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A Lagrangian Formulation of Zador’s
Entropy-Constrained Quantization Theorem

Robert M. Gray Fellow, IEEE, Tamas LinderSenior Member, IEEEand Jia Lj Member, IEEE

Abstract—Zador’s classic result for the asymptotic high-rate be- - the assumption that the distribution of the random vector is ab-
havior of entropy-constrained vector quantizationis recastinala-  solutely continuous with respect to Lebesgue measure, that the
grangian form which better matches the Lloyd algorithm used t0  yittarential entropy exists and is finite, and that the entropy of a

optimize such quantizers. The equivalence of the two formulations if | tized . fth is finite. Th di
is shown and the result is proved for source distributions that are uniformly quantized version orthe source Is inite. 1hese condi-

absolutely continuous with respect to the Lebesgue measure which tions generalize those stated by Zador in his entropy-constrained
satisfy an entropy condition, thereby generalizing the conditions quantization theorem. Our goal has been to extend Bucklew and

stated by Zador under which the result holds. Wise’s results to entropy-constrained quantization while taking

Index Terms—Asymptotic, entropy constrained, high rate, Lan- advantage of simplifications introduced by Graf and Luschgy.
grangian, quantization.

Il. PRELIMINARIES

|. INTRODUCTION Consider the measurable sp&€k 13) consisting of the:-di-

. : it
N his classic Bell Labs Technical Memo of 1966, Paul Zaddpensional Euclidean spa€e= R* and its Borel subsets. As-
established the optimal tradeoff between average distortip™e thatX is a random vector with a distributiaf; which

and rate fork-dimensional quantization in the limit of large'S absolutely continuous with respect to the Lebesgue measure

rate, where rate was measured either by the log of the numbe¥ofiNd hence possesses a probability density function (pe)
quantization levels or by the Shannon entropy of the quantiz@é)f/dv so that

vector [18]. The history and generality of the results may be
found in [10]. Most notably, Bucklew and Wise [2] demon- Pr(F) =/ fz)dV(x) =/ f(z)dz
strated Zador’s fixed-rate result feth-power distortion mea- F F

sures of the fornfjz—y||", assuming only thak (|| X||"+*)<oo  for any F' € B. The volume of a seF’ € B is given by its

for somes > 0. Their result was subsequently simplified and ehesgue measufé(F) = [4 dz. We assume that the differ-
elaborated by Graf and Luschgy [8]. Zador's entropy-cormtial entropy

strained results, however, have not received similar attention in
the literature. A

Zador formulated the entropy-constrained problem as a min- M) == / de f(z) In f(z)
imization of average distortion over all quantizers with a con- | S ) ) ) )
strained output entropy. Optimality properties and generaliz@é'Sts and is finite. The unit of er_1tropy is nats or bits accolrdmg
Lloyd algorithms for quantizer design, however, require a L4 Whether the base of the logarithmeisr 2. Usually nats will
grangian formulation [4]. Specifically, Lagrangian optimizatiof?® @ssumed, but bits will be used when entropies appear in an
can be used to find the lower convex hull of the distortion-rafPonent o2. _ _
function, where rate is measured by output entropy. The La-A VECtor quantizey can be described by the following map-
grangian form also turns out to be more convenient for problef@§19s and sets: an encoder(} — 7, whereZ is a countable
involving multiple codebooks such as coding for mixtures sindBdeX set, an associated measurable partiioa {5;; ¢ € 7}
it obviates the need for the optimization of rate allocation amorfych thaiv(z) = i if « € S;, a decodeys: Z — (2, an associ-
multiple codes such as occurs in Zador's proof. We here rec4&d reproduction codebock= {/(z); ¢ € Z}, an index coder

Zador's theorem in a Lagrangian form and prove the result undérZ — 10: -- -, D — 1}*, the space of all finite-length-ary
strings, and the associated lendthz — {1, 2, ...} defined

by L(i) = length(v()). ¢ is assumed to be uniquely decodable
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It is convenient to measure lengths in a normalized fashion awith equality if and only iff(i) = — ln p;. Thus, in particular
hence we define the Ie,ngth func_t|on of the code in natgigs= Hy(q) = inf Ry(a, 0). 4)
L(3)1In D so that Kraft's inequality becomes leA
—e(i) We assume a distortion measuker, &) > 0 and measure
d et < (3) e

: performance by average distortion

A set of code length&(4) is said to beadmissiblef (3) holds. Dy(a) =Dy(a. B)
As do Cover and Thomas [5], it will also be convenient to =Fd(X, ¢(X))

remove the restriction of integér-ary code lengths and hence =Ed(X, fa(X)).

we define any collection of nonnegative real numi#éis i € 7
to be aradmissible length functianhit satisfies (3). The primary
reason for dropping the constraint is to provide a useful tool for R 12 b "2
proving results, but the general definition can be interpreted as dz, &) = [lz - 2" = Z i — il
an approximation since i(:) is an admissible length function, =t
then for a code alphabet of sizethe actual integer code length orz = (

For simplicity, we assume squared-error distortion with average

L1y «v ey a:k) andz = (.fjl, ey .’fjk)

] The optimal performance is the minimum distortion achiev-
L() = V('L) w able for a given rate
InD .
_ . : . 6p(R) = inf  Dg(q) (5)
will satisfy the Kraft inequality. (Throughout this papét] de- ¢ Rr()<R
notes the smallest integer not less thaand || denotes_ the _ inf Dy(a, B). (6)
largest integer not greater thar) Furthermore, abbreviating @, 8, 4: Ry(a, <R
Py(S5;) to p; the average length (in nats) will satisfy Zador [18] defines rate ak;(g) = H(g) and uses this rate
, , , to define the optimal performance by (5). These two definitions
Z pit() = (In D) Z pil(7) < Z pill) +1n.D of optimal performance are easily seen to be equivalent in view
' ' ' of (4).

