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Abstract: We study the excess minimum risk in statistical inference, defined as the difference between
the minimum expected loss when estimating a random variable from an observed feature vector
and the minimum expected loss when estimating the same random variable from a transformation
(statistic) of the feature vector. After characterizing lossless transformations, i.e., transformations for
which the excess risk is zero for all loss functions, we construct a partitioning test statistic for the
hypothesis that a given transformation is lossless, and we show that for i.i.d. data the test is strongly
consistent. More generally, we develop information-theoretic upper bounds on the excess risk that
uniformly hold over fairly general classes of loss functions. Based on these bounds, we introduce the
notion of a δ-lossless transformation and give sufficient conditions for a given transformation to be
universally δ-lossless. Applications to classification, nonparametric regression, portfolio strategies,
information bottlenecks, and deep learning are also surveyed.

Keywords: statistical inference with loss; strongly consistent test; information-theoretic bounds;
classification; regression; portfolio selection; information bottleneck; deep learning

1. Introduction

We consider the standard setting of statistical inference, where Y is a real random
variable, having a range Y ⊂ R, which is to be estimated (predicted) from a random obser-
vation (feature) vector X, taking values in Rd. Given a measurable predictor f : Rd → Y
and measurable loss function ` : Y × Y → R+, the loss incurred is `(Y, f (X)). The
minimum expected risk in predicting Y from the random vector X is

L∗` (Y|X) = inf
f :Rd→Y

E[`(Y, f (X))],

where the infimum is over all measurable f .
Suppose that the tasks of collecting data and making the prediction are separated in

time or in space. For example, the separation in time happens when the data are collected
first and the statistical modeling and analysis are performed much later. Separation in space
can be due, for example, to collecting data at a remote location and making predictions
centrally. Such situations are modeled using a transformation T : Rd → Rd′ , so that the
prediction regarding Y is made from the transformed observation T(X), instead of X. An
important example for such a transformation is quantization, in which case T(X) is a
discrete random variable. Clearly, one always has L∗` (Y|T(X)) ≥ L∗` (Y|X). The difference
L∗` (Y|T(X))− L∗` (Y|X) is sometimes referred to in the literature as excess risk. A part of
this paper is concerned with transformations for which the excess risk is zero, no matter
the underlying loss function `. Such transformations are universally lossless, in the sense
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that they can be chosen before the cost function ` for the underlying problem is known.
More formally, we can state the following definition.

Definition 1 (lossless transformation). For a fixed joint distribution of Y and X, a (mea-
surable) transformation T : Rd → Rd′ is called universally lossless if for any loss function
` : Y × Y → R+ we have

L∗` (Y|T(X)) = L∗` (Y|X).

An important special transformation is feature selection. Formally, for the observation
(feature) vector X = (X(1), . . . , X(d)) and S ⊂ {1, . . . , d}, consider the |S|-dimensional
vector XS = (X(i), i ∈ S). Typically, the dimension |S| of XS is significantly smaller than d,
the dimension of X. If we have

L∗` (Y|XS) = L∗` (Y|X),

for all loss functions `, then the feature selector X 7→ XS is universally lossless. For fixed
loss `, the performance of any statistical inference method is sensitive to the dimension of
the feature vector. Therefore, dimension reduction is crucial before choosing or constructing
an inference method. If XS is universally lossless, then the complement feature subvector
XSc is irrelevant. It is an open research problem how to efficiently search a universally
lossless XS with minimum size |S|. Since, typically, the distribution of the pair X and Y is
not known and must be inferred from data, any such search algorithm needs a procedure
for testing for the universal losslessness property of a feature selector.

In the first part of this paper, we give a necessary and sufficient condition for a
given transformation T to be universally lossless and then construct a partitioning-based
statistic for testing this condition if independent and identically distributed training data
are available. With the null hypothesis being that a given transformation is universally
lossless, the test is shown to be strongly consistent, in the sense that it almost surely (a.s.)
makes finitely many Type I and II errors.

In many situations, requiring that a transformation T is universally lossless is too
demanding. The next definition relaxes this requirement.

Definition 2 (δ-lossless transformation). For a fixed joint distribution of Y and X, and δ > 0,
a transformation T : Rd → Rd′ is called universally δ-lossless with respect to a class of loss
functions L, if we have

L∗` (Y|T(X))− L∗` (Y|X) ≤ δ for all ` ∈ L.

