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Abstract—Zador’s classic result for the asymptotic high-rate be-
havior of entropy-constrained vector quantization is recast in a La-
grangian form which better matches the Lloyd algorithm used to
optimize such quantizers. The equivalence of the two formulations
is shown and the result is proved for source distributions that are
absolutely continuous with respect to the Lebesgue measure which
satisfy an entropy condition, thereby generalizing the conditions
stated by Zador under which the result holds.

Index Terms—Asymptotic, entropy constrained, high rate, Lan-
grangian, quantization.

I. INTRODUCTION

I N his classic Bell Labs Technical Memo of 1966, Paul Zador
established the optimal tradeoff between average distortion

and rate for -dimensional quantization in the limit of large
rate, where rate was measured either by the log of the number of
quantization levels or by the Shannon entropy of the quantized
vector [18]. The history and generality of the results may be
found in [10]. Most notably, Bucklew and Wise [2] demon-
strated Zador’s fixed-rate result forth-power distortion mea-
sures of the form , assuming only that
for some . Their result was subsequently simplified and
elaborated by Graf and Luschgy [8]. Zador’s entropy-con-
strained results, however, have not received similar attention in
the literature.

Zador formulated the entropy-constrained problem as a min-
imization of average distortion over all quantizers with a con-
strained output entropy. Optimality properties and generalized
Lloyd algorithms for quantizer design, however, require a La-
grangian formulation [4]. Specifically, Lagrangian optimization
can be used to find the lower convex hull of the distortion-rate
function, where rate is measured by output entropy. The La-
grangian form also turns out to be more convenient for problems
involving multiple codebooks such as coding for mixtures since
it obviates the need for the optimization of rate allocation among
multiple codes such as occurs in Zador’s proof. We here recast
Zador’s theorem in a Lagrangian form and prove the result under
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the assumption that the distribution of the random vector is ab-
solutely continuous with respect to Lebesgue measure, that the
differential entropy exists and is finite, and that the entropy of a
uniformly quantized version of the source is finite. These condi-
tions generalize those stated by Zador in his entropy-constrained
quantization theorem. Our goal has been to extend Bucklew and
Wise’s results to entropy-constrained quantization while taking
advantage of simplifications introduced by Graf and Luschgy.

II. PRELIMINARIES

Consider the measurable space consisting of the -di-
mensional Euclidean space and its Borel subsets. As-
sume that is a random vector with a distribution which
is absolutely continuous with respect to the Lebesgue measure

and hence possesses a probability density function (pdf)
so that

for any . The volume of a set is given by its
Lebesgue measure . We assume that the differ-
ential entropy

exists and is finite. The unit of entropy is nats or bits according
to whether the base of the logarithm isor . Usually nats will
be assumed, but bits will be used when entropies appear in an
exponent of .

A vector quantizer can be described by the following map-
pings and sets: an encoder , where is a countable
index set, an associated measurable partition
such that if , a decoder , an associ-
ated reproduction codebook , an index coder

, the space of all finite-length -ary
strings, and the associated length defined
by length . is assumed to be uniquely decodable
(a lossless or noiseless code). The overall quantizer is

(1)

Without loss of generality, we assume that the codevectors
are all distinct. From the Kraft inequality (e.g., [5])

the code lengths must satisfy

(2)
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It is convenient to measure lengths in a normalized fashion and
hence we define the length function of the code in nats as

so that Kraft’s inequality becomes

(3)

A set of code lengths is said to beadmissibleif (3) holds.
As do Cover and Thomas [5], it will also be convenient to

remove the restriction of integer-ary code lengths and hence
we define any collection of nonnegative real numbers;
to be anadmissible length functionif it satisfies (3). The primary
reason for dropping the constraint is to provide a useful tool for
proving results, but the general definition can be interpreted as
an approximation since if is an admissible length function,
then for a code alphabet of sizethe actual integer code lengths

will satisfy the Kraft inequality. (Throughout this paper, de-
notes the smallest integer not less than, and denotes the
largest integer not greater than.) Furthermore, abbreviating

to the average length (in nats) will satisfy

If this is normalized by , then the actual average length
can be made arbitrarily close to the average length function by
choosing a sufficiently large dimension. We do not here require
large dimension, the dropping of the integer constraint is simply
a convenience and the above discussion is intended only to ob-
serve a coding interpretation of the unconstrained lengths.