If this is normah;ed _byl/k, then the actual average Ierjgth The traditional form of Zador’s theorem states that under suit-
can be made arbitrarily close to the average length function QMIe assumptions of

choosing a sufficiently large dimension. We do not here require _ 2R 2 hih)
large dimension, the dropping of the integer constraint is simply Aim 2% 76,(R) = b(2, k)2F (1)

a convenience and the above discussion is intended only to %‘ereb(z k) is Zador's constant, which depends only bn
serve a coding interpretation of the unconstrained lengths. and notf.vThe “2"in b(2, k) reflects the use of squared-error

Let A denote the collection of all admissible length funCgjigio tion; zador also considered powers other than two. This is

tions /.
With a slight abuse of notation, we will use the symbhdb often stated loosely as 2Rk
denote both the composite of encodesind decodef as in (1) 6p(R) ~ (2, k)27F (=),
and the complete quantizer comprising the trigle 3, £). The zador's argument explicitly requires that his asymptotic result
meaning should be clear from the context. for fixed-rate coding holds and thdt(f) is finite. Zador's
The instantaneous rate of a quantizer is definedbyx)) = fixed-rate conditions have been generalized through the years
£(a(x)). The average rate is (see, e.g., [2], [8]), but his variable results have not been sim-
_ o _ g ilarly extended. Furthermore, there are problems with Zador's
Ry(a) = Ryle, £) = Br{a(X)) = z; pit(i)- proofs. In particular, as described in [18, proof of Lemma 2],

Given a quantizes. the entropy of the quantizer is defined inZador incorrectly assumes that a conditional entropy term is
quantizeq, Py q zero in [18, proof of Corollary 3.3], an error which invalidates
the usual fashion by

the remainder of the proof. Another serious problem occurs

Hi(g) = —Zpi In p; in the proof of the main entropy-constrained quantization
i theorem, [18, Theorem 3.1], where he assumes that all events in
and we assume that > 0 for all <. the sigma field of2 have finite volume, an assumption which
For any admissible length functiof the divergence in- is invalid for pdfs with infinite support. The first problem is
equality [5] implies that corrected in our consideration of disjoint mixtures. The second
is avoided by using a method closer to that of Bucklew and
Ryq) — Hy(q) = (X)) = Hy(g) Wise than that of Zador.
= Z pi(£(i) + Inp;) As a final preliminary, a quantizer of particular interest is the

i uniform quantizer with side length. ForA > 0, letQ denote
= Z p; In f’T’() a quantizer of? into contiguous cubes of side. In other words,

P e QA can be viewed as a uniform scalar quantizer with bin size
> Z piln Pi A appliedk successive times. We assume the axes of the cubes
=2 e_g(i)/z =) align with the coordinate axes (and that pdinis touched by

J corners of cubes). In particulag; is a cubic lattice quantizer

>0 with unit volume cells.
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Ill. THE LAGRANGIAN FORMULATION is a Gaussian vector with mean= F(X) and nonsingular co-

. - B RS S
The Lagrangian formulation of variable-rate vector quantiz%{—a”anceK = E((X —m)(X —m)"), then the approximation

tion [4] defines for each value of a Lagrangian multipliex- 0 or the optimal codes becomes

a Lagrangian distortion Ds(an) + NH p(g0) = Ay, + )\5 In(2re| K|M*) — = Aln A

paa, i) =d(x, B(D)) + Ar(3) 2 A
=d(z, B(@)) + M(3) for smallX. (See, e.g., [5, p. 230].) Thus, the asymptotic perfor-
and corresponding performance mance depends on the size of the determinant of the covariance.

i i i This has an interesting interpretation. Since the pdf having the
p(f, A @) =EdX, q(X)) + 2B o(X)) largest differential entropy of all those having a given covari-
=Dy(q) + ARs(q) ance matrix is the Gaussian (see, e.g., [5, Theorem 9.6.5]), this
and an optimal performance says that for smalk the Gaussian source is the “worst case” in
. the sense of having the largest optimum average Lagrangian dis-
plf: A) = H(}f olf: A 0) tortion over all such pdfs. This provides a quantization analog
where the infimum is over all quantizegs= (o, 3, £) where to Sakrison’s result for Shannon rate-distortion functions [13].
¢ is assumed admissible. Unlike the traditional formulation, tHdore generally, suppose that a class of pdfs contains all pdfs
Lagrangian formulation yields Lloyd optimality conditions forhaving a specified partial covariance, that is, only a subset of the
vector quantizers, that is, a necessary condition for optimal@ptries of the covariance is known, but it is known to be consis-
is that each of the three components of the quantizer be optirigiit with a complete covariance. The MAXDET algorithm [15]
for the other two. In particular, for a given decogkand length can then be used to find the covariance which agrees with the

function/, the optimal encoder is constrained partial covariance and has the largest possible de-
. } } terminant of all such matrices. The Gaussian pdf with this max-
a(@) Wrg’gmn(d(x’ AG)) + M) imum determinant (provided it exists) then provides the worst
(ties are broken arbitrarily). The optimal decoder for a givegase for this class of sources for quantization\(gses to zero).
encoder and length function is the usual Lloyd centroid As another example under which the conditions hold, con-
. . . sider a uniform pdf on a bounded measurable set with positive
3(:) = arg E(d(X X) =1 : .
) ng;nm (X, wla(X) =) volumeV'. Once again, the conditions of the theorem hold and

and the optimal length function for the given encoder and die asymptotic approximation for the optimal codes becomes
coder is, as we have seen, the negative log probabilities of the k

encoder output. Unlike Zador’s proof, our proof will take ad- Dy(gn) + AHp(gn) = Mg+ AlnV — 3 AlnA (12)
vantage of these properties.

) : . for small A. Again this provides an example of a worst case
Our main result is the following.

source since the divergence inequality shows that the uniform
Theorem 1: Assume that the distribution of is absolutely pdfyields the largest differential entropy of all pdfs constrained
continuous with respect to Lebesgue measure withfpdhat to have the same finite volume support region.

h(f) exists and is finite, and thadf ;(Q;) < cc. Then The following result relates the traditional and Lagrangian
form of Zador’s results for variable-rate vector quantization so
lim <p(f, A) + k ln A) =60, + h(f) (8) that the two forms will hold under equally general conditions.
A—0 A 2 The result is proved in Appendix A using tools developed in the
whered, is the finite constant defined by proof of the theorem.
A p(ut, A) k& Lemma 1: Under the conditions of Theorem 1, the limit of
O = >f <T t5 o A) (9)  (7) exists if and only if the limit of (8) exists, in which case
andu; is the uniform pdf on thé-dimensional unit cub€&’; = 0, = g In % b(2, k). (13)
[0, 1)*.
Analogous to the approximate interpretation of the traditional Thus, in particular, Zador's formula holds under the condi-
Zador result, the interpretation here is that for small tions given in the theorem. This provides a generalization of the

results claimed in Zador [18] since Zador requires tail condi-

p(f, N) = Dp(gn)+AH p(gn) ~ A9k+)\h(f)—ﬁ Aln A, (10) tions onthe marginal densities induced by the pdf. In particular,
2 he requires that the marginal pdfs ¢ = 1, ..., k each have
Note in particular that the asymptotic performance depends thre property thatf;(¢) < ||~ for |[t| > ¢;, where thec; are
the input pdf only through its differential entropy. nonzero, finite constants, and where- 3. As noted in [10],