In the second part of this paper, we derive bounds on the excess minimum risk
L∗` (Y|T(X))− L∗` (Y|X) in terms of the mutual information difference I(Y; X)− I(Y; T(X))
under various assumptions about `. With the aid of these bounds, we give information-
theoretic sufficient conditions for a transformation T to be δ-lossless with respect to
fairly general classes of loss functions `. Applications to classification, nonparametric
regression, portfolio strategies, the information bottleneck method, and deep learning are
also reviewed.

Relationship with prior work

Our first result, Theorem 1, which shows that a transformation is universally lossless if
and only if it is a sufficient statistic, is likely known, but we could not find it in this explicit
form in the literature (a closely related result is the classical Rao–Blackwell theorem of
mathematical statistics, e.g., Schervish ([1], Theorem 3.22)). Due to this result, testing with
independent data whether or not a given transformation is universally lossless turns into a
test for conditional independence. Our test in Theorem 2 is based on the main results in
Györfi and Walk [2], but our construction is more general and we also correct an error in
the proof of ([2], Theorem 1). Apart from [2], most of the results in the literature of testing
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for conditional independence are for real-valued random variables and/or assume certain
special distribution types, typically the existence of a joint probability density function.
Such assumptions exclude problems where Y is discrete and X is continuous, as is typical in
classification, or problems where the observation X is concentrated on a lower dimensional
subspace or manifold. In contrast, our test construction is completely distribution free and
its convergence properties are also (almost) distribution free. A more detailed review of
related work is given in Section 2.1.

The main result in Section 3 is Theorem 3, which bounds the excess risk in terms of the
square root of the mutual information difference I(Y; X)− I(Y; T(X)). There is a history of
such bounds, possibly starting with Xu and Raginsky [3], where the generalization error of
a learning algorithm was upper bounded using constant times the square root of the mutual
information between the hypothesis and the training data (see also the references in [3,4]).
This result has since been extended in various forms, mostly concentrating on providing
information-theoretic bounds for the generalization capabilities of learning algorithms,
instead of looking at the excess risk; see, e.g., Raginsky et al. [5], Lugosi and Neu [6], Jose
and Simeone [7], and the references therein, just to mention a few of these works. The most
relevant recent work relating to our bounds in Section 3 seems to be Xu and Raginsky [4],
where, among other things, information-theoretic bounds were developed on the excess
risk in a Bayesian learning framework; see also Hafez-Kolahi et al. [8]. The bounds in [4] are
not on the excess risk L∗` (Y|T(X))− L∗` (Y|X); they involve training data, but their forms
are similar to ours. It appears that our Theorem 3 gives a bound that holds uniformly for a
larger class of loss functions ` and joint distributions of Y and X; however, in [4], several
other bounds are presented that are tighter and/or allow more general distributions, for
specific fixed loss functions.

Organization

This paper is organized as follows. In Section 2, we characterize universally lossless
transformations and introduce a novel strongly consistent test for the property of universal
losslessness. In Section 3, information-theoretic bounds on the excess minimum risk are
developed and are used to characterize the δ-losslessness property of transformations.
Section 4 surveys connections with, and applications to, specific prediction problems, as
well as the information bottleneck method in deep learning. The somewhat lengthy proof
of the strong consistency of the test in Theorem 2 is given in Section 5. Concluding remarks
are given in Section 6.

2. Testing the Universal Losslessness Property

In this section, we first give a characterization of universally lossless transformations
for a given distribution of the pair (X, Y). In practice, the distribution of (X, Y) may not be
known, but a sequence of independent and identically distributed (i.i.d.) copies of (X, Y)
may be available. For this case, we construct a procedure to test if a given transformation is
universally lossless and prove that, under mild conditions, the test is strongly consistent.

2.1. Universally Lossless Transformations

Based on Definition 1, we introduce the null hypothesis

H0 = {T : the transformation T is universally lossless.} (1)

A transformation (statistic) T(X) is called sufficient if the random variables Y, T(X),
X form a Markov chain in this order, denoted by Y → T(X)→ X (see, e.g., Definition 3.8
and Theorem 3.9 in Polyanskiy and Wu [9]).

