsequence fnk

which converges uniformly
to a continuous function. If X is σ-compact, fnk

converges
pointwise to a continuous function, and the convergence is
uniform on compact subsets of X .

Lemma 8: Let A be compact, and let V (z, a) be continuous
on Z ×A. Then, mina∈A V (z, a) is continuous on Z .

Lemma 9: [2, Lemma 2]
(a) Let {πn} be a sequence of probability density functions

on R
d which are uniformly equicontinuous and uniformly

bounded and assume πn → π weakly. Then πn → π in
total variation.

(b) Let {Qn} be a sequence in Qc such that Qn → Q weakly
at P for some Q ∈ Qc. If P admits a density, then Qn →
Q in total variation at P . If the density of P is positive,
then Qn → Q in total variation at any P � admitting a
density.

Lemma 10: [60, Theorem 3.5] Suppose fn, bn, f, and b
are measurable real functions on a standard Borel space X .
Let {μn} be a sequence of probability measures in P(X ),
converging weakly to some μ ∈ P(X ). Assume that

|fn| ≤ bn, n ≥ 1,

and that

fn
c−→ f, bn

c−→ b,

lim
n→∞

∫
X

bn(x)μn(dx) =
∫
X

b(x)μ(dx) < ∞,

where fn
c−→ f means that for any x ∈ X and any sequence

xn → x, we have fn(xn) → f(x) (i.e., fn continuously
converges to f). Then,

lim
n→∞

∫
X

fn(x)μn(dx) =
∫
X

f(x)μ(dx).

APPENDIX B

Proof of Lemma 1: [2, Lemma 3] shows that Qc is
compact in the weak topology, so by [61, Theorem 7.12] we
only need to prove the convergence of second moment, i.e.,
we have to show that for any P ∈ Z ,∫

Rd×M
�z�2dPQn →

∫
Rd×M

�z�2dPQ, (56)

whenever PQn → PQ weakly. Note that∫
Rd×M

�z�2dPQn =
M∑

i=1

∫
Bn

i

(�x�2 + i2)P (dx),

where the {Bn
i } are the bins of Qn.

For � > 0, let L > 0 be such that
∫
{�x�≥L} �x�2P (dx) < �.

Letting {Bi} be the bins of Q, we have∥∥∥∥
∫

�z�2dPQn −
∫

�z�2dPQ

∥∥∥∥
≤

M∑
i=1

∫
Rd

(�x�2 + i2)(|1Bn
i
− 1Bi |)P (dx)

≤
M∑
i=1

(∫
Rd

�x�2(|1Bn
i
− 1Bi |)P (dx)

+
∫

Rd

M2(|1Bn
i
− 1Bi |)P (dx)

)

=
M∑
i=1

(∫
{�x�≥L}

�x�2(|1Bn
i
− 1Bi |)P (dx)

+
∫
{�x�<L}

�x�2(|1Bn
i
− 1Bi |)P (dx)

)

+ M2
M∑
i=1

P (Bn
i ΔBi)

≤
M∑
i=1

(
� + L2P (Bn

i ΔBi)
)

+ M2
M∑
i=1

P (Bn
i ΔBi)

≤ �M + (L2 + M2)
M∑
i=1

P (Bn
i ΔBi) → �M,

as n → ∞. It was shown in the proof of [2, Lemma 2] that if
PQn → PQ weakly then by the assumption that P admits a
density we have P (Bn

i ΔBi) → 0 for all i = 1, . . . , M . Since
� was arbitrary we obtain (56), which completes the proof. �

The next lemma is needed in the proof of Lemma 2.
Lemma 11: Let {Bn

1 , . . . , Bn
M} and {B1, . . . , BM} denote

the cells of quantizers Qn and Q respectively. If (πn, Qn) →
(π, Q) in Z ×Qc, the optimal receiver γn for Qn converges
to optimal receiver γ of Q in the sense that

γn(i)=
1

πn(Bn
i )