As an example of the conditions of the theorem, the divethe variable rate results reported by Zador in his Ph.D. disserta-
gence inequality can be used to show that if the random véttortion [17] and in [19] are incorrect as they are for the fixed-rate
has a finite second moment, th&(Q,) < oo andh(f) < oo.  case and do not include the needed differential entropy term, so
Thus, the theorem holds for pdfs with finite second momentiifis the results in his Bell Labs Technical Report [18] which are
h(f) > —oco. This implies, for example, that the theorem holdsonsidered here. The conditions of the theorem are more gen-
for nonsingular Gaussian pdfs. Thus, for example, if the vecteral than those of the current most general fixed-rate results (see
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[8]) in the sense that no moment condition is required, but th&y(recall thatZ is a countable index set usually taken to be the
are less general in the sense that it is assumed that the prgiusitive integers unless indicated otherwise), a partitidn,Qf
bility measure is absolute continuous with respect to Lebesg{&,, ;; ¢ = 1, 2, ...}, and a decode#,,,: Z — C,,,. The com-
measure, the density has finite differential entropy, and thapanent quantizergq,, } together imply an overall composite
uniformly quantized version of the random vector has finitguantizerg with an encodery that mapse into a pair(m, )
Shannon entropy. if z € Q,, andw,, () = 4, a partition ofQ2

The result shows that the Lloyd algorithm can be used to esti- (S iii=1,2 =1 9 }
mate Zador’s constant, as suggested in [14]. By choosing a de- e P D
creasing sequence afand using the Lloyd properties to desigrand a decodef that mapgm, ¢) into /3, (%)
an entropy-constrained vector quantizer for any pdf, the limiting
performance should approaéhand hence yield an estimate of q(x) = Z gm(@)1a,. ()
by.. Since the pdf is not important, a uniform pdf on the uniform "o ,
cube can be used. This was done for various dimensions in [{4]eré1.a(xz) denotes the indicator function of C €. Con-
and the results compared with known bounds on the Zador fuy&rsely, an overall quantizer 2 — 7 can be applied to every
tion. component in the mixture, effectively implying component

The theorem will be proved in a series of steps. We begin fantizers. (z) = ¢(z)lo, (x) for all m. In this case, the
the next section with a study of the performance of quantizef§ucture is not so simple as quantization cells can straddle
for mixture sources, which play an important role in the devefoundaries of2,,. Here, the partition of2,,, is
opment by permitting us to “divide and conquer” a complicated {SinQp;i=1,2,...}
source by decomposing it into simpler sources. The subsequent
section develops several fundamental properties and bound€@Bf Many of the cells may be empty.
the measures of quantizer performance. These properties arge9!" by observing that sinck..(z) = f(z)/ws. for z €2,
used to quantify relevant asymptotics in the subsequent sectign.,.,
In the final section, the theorem is proved by showing that su?:{tf) o _/ @)t f(z)de

cessively more general densities yield the conclusions of the the-

orem. We consider first uniform densities on cubes, then disjoint ~ ~— > wm /Q Frn(@) It fin ()

mixtures of such densities, then general densities defined on a " ”

unit cube, and finally general densities. Anticipating these steps = — Z Wy, / Fm(x)In fo(z) da — Z Wy Inw,,

we say thatf € Z (or f has the Zador property) if the conclu- m 2 m

sions of the theorem hold for a densify - Z W h(fm) + H(Z). (14)
The following notation will be used throughout the paper: m

Note that the equality holds whenever at least two of the three

A quantitiesh(f), H(Z),and)_,  wyh(f,,) are finite. Similarly,
D (q) k if ¢ is a quantizer defined for the entire spate- | J,,, {2,,, with
0f, A o)==+ He(a) —h(f) + 5 InA partition{$;} and codebooKz;}, then
. 1
0(f; \) =l 6(f, A, q) Hy)=Y Pf(S,)lnm
l
6(f) = limsup 6(f, \) 1
A—0 :anlZPfM(Sl)lnm
8(f) = liminf 6(f, \). " l .
- = m P In ————~
Thus, the theorem is a statement of conditions under which zm: W zl: o (S2) I wm Py, (1)
+> we > Pp (S)In =2l
m { Pf(Sl)
IV. DISJOINT MIXTURES 1
= W, Pr (S)ln ———~ — Wy, 1IN w,y,
A mixture source is a random pafX, Z}, whereZ is a Em: zl: Py, (51) Em:
discrete random variable with pmaf,,, = P(Z = m), m = P(7 = X) =
1, 2, ... and conditional pdfsx|z(z|m) = fm(x) such that * Em: zl: (7 =m, q(X) =)
_me_(Qm) = 1forsome},, € B,m =1, 2, ... The pdf forX P(Z=m, ¢(X) =y)
is given by “In
Pg(X) =)
f(@) = fx(@) = Z Wi fon (). =Y waly, (@) +H(Z) - HZ|a(X)).  (15)

m

In the special case where tf¥g, are disjoint, the mixture is said
to beorthogonalor disjoint

Suppose thaf is a disjoint mixture and that for eagh, we Lemma 2: Supposef is a disjoint mixture{ f,,,, 2, W}
have a quantizey,, defined ort2,,,, i.e., an encodes,,,: ,,, — such that:(f) is finite andH (Z) < oo (Z = m if z € Q). If

The above equality holds whenevéy (¢) andH(Z) are finite.
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q is an overall quantizer (not necessarily a composite quantiz&he lemma follows from the nonnegativity of relative entropy

such thatHf( ) < oo, then (see, e.g., [5]). This result also follows from the classic Shannon
lower bound, but the above proof accomplishes the goal without
Hy(q) = h(f Z w[Hy, (¢) = M(fm)] = H(Z]a(X))  recourse to Shannon rate-distortion theory. O
(16) Lemma 4: For anyf satisfying the conditions of the theorem,
and any\

0(f, X, q) = Zwm (fms A @) — H(Z|g(X)).  (17)
07,0 < k(34 VA) + HrlQu) ~ W),

Therefore, ifA < 1/16

OF. N < 5+ Hy(@) — h() (19

It follows that

A<D wanb(fms N (18)

Proof: Subtracting (14) from (15) gives (16), which, in
turn, implies (17). Zador is missing thH (Z|q(X)) term in
his analogous formula in the proof of his Lemma 3.3(b) [18, 0(f) < k + Hp(Q1) — h(f).

p. 29]; he tacitly assumes it is If ¢ is a composite quantizer, -2
thend(fin, A, @) = 0(fm, A, gm). Thus, (18) follows from (17) Proof: Fix A > 0 and overbound(f, \) by the perfor-
sinceH(Z|q(X)) > 0 and for a givem ande > 0, ¢, can be mance using the uniform quantizer, where

and hence

chosensoth#(f,., A, ¢m) < 0(fm, A)+eforallmandhence 1
A =_— 20
Z wrne(frnv )‘) +€ 2 Z wrne(frnv )‘7 (_an) N ( )
- ™ N =[x"%. (21)
2001, % q) The quantizer » divides the unit cube intdv* cubes of side
> 6(f, \). o o X