For a binary valued Y, Theorems 32.5 and 32.6 from Devroye et al. [10] imply that the
statistic T(X) is universally lossless if, and only if, it is sufficient. The following theorem
extends this property to general Y. This result is likely known, but we could not find it in
the given form.
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Theorem 1. The transformation T is universally lossless if, and only if , Y → T(X) → X is a
Markov chain.

Proof. Assume first that Y → T(X)→ X is a Markov chain. This is equivalent to having
P(Y ∈ A|X, T(X)) = P(Y ∈ A|T(X)) almost surely (a.s.) for any measurable A ⊂ Y . Then
we have

L∗` (Y|X, T(X)) = E
[

inf
y∈Y

E[`(Y, y)|X, T(X)]
]

= E
[

inf
y∈Y

E[`(Y, y)|T(X)]
]

= L∗` (Y|T(X)).

Since L∗` (Y|X, T(X)) ≤ L∗` (Y|X) ≤ L∗` (Y|T(X)) always holds, we obtain L∗` (Y|T(X)) =
L∗` (Y|X) for all `, so T(X) is universally lossless.

Now, assume that the Markov chain condition Y → T(X)→ X does not hold. Then,
there exists a measurable A ⊂ Y with 0 < P(Y ∈ A) < 1 and B ⊂ Rd with P(X ∈ B) > 0,
such that

P(Y ∈ A|X, T(X)) 6= P(Y ∈ A|T(X)) if X ∈ B.

Let h(y) = Iy∈A, where IE is the indicator function of event E, and define the binary valued
Ŷ as Ŷ = h(Y). Then, the Markov chain condition Ŷ → T(X)→ X does not hold. For this
special case, Theorems 32.5 and 32.6 in [10] show that there a loss function ˆ̀ : {0, 1}2 → R+

exists, such that L∗ˆ̀ (Ŷ|T(X)) > L∗ˆ̀ (Ŷ|X). Finally, letting `(y, y′) = ˆ̀(h(y), h(y′)), we have

L∗` (Y|T(X)) = L∗ˆ̀ (Ŷ|T(X)) > L∗ˆ̀ (Ŷ|X) = L∗` (Y|X),

which shows that T(X) is not universally lossless.

2.2. A Strongly Consistent Test

Theorem 1 implies an equivalent form of the losslessness null hypothesis defined
by (1)

H0 = {T : Y → T(X)→ X is a Markov chain}, (2)

or equivalently,H0 holds if and only if X and Y are conditionally independent given T(X):

H0 : P
(
X ∈ A, Y ∈ B | T(X)

)
= P

(
X ∈ A | T(X)

)
P
(
Y ∈ B | T(X)

)
a.s.

for arbitrary Borel sets A, B. Furthermore, we consider the general case where the alterna-
tive hypothesisH1 is the complement ofH0: H1 = Hc

0.
Now, assume that the joint distribution of (X, Y, T(X)) is not known but instead a

sample of independent and identically distributed (i.i.d.) random vectors (X1, Y1, Z1), . . . ,
(Xn, Yn, Zn) having a common distribution of (X, Y, Z) is given, where Zi = T(Xi) and
Z = T(X).The goal is to test the hypothesis H0 of conditional independence based on
these data. In fact, our goal is to provide a strongly consistent test; i.e., a test that, with a
probability of one, only makes finitely many Type I and II errors.

For testing conditional independence, most of the results in the literature used real
valued X, Y, Z. Based on kernel density estimation, Cai et al. [11] introduced a test statistic
and under the null hypothesis calculated its limit distribution. In Neykov et al. [12], a
gap was introduced between the null and alternative hypotheses. This gap was charac-
terized by the total variation distance, which decreased with increasing n. Under certain
smoothness conditions, minimax bounds were derived. According to Shah and Peters [13],
a regularity condition such as our Lipschitz condition (5) below cannot be omitted if a test
for conditional independence is to be consistent. This is a consequence of their no-free
lunch theorem that states that, under general conditions, if with the null hypothesis the
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bound on the error probability is non-asymptotic, then under the alternative hypothesis the
rate of convergence of the error probability can be arbitrarily slow, which is a well-known
phenomenon in nonparametric statistics. We note that these cited results, and indeed
most of the results in the literature when testing for conditional independence, were for
real-valued random variables and/or assumed certain special distribution types, typically
the existence of a joint probability density function or that both X and Y are discrete, as
in [12]. As we remarked earlier, such assumptions exclude problems where Y is discrete
and X is continuous (typical in classification) or problems where the observation X is con-
centrated on a lower dimensional subspace or manifold. In contrast, our test construction
is completely distribution-free and its convergence properties are almost distribution-free
(we do assume a mild Lipschitz-type condition; see the upcoming Condition 1) .