Let denote the collection of all admissible length func-
tions .

With a slight abuse of notation, we will use the symbolto
denote both the composite of encoderand decoder as in (1)
and the complete quantizer comprising the triple . The
meaning should be clear from the context.

The instantaneous rate of a quantizer is defined by
. The average rate is

Given a quantizer, the entropy of the quantizer is defined in
the usual fashion by

and we assume that for all .
For any admissible length function the divergence in-

equality [5] implies that

with equality if and only if . Thus, in particular

(4)

We assume a distortion measure and measure
performance by average distortion

For simplicity, we assume squared-error distortion with average

for and .
The optimal performance is the minimum distortion achiev-

able for a given rate

(5)

(6)

Zador [18] defines rate as and uses this rate
to define the optimal performance by (5). These two definitions
of optimal performance are easily seen to be equivalent in view
of (4).

The traditional form of Zador’s theorem states that under suit-
able assumptions on

(7)

where is Zador’s constant, which depends only on
and not . The “ ” in reflects the use of squared-error
distortion; Zador also considered powers other than two. This is
often stated loosely as

Zador’s argument explicitly requires that his asymptotic result
for fixed-rate coding holds and that is finite. Zador’s
fixed-rate conditions have been generalized through the years
(see, e.g., [2], [8]), but his variable results have not been sim-
ilarly extended. Furthermore, there are problems with Zador’s
proofs. In particular, as described in [18, proof of Lemma 2],
Zador incorrectly assumes that a conditional entropy term is
zero in [18, proof of Corollary 3.3], an error which invalidates
the remainder of the proof. Another serious problem occurs
in the proof of the main entropy-constrained quantization
theorem, [18, Theorem 3.1], where he assumes that all events in
the sigma field of have finite volume, an assumption which
is invalid for pdfs with infinite support. The first problem is
corrected in our consideration of disjoint mixtures. The second
is avoided by using a method closer to that of Bucklew and
Wise than that of Zador.

As a final preliminary, a quantizer of particular interest is the
uniform quantizer with side length. For , let denote
a quantizer of into contiguous cubes of side. In other words,

can be viewed as a uniform scalar quantizer with bin size
applied successive times. We assume the axes of the cubes

align with the coordinate axes (and that pointis touched by
corners of cubes). In particular, is a cubic lattice quantizer
with unit volume cells.
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III. T HE LAGRANGIAN FORMULATION

The Lagrangian formulation of variable-rate vector quantiza-
tion [4] defines for each value of a Lagrangian multiplier
a Lagrangian distortion

and corresponding performance

and an optimal performance

where the infimum is over all quantizers where
is assumed admissible. Unlike the traditional formulation, the

Lagrangian formulation yields Lloyd optimality conditions for
vector quantizers, that is, a necessary condition for optimality
is that each of the three components of the quantizer be optimal
for the other two. In particular, for a given decoderand length
function , the optimal encoder is

(ties are broken arbitrarily). The optimal decoder for a given
encoder and length function is the usual Lloyd centroid

and the optimal length function for the given encoder and de-
coder is, as we have seen, the negative log probabilities of the
encoder output. Unlike Zador’s proof, our proof will take ad-
vantage of these properties.

Our main result is the following.

Theorem 1: Assume that the distribution of is absolutely
continuous with respect to Lebesgue measure with pdf, that

exists and is finite, and that . Then

(8)

where is the finite constant defined by

(9)

and is the uniform pdf on the -dimensional unit cube
.

Analogous to the approximate interpretation of the traditional
Zador result, the interpretation here is that for small

(10)

Note in particular that the asymptotic performance depends on
the input pdf only through its differential entropy.