A and volumeA¥. Consider the density as a disjoint mix-
ture of densitiesf,,, on disjoint unit cube<’,, with w,, =
V. BOUNDS P;(Cy,). Letg, be the restriction o)A to C,,,. By construc-
tion, QA is a composite quantizer with component quantizers
The following lemmas provide useful lower and upper m, all of which are uniform quantizers witiV* small cubes
bounds. of volumeA*, If f satisfies the conditions of the theorem, then

Lemma 3: For anyf, A, g Fi{fm, Cm, wn }, and@Qa satisfy the conditions of Lemma 2.
SinceH (Z|QA(X)) = 0in this case, from (17) we obtain

k
6(f, A, q) 2 —= lnm.
(f Q) 2 e e(fv )‘7 QA) = Z wrne(frnv )‘7 (Jrn)~
Therefore, als@(f) > —% In. m
Proof: Letthe part|t|on associated withbe {S;; i € 7},

let {y;; ¢ € 7} be the associated codebook, and asspme ~duantizer is

The maximum squared error within a cube using the uniform

P;(S;) > 0all i (otherwise, merge cells into cells with positive 2 2
i . A VA e
probability). Definef;(z) = f(x)1s,(x)/p; and k 5 <k 5| =3 A
=% lle—w I
gle)y="— Also, g, hasN* codevectors, and s, (¢.,) < In N*. Since
(mA)? N < A~Y/2 1 1, we obtain

the pdf for ak-dimensional Gaussian random vector with mean £ (Gm) k
y; and covariance2l;, = (\/2)I, wherel}, is thek x k identity O(fms Ay gm) = -t Hy, (gm) + 3 In X —h(frm)

me}trrmi;'n g + kA2 + 1) + kIn VA — h(fn)
k _k
0, A, q)zzij/&_ do f() <§||x—yi||2+1n @) g kI (14 VR) = h(f)

= Z i dz fi(z)1n fiz) L . . .
— s ! gi(x)ﬂé where the final inequality uses ther < »—1 inequality. Thus,
L from (14) applied to the partition into unit cubes
—Zn (fillgi) ——1n7r

e(fv )‘7 (J) = Z wrne(frna )\7 (_Zrn)

whereD(f;||g;) is the relative entropy between the densitfes k
andg; defined by g TRVA=Y D wnh(f)

Dl = [ Aoy 2 =LA B H(Q). O

gi(z)
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VI. ASYMPTOTICS whereo(1) — 0 asn — oo, and hence
Lemma 5:Suppose that f is a disjoint mixture lim Dy(gn) =0

{fm, Qm,wn} which satisfies the conditions of the the

‘which h X), Z) — (X, Z)indistributi —
orem and that{ (Z) < oo (Z = m if z € ,,). Then which means tha, (-X), Z) = (X, Z)in distribution as.

oo. Since mutual information is lower semicontinuous [7]

0(f) < X2 wmb(fm). (22) liminf [(gu(X); Z) > I(X; Z)
Proof: and hence
o(f) = hl)T\lS})lP 0(f, A limsup H(Z|q,(X)) = limsup I(X; Z|g, (X))
< limsup Z WO frns A) = I(X; Z)_hégiogf I(g.(X); 2)
A—0
m <0.

<> wm hlfjgp 0(fm> A) Since entropy is nonnegative, the lemma s proved. O
_ Z W) (23) Combining the lemmas yields the following corollary.

. . _ Corollary 1: Suppose thatf is a disjoint mixture
The interchange of the limit superior and sum follows by thff Q. wm} Which satisfies the conditions of the the-

upper bound t@(f, A) for small A of Lemma 4. Specifically, ;ram and thatl (Z) < oo (Z = m if « € Q). Then
choosing\ < 1/16 as in the lemma, then invoking (19) e

k 7’71,9 m < 9 < g < n),g mj- 25

Wb foms A) < 0 <§ L H; Q) —h(fm)>_ 2 wnflfn) SO SHD S K wnlf)- - (29)
(Note thatH y, (Q1) andh(f.,) are finite for allm by (14) and Thus, if f,, € Z for all m, then alsof € Z.
(15) sinceH (Q1), h(f), andH(Z) are finite by assumption.) Proof: The limit superior result was proved in Lemma 5.
We have by (16) To prove the limit inferior result, suppose thgt X, are chosen

k so that\,, is decreasing t6 and

Z Wi, <§ + Hf‘m,(Ql) - h(frn)) g
m . lim 0(f, \n, ¢2) = 0(f).

= 5 +Hf(Q1) _h(f)+H(Z|Q1(X)) From Lemma 2

Since the right-hand side is finite by assumption, (23) follows
from the corresponding inequality for finite sums. O 0(f, Ans @n) = Y Wb (fm: Ans @n) — H(Z|gn (X))

The next lemma proves that if a sequence of quantizers is
approximately optimal for a disjoint mixture, then in the limit
the conditional entropy of/, the random variable indicating )
which component of the mixture is in effect, given the quantizer The rightmost term goes to zero agrows from Lemma 6.
output, tends t@. The result plays a key role in quantifying the1€nce,

> Z Wb (s An) — H(Z|gn(X)).

asymptotics of the quantities considered in Lemma 2. 6(f) > limin Z Wi foms M)
Lemma 6: Suppose\,, ¢.,n = 1, 2, ... satisfy T
lim )\n =0 2 Z wrnQ(frn)-

where the\,, are decreasing, and

i 6(f, An, g) = 6(f) < oc. The interchange of limit inferior and sum is justified because of

the finite uniform lower bound té( f, A) of Lemma 3. O
Suppose also that is a disjoint mixture{ f,,,, ., wm, } such
that H(Z) < o0 (Z = mif x € Q,,,). Then VIl. PROOF OF THETHEOREM
,}EEC H(Z]gn(X)) = 0. The conclusions of the theorem were originally stated with

Proof: Since the mixture is disjointZ is a function incomplete conditions and a sketch of a proof in [11]. The gen-
of X and henceH(Z|q.(X)) = I(X; Z|¢.(X)) where eral approach of the first, second, and fourth steps is followed
I(X; Z|q.(X)) denotes the conditional mutual information ofvith corrections and details here. The proof of the third step in
X and Z giveng,(X). Thus, [11] was incorrect and a new approach is adopted here.