In our hypotheses testing setup, the alternative hypothesis, H1, is the complement
to the null hypothesis, H0; therefore, there is no separation gap between the hypotheses.
Dembo and Peres [14] and Nobel [15] characterized hypothesis pairs that admitted strongly
consistent tests; i.e., tests that with a probability of one only make finitely many Type
I and II errors. This property is called discernibility. As an illustration of the intricate
nature of the discernibility concept, Dembo and Peres [14] demonstrated an exotic example,
where the null hypothesis is that the mean of a random variable is rational, while the
alternative hypothesis is that this mean minus

√
2 is rational. (See also Cover [16] and

Kulkarni and Zeitouni [17].) The discernibility property shows up in Biau and Györfi [18]
(testing homogeneity), Devroye and Lugosi [19] (classification of densities), Gretton and
Györfi [20] (testing independence), Morvai and Weiss [21] and Nobel [15] (classification of
stationary processes), among others.

In the remainder of this section, under mild conditions for the distribution of (X, Y),
we study discernibility in the context of lossless transformations for statistical inference
with general risk. We will make strong use of the multivariate-partitioning-based test of
Györfi and Walk [2].

Let PXYZ denote the joint distribution of (X, Y, Z) and similarly for any marginal
distribution of (X, Y, Z); e.g., PXZ denotes the distribution of the pair (X, Z). As in Györfi
and Walk [2], introduce the following empirical distributions:

Pn
XYZ(A, B, C) =

#{i : (Xi, Yi, Zi) ∈ A× B× C, i = 1, . . . , n}
n

,

Pn
XZ(A, C) =

#{i : (Xi, Zi) ∈ A× C, i = 1, . . . , n}
n

,

Pn
YZ(B, C) =

#{i : (Yi, Zi) ∈ B× C, i = 1, . . . , n}
n

,

and

Pn
Z(C) =

#{i : Zi ∈ C, i = 1, . . . , n}
n

,

for Borel sets A ⊂ Rd, B ⊂ R, and C ⊂ Rd′ .
For the sake of simplicity, assume that X, Y, and Z = T(X) are bounded. Other-

wise, we apply a componentwise, one-to-one scaling in the interval [0, 1]. Obviously, the
losslessness null hypothesisH0 is invariant under such a scaling. Let

Pn = {An,1, . . . , An,mn}, Qn = {Bn,1, . . . , Bn,m′n}, Rn = {Cn,1, . . . , Cn,m′′n}

be the finite cubic partitions of the ranges X, Y, and Z, with all the cubes having common
side lengths hn (thus, hn is proportional to 1/m′n). As in [2], we define the test statistic

Ln = ∑
A∈Pn ,B∈Qn ,C∈Rn

∣∣∣∣Pn
XYZ(A, B, C)−

Pn
XZ(A, C)Pn

YZ(B, C)
Pn

Z(C)

∣∣∣∣. (3)
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Our test rejectsH0 if
Ln ≥ tn,

and accepts it if Ln < tn, where the threshold tn is set to

tn = c1

(√
mnm′nm′′n

n
+

√
m′nm′′n

n
+

√
mnm′′n

n
+

√
m′′n
n

)
+ (log n)hn, (4)

where the constant c1 satisfies

c1 >
√

2 log 2 ≈ 1.177.

In this setup, the distribution of (X, Y) is arbitrary; its components can be discrete or
absolutely continuous, or a mixture of the two or even singularly continuous. It is important
to note that to construct this test, there is no need to know the type of distribution.

We assume that the joint distribution of X, Y, and Z = T(X) satisfies the follow-
ing assumption.