∫
Bn

i

xπn(dx) → 1
π(Bi)

∫
Bi

xπ(dx)=γ(i),

for every i ∈ {1, . . . , M} such that π(Bi) > 0.
Proof: We have∥∥∥∫

Bn
i

xπn(dx) −
∫

Bi

xπ(dx)
∥∥∥

≤
∥∥∥∫

Bn
i

xπn(dx) −
∫

Bn
i

xπ(dx)
∥∥∥

+
∥∥∥∫

Bn
i

xπ(dx) −
∫

Bi

xπ(dx)
∥∥∥

≤
∥∥∥∫

Bn
i

xπn(dx) −
∫

Bn
i

xπ(dx)
∥∥∥

+
∫

Bn
i 
Bi

�x� π(dx). (57)

Since (πn, Qn) → (π, Q), we have π(Bn
i ΔBi) → 0

(see [48]). Since Eπ[�X�] ≤ √
Eπ[�X�2] < ∞, �x� is

integrable with respect to π and so the absolute continuity
of the integral implies that

lim
n→∞

∫
Bn

i 
Bi

�x� π(dx) = 0. (58)

To bound the first term in (57), have for any L > 0∥∥∥∫
Bn

i

xπn(dx) −
∫

Bn
i

xπ(dx)
∥∥∥

≤
∥∥∥∫

Rd

x1Bn
i ∩{�x�≤L} πn(dx)
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−
∫

Rd

x1Bn
i ∩{�x�≤L} π(dx)

∥∥∥
+
∫

Rd

�x�1Bn
i ∩{�x�>L} πn(dx)

+
∫

Rd

�x�1Bn
i ∩{�x�>L} π(dx). (59)

Letting Yn = �Un� and Y = �U�, where the R
d-valued

random variables Un and U are distributed according to πn

and π, respectively, the order-2 Wasserstein convergence of
πn to π in Z implies that E[Y 2

n ] → E[Y ] < ∞ so that
{Yn} is an L2-bounded sequence and therefore it is uniformly
integrable [59]. Therefore

lim
L→∞

sup
n≥1

(∫
Rd

�x�1Bn
i ∩{�x�>L} πn(dx)

+
∫

Rd

�x�1Bn
i ∩{�x�>L} π(dx)

)
= 0.

Moreover, since each component of x1Bn
i ∩{�x�≤L} ∈ R

d is
bounded by L and since �πn − π�TV → 0, the definition (2)
of the total variation distance implies that for any fixed L, the
first term on the right hand side of equation (59) converges
to zero as n → ∞. In summary, for any � > 0 there is an
L > 0 such that the right hand side of (59) is less than � for
all n large enough. This and (58) then give that the leftmost
term in (57) converges to zero, i.e.,

lim
n→∞

∫
Bn

i

xπn(dx) =
∫

Bi

xπ(dx).

Since πn → π implies πn(Bn
i ) → π(Bi), we obtain the lemma

statement for all i such that π(Bi) > 0.
Proof of Lemma 2: To prove the first statement, assume

that (πn, Qn) → (π, Q) in Z ×Qc. Then for any L > 0

lim inf
n→∞ c(πn, Qn) = lim inf

n→∞

∫
�x − γn(Qn(x))�2πn(dx)

≥
M∑
i=1

lim inf
n→∞

∫
Bn

i

�x − γn(i)�21{�x�2≤L}πn(dx)

=
M∑
i=1

∫
Bi

�x − γ(i)�21{�x�2≤L}π(dx) (60)

=
∫
{�x�2≤L}

�x − γ(Q(x))�2π(dx),

since γn(i) → γ(i) for any i with π(Bi) > 0 by Lemma 11
and so γn is bounded and so �x − γn(i)�21{�x�2≤L} is
uniformly bounded. This together with the fact πn → π in total
variation, πn(Bn

i ) → π(Bi) and πn(Bn
i ΔBi) → 0, implies

the equality in (60). Since L is arbitrary, taking the limit as
L → ∞ then we get

lim inf
n→∞ c(πn, Qn) ≥ c(π, Q).