I(X; Z|qn(X)) = I(X, qn(X); Z2)—1(gn(X); Z)

= L(X; 2) + Han(X); Z1X) = 1{an(X); 2) We begin by showing that if is a uniform pdf on a cube of
=1(X; 2) = H(aa(X); Z) any size, therf € Z. The approach is a natural variation on
using the fact thaf (¢, (X); Z|.X) = 0 since bothg,(X) and zador’s original proof.
Z are functions ofX. The assumptions of the lemma imply that Define a cube irf2 with sidea > 0 and locatiory € R* as

k
Df(‘]n) < )\nQ(f) - 5 Anln A, + )\nh(f) + )\no(l) (24) Oa,r = {J;; r<g; <r+at=1,..., k} = [7’7 T+ a)k_

A. First Step: Uniform pdfs on Cubes
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AbbreviateC,, ¢ to C,, the cube of side in the positive quad- Replacingn?X by A, 6(xq, A) > 6(u1, m~2X). Fix A and note
rant with one corner at the origin. In particular, any translatichat

Cy » of C; = [0, 1)* is called a unit cube. Define the corre- oo \ \
sponding uniform pdfi, () = V(C, ) *1¢, ,(x). Then (0, \] = U -~ 2
; ’ a, T ’ 2 (m + 1)2’ m2
V(Car) = d* "
Mua ») =lnV(C, ,) = klna so for anyX’ € (0, A] there is an integem such that\/(m +
and ’ ’ 1)2 < X < A\/m?. p(f, \) is nonincreasing with decreasing
L hence
U () =a Flg, (z—7)=a u1<x 7). (u, N) &
Buy, \) > 2L By

- (m 2
As with cubes, we simplify the notatian, o to u,. (—,,Jfl) X2
We first show that shifting does not affect performance so we < m )2 Bur, N) < 2m+1 ) k
U1,

BERLLE — =} —“InX.
m+1 m2+2m+1) 2

Lemma 7: Suppose that a random vectiirhas a pdff and  choose any subsequence)tending to zero. The largest pos-
thatg is the pdf of the random vectdf — r for a fixed constant gjpe value of the limit superior of the right-hand sidé{s., )

can confine our interest to cubes located at the origin. =

r. Then,6(f, ) = 6(g, A). _ . and hencé(uy, \) > 6(uy) which means that
Proof: Given a quantizey for X, define a shifted quan-
tizer @ for X — r by Q(z) = ¢g(z + ) — r. Then, a simple g = il;f O(ur, A) > 0(uy).

change of variables immediately gives
Hence,
0(f; A @) = 6(g, A, Q). (26)
Conversely, given any quantizérfor X — r, the shifted quan-
tizerq(x) = Q(xz—r)+r also satisfies (26). Taking infima over
quantizers proves the lemma.

O(ur) > 6 > O(uy)

and hence the limitimy_.o 6(u1, A) must exist and equél.

Note thatt;, is finite by Lemmas 3 and 4. O
Lemma 8: Suppose we have a quantizg@r with encoder

a1:C; — T and decodep,:Z — C defined for the unit cube B. Second Step: Piecewise-Constant pdfs on Cubes

C,. Define a quantizer, with encoder«a, and decodeys, Suppose thafC; (m)} is a collection of disjoint unit cubes,

for C, by straightforward variable changes(z) = «1(%), {w,,} is a pmf with finite entropy, and

Ba(l) = aP1(l), qa(z) = aq(3). Then

1
9(“’(17 )‘7 Qa) = 9(“’17 CL72)\, QI) f(x) - zn; Wm V(Cl (m)) 101("1) (x)

_ —2
Otta, A) = Oz, a™2A). Combining Lemmas 7-9 and Corollary 1 implies tlfat Z.
Proof: Since Shannon entropy is not changed by scaling,

H..(q.) = H,, (q1). Changing variables yields C. Third Step: Distributions on a Unit Cube
h( o) =Ina* + h(wy) = lna* In this step, it is shown that if is supported on a unit cube,
then8(f) = 6(f) = 6, and hencef € Z. Suppose that
/||a: — Go(@)||Pua(z) dz = a /||a: — q(2)]|?u1 () d P;(C) = 1for a unit cubeC and thath(f) > —oc.

From Lemma 7, it is enough to prove the statementifos
and hencé(u,, \) = 6(uy, \/a?). O ¢;. For any positive integed/ we can partitionC; into A7*
cubes of side length/M, saySy; = {C(m); 1, 2, ..., M*}.

The lemma allows us to concentratewf{z) = 1, (z), the > : X .
Given a pdff, form a piecewise-constant approximation

uniform pdf on the unit cubé€’;.

Lemma 9: limy_o 8(u1, \) = Oy, i.e.,u; € Z. M~

A . : L FOD(g) Py (C(m))
Proof: Partition the unit cubeC; into m* disjoint -

V(&m) e

cubesC,,,. For each of the small cubes have a uniform pdf "':kl
Ji/m(z) = m”* on the cube. All of the small cubes have the M X
= wa M legn ().
samep( f1/m, A). From Lemma 8 ~ m (m)
_ 2 . . L .
O(f1/m» A) = O(uz, m™A). The use of the piecewise-constant approximation to the original
From Lemma 2, pdf follows that of [2], [8]. This is a disjoint mixture source with

Wy = P;(C(m)) and component pdff,, (z) = M Mlem ().
If Py; denotes the distribution induced B§*?), i.e.,

Puy(F)= [ f™(z)d
which with the previous equation implies w(F) /Ff (@) d
O(u1, ) < B(uy, m2X). then fOD = Py, /dV (z).

m* 1
U’lv Z_k fl/rnv —e(fl/rnv )
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Lemma 10: and choose the length functign optimally with respect tag;
_ R andgqq, i.e.,
lim f™(z) = f(x , V-a.e. .
i, 0 = 1) 0 = ~WPy(SH. 6o A gs, ) = 6. A )
lim [/ —fllL =0 (30)
M._’OO 2) A second quantizef» is a uniformk-dimensional quantizer
Jim R(S) = A()- with side widthA = 1/N, where N = |A%/2], so that

<AV2 A< — 2 < — < 2\
Proof: The first result follows by differentiation of mea- | N ? /16, vﬁn ch\\{v_e/ c(:<151n a\é;l)JmAe Wlth)\O/LEtl | osi\éf_)genzi\alrty in
sures (see, e.g., [16, p. 108]), the second from Scheffé’s lemfag—asymptotlc)( _ 0) analysis. Then for alt € C;

0

(see, e.g., [3]). The third result follows from the convergence AZ L
entropy for uniform scalar quantizers, e.g., [6]. For complete- d(z, @2(z)) <k — < = A\
ness, we also provide a direct proof. /gt and P, be two dis- 4 2
tributions corresponding to pdfs andg. The relative entropy
of a measurable partitio = {S;; [ = 1, 2, ...} with distri-

Let as andZ, denote the encoder and index segffand define
the (constant) length functiofy by

k
bution P; with respect to a distributio®, is b(i)=—Ilnp* +1— B In A
B Py(S;) Note that/, is admissible since
Hf”g(s) - z : Pf(Sl)ln Pg(Sz) 2 0 § e—éz(i) — Nke—lp*)\k/Q S C_lp* < 1. (31)