Condition 1. Let p( · |z) be the density of the conditional distribution PX|Z=z = P(X ∈ · |Z = z)
with respect to the distribution PX as a dominating measure and introduce the notation

Cn(z) = Cn,j if z ∈ Cn,j.

Assume that for some C∗ > 0, p(x|z) satisfies the condition

∫ ∫ ∣∣∣∣p(x|z)−

∫
Cn(z)

p(x|z′)PZ(dz′)

PZ(Cn(z))

∣∣∣∣ PX(dx)PZ(dz) ≤ C∗hn, (5)

for all n.

We note that the ordinary Lipschitz condition∫ ∣∣p(x|z)− p(x|z′)
∣∣ PX(dx) ≤ C∗√

d′
‖z− z′‖ for all z, z′ ∈ Rd′ (6)

implies (5). This latter condition is equivalent to

dTV
(

PX|Z=z , PX|Z=z′
)
≤ C∗

2
√

d′
‖z− z′‖ for all z, z′ ∈ Rd′ ,

where dTV(P, Q) denotes the total variation distance between distributions P and Q. In
Neykov, Balakrishnan, and Wasserman [12], condition (6) is called the Null TV Lips-
chitz condition.

The next theorem is an adaptation and extension of the results in Györfi and Walk [2] to
this particular problem of lossless transformation. In [2], it was assumed that the sequence
of partitions {Pn, Qn,Rn} is nested, while we make no such assumption. The proof, in
which an error made in [2] is also corrected, is relegated to Section 5.

Theorem 2. Suppose that X, Y, and Z = T(X) are bounded and Condition 1 holds for all n. If the
sequence hn satisfies

lim
n→∞

nhd+1+d′
n = ∞ (7)

and

lim
n→∞

hd′
n log n = 0, (8)

then we have the following:
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(a) Under the losslessness null hypothesisH0, we have for all n ≥ eC∗ ,

P(Ln ≥ tn) ≤ 4e−(c
2
1/2−log 2)m′′n , (9)

and therefore, because ∑∞
n=1 P(Ln ≥ tn) < ∞ by (8) and (9), after a random sample size, the

test produces no error with a probability of one.
(b) Under the alternative hypothesisH1 = Hc

0,

lim inf
n→∞

Ln > 0 a.s.,

thus, with a probability of one, after a random sample size, the test produces no error.

Remark 1. (i) The choice hn = n−δ with 0 < δ < 1/(d + 1 + d′) satisfies both conditions
(7) and (8).

(ii) Note that using (4), tn is of order c1

√
mnm′nm′′n

n + (log n)hn. Since we have

mn = O(1/hd
n), m′n = O(1/hn), m′′n = O(1/hd′

n ),

this means that tn is of order
√

1/(nhd+1+d′
n ) + (log n)hn.

An important special transformation is given by the feature selection XS defined in
the Introduction. Theorem 2 demonstrates the possibility of universally lossless dimension
reduction for any multivariate feature vector. Note that in the setup of feature selection, the
partition Pn can be the nested version ofRn and so the calculation of the test statistic Ln
is easier.

3. Universally δ-Lossless Transformations

Here, we develop bounds on the excess minimum risk, in terms of mutual information
under various assumptions about the loss function. With the aid of these bounds, we
give information-theoretic sufficient conditions for a transformation T to be universally
δ-lossless with respect to fairly general classes of loss functions `.

3.1. Preliminaries on Mutual Information

Let PXY denote the joint distribution of the pair (X, Y) and let PXPY denote the product
of the marginal distributions of X and Y, respectively. The mutual information between X
and Y, denoted by I(X; Y), is defined as

I(X; Y) = D(PXY‖PXPY),

where

D(P‖Q) =

{∫ dP
dQ log

( dP
dQ
)

dQ if P� Q

∞ otherwise,

is the Kullback–Leibler (KL) divergence between probability distributions P and Q (here,
P� Q means that P is absolutely continuous with respect to Q with the Radon–Nikodym
derivative dP

dQ ). Thus, I(X; Y) is always nonnegative and I(X; Y) = 0 if and only if X and Y
are independent (note that I(X; Y) = ∞ is possible). In this definition and throughout the
paper, log denotes the natural logarithm.