The proof of the continuity of c(π, Q) in Q is similar to
[2, Lemma 7]. Assume (Qn, π) → (Q, π). First observe that
by Lemma 11, we have γn(i) → γ(i) for any i ∈ {1, . . . , M}
such that π(Bi) > 0. Let I = {i ∈ {1, . . . , M} : π(Bi) > 0}.
Then we have for all i ∈ I ,

Di := sup
n≥1

�γn(i)� < ∞.

Letting D = max
i∈I

Di, by the parallelogram law we have for

all i ∈ I ,

�x−γn(Qn(x))�2≤2�x�2+2�γn(Qn(x))�2≤2�x�2+2D.

Since π ∈ Z has finite second moment, we obtain

lim
L→∞

sup
n≥1

∫
Bn

i

�x − γn(Qn(x))�21{�x�2>L}π(dx)

≤ lim
L→∞

∫
Rd

(
2�x�2 + 2D

)
1{�x�2>L}π(dx) = 0. (61)

When �x�2 ≤ L, �x − γn(Qn(x))�2 is uniformly bounded
and since π(Bn

i ΔBi) → 0, we have∫
Bn

i

�x − γn(Qn(x))�21{�x�2≤L}π(dx) (62)

→
∫

Bi

�x − γ(Q(x))�21{�x�2≤L}π(dx). (63)

Then, using truncation by L together with (61) and (62) we
obtain∫

Bn
i

�x − γn(Qn(x))�2π(dx) →
∫

Bi

�x − γ(Q(x))�2π(dx)

and therefore c(Qn, π) → c(Q, π) as n → ∞. �
Proof of Lemma 3: Consider the conditional probability

distribution given by [2]

π̂(i, π, Q)(A) := P (xt+1 ∈ A|πt = π, Qt = Q, q = i)

=
1

π(Bi)

∫
A

(∫
Bi

π(dx)φ(z|x)
)

dz,

for i ∈ I (see also [2]). We have∣∣∣∣
∫
Z

g(π�)P (dπ�|πn, Qn) −
∫
Z

g(π�)P (dπ�|π, Q)
∣∣∣∣

=
∣∣∣∣

M∑
i=1

(
g(π̂(i, πn, Qn))P (π̂(i, πn, Qn)|πn, Qn)

− g(π̂(i, π, Q))P (π̂(i, π, Q)|π, Q)
)∣∣∣∣

=
∣∣∣∣

M∑
i=1

(
g(π̂(i, πn, Qn))πn(Q−1

n (i))

− g(π̂(i, π, Q))π(Q−1(i))
)∣∣∣∣

=
∣∣∣∣

M∑
i=1

(
g(π̂(i, πn, Qn))πn(Bn

i ) − g(π̂(i, π, Q))π(Bi)
)∣∣∣∣.

Thus in view of the fact that πn(Bn
i ) → π(Bi) and that g(·) is

a continuous function, it is enough to prove that for all i ∈ I ,
π̂(i, πn, Qn) → π̂(i, π, Q). In turn, this is implied by∣∣∣∣

∫
Bn

i

πn(dx)φ(z|x) −
∫

Bi

π(dx)φ(z|x)
∣∣∣∣

≤
∣∣∣∣
∫

Rd

(1Bn
i
− 1Bi)πn(dx)φ(z|x)

∣∣∣∣
+
∣∣∣∣
∫

Rd

1Bi(πn(x) − π(x))φ(z|x)dx

∣∣∣∣
≤ C(πn(Bn

i ΔBi) + �πn − π�TV ) → 0,
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where C is the uniform upper bound on φ and by Lemma 9
we have �πn − π�TV → 0.

The proof that Pg(π, Q) is continuous in Q for every fixed
π follows from the proof above by setting πn = π for all n
and noting that in this case that the argument only requires
the continuity of g but not its boundedness. �
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