1CZ2
where the inequality fO”OWS-fI'OI'T] the divergence mequghty. If The guantizery, is designed to be good for a particular pdf
Sm, M =1, 2, ... asymptotically generates the Borel field ofyhile the quantizey is designed to provide a bound on the dis-

Q, then tortion and length which will be valid for any pdf. A composite
) () guantizeig can be formed by merging andgs which will still
A}lgloo Hyjo(Snr) = / f(z)1n g(z) dz. (27)  be well matched to a specified pdf, but will now also have a uni-

form bound on distortion and length over all pdfs. This bound
(See, e.g., [9].) Now and f**) are pdfs on the unit cube. Wewill permit us to bound the performance resulting from applying

have that the quantizer to distinct pdfs. The merging is accomplished by
I (f(M)) _h(f) the universal coding technique of considering the union code-
book and simply finding the minimum Lagrangian distortion

_ (M) (M) codeword in the combined codebook: given an input veetor
/ f(@)In f(w) Z /C(m) / Yl () da to find the code yielding the smallest Lagrangian distortion, i.e.,

let
= | fl@&)n f(z)dx — Wy 10wy, M*) ds
/ Z m(z) = arg min (d(z, qu(x)) + Mi(u(x)))
/ (= dx — Hyjpui (Sn). define the encoder af by
This goes to zero from (27) and the fact that the sequence of () = (m, ©) = (m(@), om()())
partitions Sy, of the unit cube intaM* cubes of side length and define the decoder B(m, i) = 3,,(i). Recall the defini-
1/M generates the Borel field of the unit cube. O tion of the index subsef; C 7Z; in (28), and define the length
Supposey; is a quantizer o’y with corresponding encoderfunCtion forg as
1 1 i =1 I =0
ay, index setZy, partition{S}: i € Z; }, and decodes,. Letg U, i) = 8’+ , :; Z -, Zzgi 2 jl \ 7
be a pdf onC; (which will be eitherf or f)). Fix 0<e<1. tald) " me—o !

The next lemma (proved in Appendix B) shows that i§ small
enough and; is (approximately) optimal for the pdf, theng, Then? is admissible since by (30), (29), and (31)

has a collection of cells with total probability betweg ande. > e=tm, i)

Lemma 11:Let g be any pdf such that(g) < oo andh(g) e L PN L
is finite, and fix0 < ¢ < 1. Then there is a thresholtl, = = > a0l 3T a0
Ao(g, €) > 0 such that ifA < g, then any quantizeg;, that iCTi\T iCJ1 iCTy
satisfiesd(g, A, q1) <0(g, A\)+¢ has a collectio{ S}:i € 7, } < Z P,(SH + Z TIPS P
of cells with total probability bounded as iCTNTL chl

S< Y PASH<e (28) =l-p e ey
27 <1
tC T

SetB = {z:m(z) = 2} andW = |J,. 5, Si. Then the defini-
Let A be small enough and chooge so that it satisfies the 45, o5 7 implies !

conclusion of Lemma 11. Define =
d(z, g(x)) + M(a(x))

r= ; Py(S0) (29) = min [d(z, @ (2)) + Ma(ea(@))] + Mwns: (z)
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and hence D. Final Step: Proof of Theorem

d(z, g(x)) + M(a(z)) < d(z, qiz)) + Mi(oa(z)) Carve(2 into disjoint unit cubes’; (m) and write the pdff
+Alwnp: (), I=1,2. (32) as the disjoint mixture

In particular, the upper bound fér= 2 implies flz) = Z Pr(C1(m)) fm(z)

d(zx, Glz))+M(a(z)) < <§ —Inp* + 1) )\—g Aln A, (33)

The next lemma is proved in Appendix C.

fm(x) = % 101(771)(37)'

Lemma 12: The quantizer; satisfies From Corollary 1

‘9 (f, )\7 67 Z) -8 (Jf‘(]\l)7 )\7 67 z>‘ Z wle(frn) S Q(f) S g(f) S Z wrng(frn)- (35)
L . L R From the previous ste@y f..) = 8(f.) = 6 for all m, and
= [(5 —inpt 1) i) hm} Hf - f(M)Hl henced(f) = 6(f) = 6, which proves the theorem.
+ ‘h(f) —h (f(M))‘ + b(M) APPENDIX A
whereb(1/) depends only off and, and lim b(M) = 0. PROOF OFLEMMA 1

The result was first stated in [14]. The proof here follows sim-
ilar lines, but corrects several errors. Analogous to&mmta-
[é & +14 k In W} 1 Hf _ f(M)H +b(M) < e. (34) tion introduced earlier for the Lagrangian formulation, we de-
2 2 2 ]2 L - fine similar quantities for the traditional form. Recall that the
Use the design pdf = f*) to constructy;. Theng; satisfies unit of entropy is usually nats, but bits will be used when en-
Lemma 11 for allx small enough. Recall that by construction tropies appear in an exponentf

Fix M large enough such that

0 (FO 0 s ) =0 (FO9, 0 @) 0(FO,0) +e. $(f, B, q) = Dy(g)2F F71ID
This and (32) imply Cf, B)y= inf ((f, R, q)
F(M) = 7 ¢ Hp()<R
0 (/™7 q7)
¢(f) = liminf ¢(f, B)
d(z, q1(z)) F(M _ o
< / (f +f1(0 (@) + Lwnpe(2) ) fOD(2) de () = timsup (. B,
k A Thus, we have
+ = InA—h(fOD ’ ,
2 () Sp(R)2FEMI) = ((f, R).
=0 (f(M)7 A, ql) +P}(M>(W N B°) The traditional form of Zador’s property can now be de-
scribed ag(f) = ((f) = b(2, k) and the Lagrangian form as
SQ(f(M),)\)—l—Qc 0(f) = 0(f) = bh.

The connection between the limits in one direction follows
from the following equality, which is used repeatedly in the
proof

where the last inequality holds sinE?mD(Wch) <p"<e
Combine this with the bound of Lemma 12 to obtain

0(f, ) <6(f, X, 7. 0 k [2D;(q) 2D (q)
59(f<M>,A, 7 ?) 60, Q):E[ SRS _1}
k . k - L 2(H (9)=h(f))
+ [5—111]7 +1+§1117r} Hf—f Hl +§ In ?Df(Q)Q’“ - (36)

The term in the square brackets is nonnegative dince< »—1.
Sinced(f) is finite by Lemma 3, just as in Lemma 6 we can

+ ‘h(f)—h(f(M))‘ +B(M)

<0 (f(M) ,\) 42 choose\,, — 0 asn — oo so thatf(f, \,) — 8(f) and hence
B i ’ L a sequence of quantizegg exists such thal(f, A., ¢.) —
+ {5 —lnp +1+5 m} = oo €0 Thus, by (24)
+ |h(f) = h (f(M))‘ 4 b(M) Dy(gn) — 0. @7

<6 (f(M)7 /\) +3e Define A} = 2Df(Zn)/k ;nd observe that by (36)

where the last inequality follows from (34) and the fact that ~ ¢(f, An, ¢2) =5 In <f Df(qn)Q%(Hf(q”)h(f))>

p* > e_/2. Sincg tr)is bound holds for al small engugh, we <O(f, ) (38)
obtain(f) < 6(f™)) 4 3¢. This is equivalent td(f) < =\ Ans o . .