For random variables U and V (both taking values in finite-dimensional Euclidean
spaces), let PU|V denote the conditional distribution of U, given V. Furthermore, let PU|V=v
denote the stochastic kernel (regular conditional probability) induced by PU|V . Thus, in
particular, PU|V=v(A) = P(U ∈ A|V = v) for each measurable set A.



Entropy 2023, 25, 1394 8 of 25

Given another random variable Z, the conditional mutual information I(X; Y|Z) is
defined as

I(X; Y|Z) =
∫

D(PXY|Z=z‖PX|Z=zPY|Z=z)PZ(dz).

The integral above can also be denoted by D(PYX|Z‖PY|ZPX|Z|PZ) and is called the condi-
tional KL divergence. One can define

I(X; Y|Z = z) = D(PXY|Z=z‖PX|Z=zPY|Z=z)

so that
I(X; Y|Z) =

∫
I(X; Y|Z = z)PZ(dz). (10)

From this definition it is clear that I(X; Y|Z) = 0 if and only if X and Y are conditionally
independent given Z, i.e., if and only if Y → Z → X (or equivalently, if and only if
X → Z → Y).

Another way of expressing I(X; Y) is

I(X; Y) =
∫

D(PY|X=x‖PY)PX(dx). (11)

One can see that in a similar way to I(X; Y|Z) can be expressed as

I(X; Y|Z) =
∫∫

D(PY|X=x,Z=z‖PY|Z=z)PX|Z=z(dx)PZ(dz). (12)

Properties of mutual information and conditional mutual information, their connec-
tions to the KL divergence, and identities involving these information measures are detailed
in, e.g., Cover and Thomas ([22], Chapter 2) and Polyanskiy and Wu ([9], Chapter 3).

3.2. Mutual Information Bounds and δ-Lossless Transformations

A real random variable U with finite expectation is said to be σ2-sub-Gaussian for
some σ2 > 0 if

logE
[
eλ(U−E[U])

]
≤ σ2λ2

2
for all λ ∈ R.

Furthermore, we say that U is conditionally σ2-sub-Gaussian given another random vari-
able V if we have a.s.

logE
[
eλ(U−E[U |V])

∣∣V
]
≤ σ2λ2

2
for all λ ∈ R. (13)

The following result gives a quantitative upper bound on the excess minimum risk
L∗` (Y|T(X))− L∗` (Y|X) in terms of the mutual information difference I(Y; X)− I(Y; T(X))
under certain, not too restrictive, conditions. Note that L∗` (Y|T(X)) − L∗` (Y|X) ≥ 0 al-
ways holds.

Given ε > 0, we call an estimator f ′ : Rd → Y ε-optimal if E[`(Y, f ′(X))] <
L∗` (Y|X) + ε.

Theorem 3. Let T : Rd → Rd′ be a measurable transformation and assume that for any ε > 0,
there exists an ε-optimal estimator f ′ of Y from X, such that `(y, f ′(X))) is conditionally σ2(y)-
sub-Gaussian given T(X) for every y ∈ Y , i.e.,

logE
[
eλ
(
`(y, f ′(X))−E[`(y, f ′(X))

∣∣ T(X)]
)
| T(X)

]
≤ σ2(y)λ2

2
a.s (14)
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for all λ ∈ R and y ∈ R, where σ2 : R→ R+ satisfies E[σ2(Y)] < ∞. Then, one has

L∗` (Y|T(X))− L∗` (Y|X) ≤
√

2E[σ2(Y)]I(Y; X | T(X))

=
√

2E[σ2(Y)]
(

I(Y; X)− I(Y; T(X))
)

. (15)

Remark 2. (i) In case I(Y; X|T(X)) = ∞, we interpret the right hand side of (15) as ∞. With
this interpretation, the bound always holds.

(ii) We show in Section 4.2 that the sub-Gaussian condition (14) holds for the regression problem
with squared error `(y, y′) = (y− y′)2 if Y = m(X) + N, where N is independent noise
having a zero mean and finite fourth moment E[N4] < ∞, and the regression function
m(x) = E[Y|X = x] is bounded. In particular, the bound in the theorem holds if N is normal
with zero mean and m is bounded.
We note that Theorem 6 and Corollary 3 in Xu and Raginsky [4] give bounds similar to (15),
in the somewhat different context of Bayesian learning. However, the conditions there exclude,
e.g., regression models in the form Y = m(X) + N if E[|N|δ] = ∞ for some δ > 0.