As an example of the conditions of the theorem, the diver-
gence inequality can be used to show that if the random vector
has a finite second moment, then and .
Thus, the theorem holds for pdfs with finite second moment if

. This implies, for example, that the theorem holds
for nonsingular Gaussian pdfs. Thus, for example, if the vector

is a Gaussian vector with mean and nonsingular co-
variance , then the approximation
for the optimal codes becomes

(11)
for small . (See, e.g., [5, p. 230].) Thus, the asymptotic perfor-
mance depends on the size of the determinant of the covariance.
This has an interesting interpretation. Since the pdf having the
largest differential entropy of all those having a given covari-
ance matrix is the Gaussian (see, e.g., [5, Theorem 9.6.5]), this
says that for small the Gaussian source is the “worst case” in
the sense of having the largest optimum average Lagrangian dis-
tortion over all such pdfs. This provides a quantization analog
to Sakrison’s result for Shannon rate-distortion functions [13].
More generally, suppose that a class of pdfs contains all pdfs
having a specified partial covariance, that is, only a subset of the
entries of the covariance is known, but it is known to be consis-
tent with a complete covariance. The MAXDET algorithm [15]
can then be used to find the covariance which agrees with the
constrained partial covariance and has the largest possible de-
terminant of all such matrices. The Gaussian pdf with this max-
imum determinant (provided it exists) then provides the worst
case for this class of sources for quantization (asgoes to zero).

As another example under which the conditions hold, con-
sider a uniform pdf on a bounded measurable set with positive
volume . Once again, the conditions of the theorem hold and
the asymptotic approximation for the optimal codes becomes

(12)

for small . Again this provides an example of a worst case
source since the divergence inequality shows that the uniform
pdf yields the largest differential entropy of all pdfs constrained
to have the same finite volume support region.

The following result relates the traditional and Lagrangian
form of Zador’s results for variable-rate vector quantization so
that the two forms will hold under equally general conditions.
The result is proved in Appendix A using tools developed in the
proof of the theorem.

Lemma 1: Under the conditions of Theorem 1, the limit of
(7) exists if and only if the limit of (8) exists, in which case

(13)

Thus, in particular, Zador’s formula holds under the condi-
tions given in the theorem. This provides a generalization of the
results claimed in Zador [18] since Zador requires tail condi-
tions on the marginal densities induced by the pdf. In particular,
he requires that the marginal pdfs each have
the property that for , where the are
nonzero, finite constants, and where . As noted in [10],
the variable rate results reported by Zador in his Ph.D. disserta-
tion [17] and in [19] are incorrect as they are for the fixed-rate
case and do not include the needed differential entropy term, so
it is the results in his Bell Labs Technical Report [18] which are
considered here. The conditions of the theorem are more gen-
eral than those of the current most general fixed-rate results (see
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[8]) in the sense that no moment condition is required, but they
are less general in the sense that it is assumed that the proba-
bility measure is absolute continuous with respect to Lebesgue
measure, the density has finite differential entropy, and that a
uniformly quantized version of the random vector has finite
Shannon entropy.

The result shows that the Lloyd algorithm can be used to esti-
mate Zador’s constant, as suggested in [14]. By choosing a de-
creasing sequence ofand using the Lloyd properties to design
an entropy-constrained vector quantizer for any pdf, the limiting
performance should approachand hence yield an estimate of

. Since the pdf is not important, a uniform pdf on the uniform
cube can be used. This was done for various dimensions in [14]
and the results compared with known bounds on the Zador func-
tion.

The theorem will be proved in a series of steps. We begin in
the next section with a study of the performance of quantizers
for mixture sources, which play an important role in the devel-
opment by permitting us to “divide and conquer” a complicated
source by decomposing it into simpler sources. The subsequent
section develops several fundamental properties and bounds on
the measures of quantizer performance. These properties are
used to quantify relevant asymptotics in the subsequent section.
In the final section, the theorem is proved by showing that suc-
cessively more general densities yield the conclusions of the the-
orem. We consider first uniform densities on cubes, then disjoint
mixtures of such densities, then general densities defined on a
unit cube, and finally general densities. Anticipating these steps
we say that (or has the Zador property) if the conclu-
sions of the theorem hold for a density.