Ox + 3¢ since ) has the Zador property. Thug(f) < 6, ~ FromlLemma3d(f, X, g) > —5 Inm. SinceDs(gn) — 0,
sincee > 0 was arbitrary. The converse inequality< 6(f)is this necessarily implies that

proved in a similar fashion using the design gdf f. H(g,) — oo. (39)
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Sinceg, has entropyH ;(¢,,) and distortion and then we prove that (44) implies
Dy(an) 2 65(Hy(qn) ¢(f) = liminf §;(R)2EFID 2 b2, k) (45)
the minimum average distortion over all quantizers having raigq
Hy(gn), we have that E(f) = limsup 6 (R)2EEHD) < p(2, k). (46)
R—oo

6(f) = lim 6(f, An, ) | ,
el i ) To show (44) note that(f, \) — AR is the largest affine func-
> liminf - In <—6 Df(qn)2%<Hf(%)—h(f))> tion with slope—A\ that is majorized bys;(R). Sinced,(R)
n—eo 2 k is the pointwise supremum of all affine functions that are ma-
jorized byé;(R) (see, e.g., [12]), anéif( ) is nonincreasing

k 2e 2
S lminf =c 7 (Hy(gn)=h(£))
> liminf 5 1n<k 67(Hy(gn))2 ) 6f( )_sup( (f; A) = AR).

n—0o00

_k ln 2e lim inf 6f(Hf(qn))2%(Hf((17z)7h(f)) By assumptio(f, ) = 9k +o( ), whereo(1) — 0asA — 0;
2 kn—eo hence
k
k ln%C(f) o(f, )= AR =X <9k +o(l)+nh(f)—R- B ln)\> 47)
Summarlzmg where the expression in parentheses is positive fok all 0

small enough. On the other hand

k. 2e
0(f) z 5 In—-C(f). (40) I
Now suppose that Zador's traditional result holds, hence  P(/> A) < Df(Q1) + AH;(Q1) < 2t AH(Q1)

¢(f) = <(f) = b(2, k) and for any sequencl, — oo there hence, for allR > H(Q;)
is a sequence of quantizefs with H;(g,) < R, for which ) Ek

. A
¢(f, Ry, gn) — b(2, k) so that p(fy )= ARZLO0 if A>Ar= m
Dy(gn )28 B0 — b(2, k). (41) 1t follows that
Choose\,, — 0 such thab(f, A\,) — 6(f). For this sequence §;(Ry= sup (p(f, \) — AR).
An, define AE(0,AR]
ko262, k) Fix an arbitrarye > 0. SinceAgr — 0 asR — oo, (47) implies
R, =h(f)+ 5 In ﬁ (42) that for all R large enough
" - k
and construct, as in (41) for thisR,,. Then op(R) < AESEEI; ] A <9k +e+h(f) - R~ 2 In )\)
k 2e o
—In — b(2, k) . k
2k L g §4(R)> sup /\<6k—e+h(f)—R——1n)\>.
= lim ¢ In 27 Dy(g)2E0 M) MO N
n—oo 2 k The suprema are readily evaluated by differentiation taking ad-
> liminf <ﬁ In 2e Df(qn)g%(ﬂf(qn)—h(f))> vantage of the concavity 6f A In A\. More directly, one can use
n—oo k the inequalityln» — » < —1 to show that fore = 65, + ¢ +
— liminf <9(f, Ay @) — g h(f) - R N
n—oo 2 _ eﬁc_ Zc_l
' 2Df(q")—1n 2Df(qn)_1 )\<Ec—ln)\>—)\<ln 3 —|—1>§@'
kA, kX, '

é/vhere equality holds if and only it = et<~!. Note that
%°~1 < Ap for large enoughi; hence

<k ero-19-2-n()
2

Sinced(f, \n, qn) 2 6(f, A )and the ratios in square bracket
gotol (based on (41) and (42)), it follows that
E In k “b(2, k) > liminf 6(f, \) = 0(). bp(R) <
This combmed with (40) completes the proof that if the tradi-
tional Zador limit holds, then so does the Lagrangian form with
k. 2 Sincee > 0 was arbitrary, we obtain (44).
O = 5 In - b(2, k). (43) By definition, 6;(R) < &;(R); hence (44) immediately
Suppose instead that the Lagrangian form of Zador’s theorgmelds (45). To prove the converse inequality, observe that (46)
holds, so thaé(f) = 6(f) = 6x. Let 64(R) denote the convex will follow from (44) via normalization and scaling if we can
hull of 6;(R) defined as the largest convex function(@) oc) show that for any nonincreasing functiégt) on (0, o) whose

§,(R) > ’;@mk —1g—2(R=I(f))

that is majorized by ;(R). First, we show that convex hullé(t) satisfies
lim §p(R)2FEID = (2, k) (44) Jlim S(t)et =1 (48)
where we have

b(2, k) = gg%"k*JL limsup &§(t)e’ < 1. (49)

t—oo
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The proof is by contradiction. Assume (49) does not holdote thath — log(l + a) > 0 ase — 0, implying that the

and so there exist > 0 and a sequencg, — oo such that rightmost term converges to zeroas- 0. Since(¢" —1)/h >

8(tn) > (1 +a)e ' foralln. Fix0 < e < 1 suchthat < @ 1forallh > 0andy(lny—1)+1> 0forally > 1, we have

and choose large enough such that for al> ¢,, — In }Jj‘j 1 < o
In

R lim _
(1—e)e™t < 8(t) < (1+e)e . (50) =0 h h
Therefore, we can choose > 0 small enough and,, large
enough so that
8(t) = (1+a)e™™. (51) 5oy " et

2y BO-040e7) 2 e, (=000

contradicting (50). We conclude that (48) implies (49) which
completes the proof that the theorem implies the traditional
Zador conclusions. O

—1)+1>0.