The following notation will be used throughout the paper:

Thus, the theorem is a statement of conditions under which

IV. DISJOINT MIXTURES

A mixture source is a random pair , where is a
discrete random variable with pmf ,

and conditional pdfs such that
for some , The pdf for

is given by

In the special case where the are disjoint, the mixture is said
to beorthogonalor disjoint.

Suppose that is a disjoint mixture and that for each we
have a quantizer defined on , i.e., an encoder

(recall that is a countable index set usually taken to be the
positive integers unless indicated otherwise), a partition of,

, and a decoder . The com-
ponent quantizers together imply an overall composite
quantizer with an encoder that maps into a pair
if and , a partition of

and a decoder that maps into

where denotes the indicator function of . Con-
versely, an overall quantizer can be applied to every
component in the mixture, effectively implying component
quantizers for all . In this case, the
structure is not so simple as quantization cells can straddle
boundaries of . Here, the partition of is

and many of the cells may be empty.
Begin by observing that since for

(14)

Note that the equality holds whenever at least two of the three
quantities , , and are finite. Similarly,
if is a quantizer defined for the entire space with
partition and codebook , then

(15)

The above equality holds whenever and are finite.

Lemma 2: Suppose is a disjoint mixture
such that is finite and ( if ). If
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is an overall quantizer (not necessarily a composite quantizer)
such that , then

(16)

(17)

It follows that

(18)

Proof: Subtracting (14) from (15) gives (16), which, in
turn, implies (17). Zador is missing the term in
his analogous formula in the proof of his Lemma 3.3(b) [18,
p. 29]; he tacitly assumes it is. If is a composite quantizer,
then . Thus, (18) follows from (17)
since and for a given and , can be
chosen so that for all and hence

V. BOUNDS

The following lemmas provide useful lower and upper
bounds.

Lemma 3: For any

Therefore, also .
Proof: Let the partition associated withbe ,

let be the associated codebook, and assume
all (otherwise, merge cells into cells with positive

probability). Define and

the pdf for a -dimensional Gaussian random vector with mean
and covariance , where is the identity

matrix.
Then

where is the relative entropy between the densities
and defined by

The lemma follows from the nonnegativity of relative entropy
(see, e.g., [5]). This result also follows from the classic Shannon
lower bound, but the above proof accomplishes the goal without
recourse to Shannon rate-distortion theory.

Lemma 4: For any satisfying the conditions of the theorem,
and any

Therefore, if

(19)

and hence

Proof: Fix and overbound by the perfor-
mance using the uniform quantizer where

(20)

(21)

The quantizer divides the unit cube into cubes of side
and volume . Consider the density as a disjoint mix-

ture of densities on disjoint unit cubes with
. Let be the restriction of to . By construc-

tion, is a composite quantizer with component quantizers
, all of which are uniform quantizers with small cubes

of volume . If satisfies the conditions of the theorem, then
, , and satisfy the conditions of Lemma 2.

Since in this case, from (17) we obtain

The maximum squared error within a cube using the uniform
quantizer is

Also, has codevectors, and so . Since
, we obtain

where the final inequality uses the inequality. Thus,
from (14) applied to the partition into unit cubes
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VI. A SYMPTOTICS

Lemma 5: Suppose that is a disjoint mixture
which satisfies the conditions of the the-

orem and that ( if ). Then

(22)

Proof:

(23)

The interchange of the limit superior and sum follows by the
upper bound to for small of Lemma 4. Specifically,
choosing as in the lemma, then invoking (19)

(Note that and are finite for all by (14) and
(15) since , , and are finite by assumption.)
We have by (16)

Since the right-hand side is finite by assumption, (23) follows
from the corresponding inequality for finite sums.

The next lemma proves that if a sequence of quantizers is
approximately optimal for a disjoint mixture, then in the limit
the conditional entropy of , the random variable indicating
which component of the mixture is in effect, given the quantizer
output, tends to. The result plays a key role in quantifying the
asymptotics of the quantities considered in Lemma 2.

Lemma 6: Suppose , satisfy

where the are decreasing, and

Suppose also that is a disjoint mixture such
that ( if ). Then

Proof: Since the mixture is disjoint, is a function
of and hence where

denotes the conditional mutual information of
and given . Thus,

using the fact that since both and
are functions of . The assumptions of the lemma imply that

(24)

where as , and hence

which means that in distribution as
. Since mutual information is lower semicontinuous [7]

and hence

Since entropy is nonnegative, the lemma is proved.

Combining the lemmas yields the following corollary.

Corollary 1: Suppose that is a disjoint mixture
which satisfies the conditions of the the-

orem and that ( if ). Then

(25)

Thus, if for all , then also .
Proof: The limit superior result was proved in Lemma 5.

To prove the limit inferior result, suppose that are chosen
so that is decreasing to and

From Lemma 2

The rightmost term goes to zero asgrows from Lemma 6.
Hence,

The interchange of limit inferior and sum is justified because of
the finite uniform lower bound to of Lemma 3.

VII. PROOF OF THETHEOREM

The conclusions of the theorem were originally stated with
incomplete conditions and a sketch of a proof in [11]. The gen-
eral approach of the first, second, and fourth steps is followed
with corrections and details here. The proof of the third step in
[11] was incorrect and a new approach is adopted here.

A. First Step: Uniform pdfs on Cubes

We begin by showing that if is a uniform pdf on a cube of
any size, then . The approach is a natural variation on
Zador’s original proof.

Define a cube in with side and location as
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Abbreviate to , the cube of side in the positive quad-
rant with one corner at the origin. In particular, any translation

of is called a unit cube. Define the corre-
sponding uniform pdf . Then

and

As with cubes, we simplify the notation to .
We first show that shifting does not affect performance so we

can confine our interest to cubes located at the origin.

Lemma 7: Suppose that a random vectorhas a pdf and
that is the pdf of the random vector for a fixed constant
. Then, .

Proof: Given a quantizer for , define a shifted quan-
tizer for by . Then, a simple
change of variables immediately gives

(26)

Conversely, given any quantizerfor , the shifted quan-
tizer also satisfies (26). Taking infima over
quantizers proves the lemma.

Lemma 8: Suppose we have a quantizer with encoder
and decoder defined for the unit cube

. Define a quantizer with encoder and decoder
for by straightforward variable changes ,

, . Then

Proof: Since Shannon entropy is not changed by scaling,
. Changing variables yields

and hence .

The lemma allows us to concentrate on , the
uniform pdf on the unit cube .

Lemma 9: , i.e., .
Proof: Partition the unit cube into disjoint

cubes . For each of the small cubes have a uniform pdf
on the cube. All of the small cubes have the

same . From Lemma 8

From Lemma 2,

which with the previous equation implies

Replacing by , . Fix and note
that

so for any there is an integer such that
. is nonincreasing with decreasing,

hence

Choose any subsequence oftending to zero. The largest pos-
sible value of the limit superior of the right-hand side is
and hence which means that

Hence,

and hence the limit must exist and equal .
Note that is finite by Lemmas 3 and 4.

B. Second Step: Piecewise-Constant pdfs on Cubes

Suppose that is a collection of disjoint unit cubes,
is a pmf with finite entropy, and

Combining Lemmas 7–9 and Corollary 1 implies that .

C. Third Step: Distributions on a Unit Cube

In this step, it is shown that if is supported on a unit cube,
then and hence . Suppose that

for a unit cube and that .
From Lemma 7, it is enough to prove the statement for
. For any positive integer we can partition into

cubes of side length , say .
Given a pdf , form a piecewise-constant approximation

The use of the piecewise-constant approximation to the original
pdf follows that of [2], [8]. This is a disjoint mixture source with

and component pdfs .
If denotes the distribution induced by , i.e.,

then .
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Lemma 10:

-a.e.