Let ¢ be the unique solution of the equation

(Forn large enough, a unique solutief) always exists since
(48) and the fact thai(¢) is convex imply thaw(¢) is strictly
decreasing antim;_.., 6(t) = 0.) Note that by (50)

1
Oy (52)
1+e¢ APPENDIX B

PrROOF OFLEMMA 11

+a
1_€<t;<tn—ln

Sinceé(¢) is nonincreasing ané(t,,) > (1 + a)e™'", we have
8(t) = (14 a)e™* fort < t,. Therefore, the line segmentin  First we show that if for alh > 0 we choosey to satisfy
the (¢, 6)-plane joining the pointgt;,, 6(¢;,)) and(t., 6(tz))  6(g, ), qx) < 8(g, A) + ¢, then the cell{S; 1} of ¢ satisfy

lies belowé(t). Sinceé(t) is the largest convex function such

t, —In

that(¢) < §(¢), this implies that for alk > 0 lim max Fy(S;,2) = 0. (53)
A S() — b(tn) . Choose\ small enough so that(g, A) < 6(g) + ¢, and letgy
o(t) = ST (t = tn) + 0(tn). be such tha#(g, A, q») < 8(g, \) + . Then

- k
Defineh = In ¢ Thent,, — t/, < h by (52), so fort,, — h < D,(q\) < A0(g) + A2+ Ah(g) — 5 Alnd=o0(1) (54)

t<t, ‘ .
- whereo(1) — 0 asA — 0. Denote the code vector associated

2 / _ 2 " . i i .
5) > _6(t:,) - f/(tn) (=) + (k) with S; x by ¥, », and define
o Ay = [ lle=veallate) do
N h " " Fix ¢ > 0 and letA. = {z: g(x) > ¢}. Then
8(t,) — (1— e)e™tn —t 2
> - (t—ta) + (1€ dg(Sia) 2 ¢ lz = yi, All” dz
h Si, ANA,

1—¢ —tn+l _ 1 — e tn .
~ =9 L9 )+ (1= e > V(55,0 N A) TGy

h

where the third inequality follows from (50) and the last equalit
from (51). We obtain that fot,, — h < ¢t < £,

hered,, is the normalized second moment dé-alimensional
phere (see, e.g., [10]). Siné& (gx) = >, d4(S;, 1), this and

(54) imply
() — (1 +e)et
() = ) o1 14 lim max V(S; ANA;) =0
> (1— et <— )1 - T G_H't”) Ao
- from which it follows thatlimy—_ max; P,(S; » N A.) = 0

2 (1 —e)e g(t). by the absolute continuity o, with respect to the Lebesgue

. . . ) ) measure (see, e.g., [1]). Note that
Again, using either calculus or ther < » — 1 inequality, the

maximum ofg(t) is seen to be achieved at Py(Si,2) € Py(Si,a N A) + Py(R*\ A)
1 h_1 and so
tr =t,+1n +C—lnch .
1—e lim max F,(S; 1) < Pg(§Rk \ Ae).

—0

Note that since(c® — 1)/h < " for all . > 0, we have
tr > t, — h. Also, it is easy to see that < ¢, if ¢ is small Since
enough. Choosing suchand a corresponding largge we ob-

o lim PR\ A.) = lim P, ({: g(x) < c}) = 0

max  g(t) = g(¢}) (53) follows.
tC[tn —hty] The statement of the lemma follows by noticing that if

-1 | eh—1 . . e —1 . 14e¢ max; P,(S; \) < ¢/2, then there must exist a collection of
n —H) e T partition cells with total probability betweery2 ande. Note
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in the above proof that the upper boundsianx; F,(S; ») and so the function
depend only ory, A, ande, and not on the particular choice of

~ +
gx. Therefore, the conclusion holds for apywith . [f(x) — f& (37)}
MA\L) = N
0(g: A, q1) < 0(g, A) +e 3 Hf - f<M>H1
if Ais less than a threshold depending onlyeandg. U isa pdf. Thus
APPENDIX C d(z, g(®)) 45— ﬁ _aya]T
PROOF OFLEMMA 12 / [ A +H@(@) + 5 A [f(x) ! (x)} de

By definition

= (H(FM, \G OH+h FM Hf f(M)H
0(5. 07,09~ 0 (79, A 7.7)

_ > (6(Fp, N\, @) +h(Fy) Fo f(M)
:‘ / {M +z<a<x>>+§m} #()do— () W A D) R(E) | I

> <—ﬁ In 7+ h(Fy ) Hf f<M>H (59)
d(z, 9(z)) -, k
B / { A +{a(@)) + 2 n )\} where in the last step we used the bound of Lemma 3. We have
. f(M) F(M) 1 "
P04 (700)] 3l - 700 o
d(z, g(x)) 5, k 1 . 1 N
| [ i + S =3l 70l m (3= ],)
1@ = FOO@)] del + n(p) - n (F0)]. (55) - [ 1@ - 1) " 1) - )] a.
For any real numbey, let By Lemma 10,
yT =max(y, 0) and y~ = max(—y, 0) J\}Hn F(z) = f(=)
that
so e V-almost everywhere. Sindg(z) — fOD(2)]T < f(z)
y=y" -y, Wl=y"+y. (56) ) . ) .
o 1) = 799 [(0) - ()]

< max (e, |f(z)In f(z)]) .

‘/ [—d(a:, 7)) + {(@(z)) + gln )\} [f(a:) - f(M)(a:)} dx
Since [ |f(z)In f(z)| < oo and[f(z) — fO(x)]* is sup-

‘/ [ (@(x)) + Eln )\} ported in the closure af, the dominated convergence theorem
2 implies
[f( )= f(a )} dx /\141210 / [f(x) - f(M)(x)r— In [f(x) — f(M)(x)} " dz = 0.
—/ {d(w,g(a:)) + £(a(z)) +§ ln)\} Hence, from Lemma 10
- m - FM) 1 =
. |:f(x) _f<M>(x)} del . (57) 1\}1 —oo 2 ‘f f ‘ M) =0. (60)
The upper bound (33) implies Letting .
7 — Z || f_ FOM)
/[%%#ﬂ+amwﬂghuﬂﬂ@_ﬂw@ﬁmm (o) =3 1 - 799
i ) and combining (58) and (59) we obtain
o g o2
Note that (56) and the fact thiif (=) — f ) (z)] dz = 0 imply 2

:/[f(x)—fW)(x)]_ do =1 Hf—fW)Hl < [g—lnp*—i-l—i-g lnw} %Hf—f(M)Hl—i-bl(M)
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whereb; (M) — 0asM — oo by (60). A similar argument  [4]
shows that
g - ; (5]
‘/ [M + {(a(x)) + k 111)\}

A 2 6
(6]
@) = 0@ de g
k k 1 .

< |2 _ * v - 0.5
= {2 pt i+ h”r} 2 Hf / H1+b2(M) o]
whereb (M) — 0 asM — oo. Let [10]
(11]

B(M) = by (M) + ba(M)

and combine these bounds with (55) and (57) to obtain thﬁZ]
bound of the lemma. O
(13]
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