Proof: The first result follows by differentiation of mea-
sures (see, e.g., [16, p. 108]), the second from Scheffé’s lemma
(see, e.g., [3]). The third result follows from the convergence of
entropy for uniform scalar quantizers, e.g., [6]. For complete-
ness, we also provide a direct proof. Let and be two dis-
tributions corresponding to pdfs and . The relative entropy
of a measurable partition with distri-
bution with respect to a distribution is

where the inequality follows from the divergence inequality. If
, asymptotically generates the Borel field of

, then

(27)

(See, e.g., [9].) Now and are pdfs on the unit cube. We
have that

This goes to zero from (27) and the fact that the sequence of
partitions of the unit cube into cubes of side length

generates the Borel field of the unit cube.

Suppose is a quantizer on with corresponding encoder
, index set , partition , and decoder . Let

be a pdf on (which will be either or ). Fix .
The next lemma (proved in Appendix B) shows that ifis small
enough and is (approximately) optimal for the pdf, then
has a collection of cells with total probability between and .

Lemma 11: Let be any pdf such that and
is finite, and fix . Then there is a threshold

such that if , then any quantizer that
satisfies has a collection
of cells with total probability bounded as

(28)

Let be small enough and chooseso that it satisfies the
conclusion of Lemma 11. Define

(29)

and choose the length function optimally with respect to
and , i.e.,

(30)
A second quantizer is a uniform -dimensional quantizer

with side width , where , so that
, , if

, which we can assume without loss of generality in
the asymptotic ( ) analysis. Then for all

Let and denote the encoder and index set of, and define
the (constant) length function by

Note that is admissible since

(31)

The quantizer is designed to be good for a particular pdf
while the quantizer is designed to provide a bound on the dis-
tortion and length which will be valid for any pdf. A composite
quantizer can be formed by merging and which will still
be well matched to a specified pdf, but will now also have a uni-
form bound on distortion and length over all pdfs. This bound
will permit us to bound the performance resulting from applying
the quantizer to distinct pdfs. The merging is accomplished by
the universal coding technique of considering the union code-
book and simply finding the minimum Lagrangian distortion
codeword in the combined codebook: given an input vector,
to find the code yielding the smallest Lagrangian distortion, i.e.,
let

define the encoder of by

and define the decoder by . Recall the defini-
tion of the index subset in (28), and define the length
function for as

if and
if and
if .

Then is admissible since by (30), (29), and (31)

Set and . Then the defini-
tion of implies
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and hence

(32)

In particular, the upper bound for implies

(33)

The next lemma is proved in Appendix C.

Lemma 12: The quantizer satisfies

where depends only on and , and .

Fix large enough such that

(34)

Use the design pdf to construct . Then satisfies
Lemma 11 for all small enough. Recall that by construction

This and (32) imply

where the last inequality holds since .
Combine this with the bound of Lemma 12 to obtain

where the last inequality follows from (34) and the fact that
. Since this bound holds for all small enough, we

obtain This is equivalent to
since has the Zador property. Thus,

since was arbitrary. The converse inequality is
proved in a similar fashion using the design pdf .

D. Final Step: Proof of Theorem

Carve into disjoint unit cubes and write the pdf
as the disjoint mixture

From Corollary 1

(35)

From the previous step, for all , and
hence , which proves the theorem.

APPENDIX A
PROOF OFLEMMA 1

The result was first stated in [14]. The proof here follows sim-
ilar lines, but corrects several errors. Analogous to thenota-
tion introduced earlier for the Lagrangian formulation, we de-
fine similar quantities for the traditional form. Recall that the
unit of entropy is usually nats, but bits will be used when en-
tropies appear in an exponent of

Thus, we have

The traditional form of Zador’s property can now be de-
scribed as and the Lagrangian form as

.
The connection between the limits in one direction follows

from the following equality, which is used repeatedly in the
proof

(36)

The term in the square brackets is nonnegative since .
Since is finite by Lemma 3, just as in Lemma 6 we can

choose as so that and hence
a sequence of quantizers exists such that

. Thus, by (24)

(37)

Define and observe that by (36)

(38)

From Lemma 3, . Since ,
this necessarily implies that

(39)
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Since has entropy and distortion

the minimum average distortion over all quantizers having rate
, we have that

Summarizing

(40)

Now suppose that Zador’s traditional result holds, hence
and for any sequence there

is a sequence of quantizers with for which
so that

(41)

Choose such that . For this sequence
, define

(42)

and construct as in (41) for this . Then

Since and the ratios in square brackets
go to (based on (41) and (42)), it follows that

This combined with (40) completes the proof that if the tradi-
tional Zador limit holds, then so does the Lagrangian form with

(43)

Suppose instead that the Lagrangian form of Zador’s theorem
holds, so that . Let denote the convex
hull of defined as the largest convex function on
that is majorized by . First, we show that

(44)

where

and then we prove that (44) implies

(45)

and

(46)

To show (44) note that is the largest affine func-
tion with slope that is majorized by . Since
is the pointwise supremum of all affine functions that are ma-
jorized by (see, e.g., [12]), and is nonincreasing

By assumption , where as ;
hence

(47)

where the expression in parentheses is positive for all
small enough. On the other hand

hence, for all

if

It follows that

Fix an arbitrary . Since as , (47) implies
that for all large enough

The suprema are readily evaluated by differentiation taking ad-
vantage of the concavity of . More directly, one can use
the inequality to show that for

where equality holds if and only if . Note that
for large enough ; hence

Since was arbitrary, we obtain (44).
By definition, ; hence (44) immediately

yields (45). To prove the converse inequality, observe that (46)
will follow from (44) via normalization and scaling if we can
show that for any nonincreasing function on whose
convex hull satisfies

(48)

we have

(49)
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The proof is by contradiction. Assume (49) does not hold
and so there exist and a sequence such that

for all . Fix such that
and choose large enough such that for all

(50)

Let be the unique solution of the equation

(51)

(For large enough, a unique solution always exists since
(48) and the fact that is convex imply that is strictly
decreasing and .) Note that by (50)

(52)

Since is nonincreasing and , we have
for . Therefore, the line segment in

the -plane joining the points and
lies below . Since is the largest convex function such
that , this implies that for all

Define . Then by (52), so for

where the third inequality follows from (50) and the last equality
from (51). We obtain that for

Again, using either calculus or the inequality, the
maximum of is seen to be achieved at

Note that since for all , we have
. Also, it is easy to see that if is small

enough. Choosing suchand a corresponding large we ob-
tain

Note that as , implying that the
rightmost term converges to zero as . Since

for all and for all , we have

Therefore, we can choose small enough and large
enough so that

contradicting (50). We conclude that (48) implies (49) which
completes the proof that the theorem implies the traditional
Zador conclusions.

APPENDIX B
PROOF OFLEMMA 11

First we show that if for all we choose to satisfy
, then the cells of satisfy

(53)

Choose small enough so that , and let
be such that . Then

(54)

where as . Denote the code vector associated
with by , and define

Fix and let . Then

where is the normalized second moment of a-dimensional
sphere (see, e.g., [10]). Since , this and
(54) imply

from which it follows that
by the absolute continuity of with respect to the Lebesgue
measure (see, e.g., [1]). Note that

and so

Since

(53) follows.
The statement of the lemma follows by noticing that if

, then there must exist a collection of
partition cells with total probability between and . Note
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in the above proof that the upper bounds on
depend only on , , and , and not on the particular choice of

. Therefore, the conclusion holds for anywith

if is less than a threshold depending only onand .

APPENDIX C
PROOF OFLEMMA 12

By definition

(55)

For any real number, let

and

so that

(56)

Then

(57)

The upper bound (33) implies

(58)

Note that (56) and the fact that imply

and so the function

is a pdf. Thus,

(59)

where in the last step we used the bound of Lemma 3. We have

By Lemma 10,

-almost everywhere. Since

Since and is sup-
ported in the closure of , the dominated convergence theorem
implies

Hence, from Lemma 10

(60)

Letting

and combining (58) and (59) we obtain
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where as by (60). A similar argument
shows that

where as . Let

and combine these bounds with (55) and (57) to obtain the
bound of the lemma.
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