(iii) Although hidden in the notation, E[σ2(Y)] depends on the loss function `. Thus, the upper
bound (15) is the product of two terms, the second of which,√

I(Y; X)− I(Y; T(X)),

is independent of the loss function.
(iv) The bound in the theorem is not tight in general. In Section 4.3, an example is given in the

context of portfolio selection, where the excess risk can be upper bounded by the difference
I(Y; X)− I(Y; T(X)).

(v) The proof of Theorem 3 and those of its corollaries go through virtually without change if we
replace T(X) with any Rd′ -valued random variable Z, such that Y → X → Z. Under the
conditions of the theorem, we then have

L∗` (Y|Z)− L∗` (Y|X) ≤
√

2E[σ2(Y)]I(Y; X|Z)

=
√

2E[σ2(Y)]
(

I(Y; X)− I(Y; Z)
)

.

In fact, Theorem 3 and its corollaries hold for general random variables Y, X, and Z taking
values in complete and separable metric (Polish) spaces Y , X , and Z , respectively, if Y →
X → Z.

The proof of Theorem 3 is based on a slight generalization of Raginsky et al. ([5],
Lemma 10.2), which we state next. In the lemma, U and V are arbitrary abstract random
variables defined for the same probability space and taking values in spaces U and V ,
respectively; Ū and V̄ are independent copies of U and V (so that PŪV̄ = PU PV); and
h : U × V → R is a measurable function.

Lemma 1. Assume that h(u, V) is σ2(u)-sub-Gaussian for all u ∈ U , where E[σ2(U)] < ∞. Then,

∣∣E[h(U, V)]−E[h(Ū, V̄)]
∣∣ ≤ √2E[σ2(U)]I(U; V) .

Proof. We essentially copy the proof of ([5], Lemma 10.2), where it was assumed that
σ2(u) does not depend on u. With this restriction, the sub-Gaussian condition (14) in
Theorem 3 would have to hold with σ2(y) ≤ σ2 uniformly over y. This condition would
exclude regression models with independent sub-Gaussian noise and, a fortiori , models
with independent noise that do not possess finite absolute moments of all orders , while
our Theorem 2 can also be applied in such cases (see Section 4.2).
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We make use of the Donsker–Varadhan variational representation of the relative
entropy ([23] Corollary 4.15), which states that

D(P‖Q) = sup
F

( ∫
FdP− log

∫
eFdQ

)
,

where the supremum is over all measurable F : Ω→ R, such that
∫

eFdQ < ∞. Applying
this with P = PV|U=u, Q = PV , and F = λh(u, V), we obtain

D(PV|U=u‖PV) ≥ E[λh(u, V)|U = u]− logE[eλh(u,V)]

≥ λ
(
E[h(u, V)|U = u]−E[λh(u, V)]

)
− λ2σ2(u)

2
, (16)

where the second inequality follows from the assumption that h(u, V) is σ2(u)-sub-Gaussian.
Maximizing the right-hand side of (16) over λ ∈ R gives, after rearrangement,∣∣E[h(u, V)|U = u]−E[h(u, V)]| ≤

√
2σ2(u)D(PV|U=u‖PV). (17)

Since Ū and V̄ are independent, E[h(u, V)] = E[h(Ū, V̄)|Ū = u], and we obtain∣∣E[h(U, V)]−E[h(Ū, V̄)]
∣∣

=

∣∣∣∣ ∫ (E[h(U, V)|U = u]−E[h(Ū, V̄)|Ū = u]
)

PU(du)
∣∣∣∣

=

∣∣∣∣ ∫ (E[h(u, V)|U = u]− h(u, V)
)

PU(du)
∣∣∣∣

≤
∫ ∣∣E[h(u, V)|U = u]− h(u, V)

∣∣ PU(du) (18)

≤
∫ √

2σ2(u)D(PV|U=u‖PV) PU(du) (19)

≤
√∫

2σ2(u) PU(du)
√∫

D(PV|U=u‖PV) PU(du) (20)

=
√

2E[σ2(U)]I(U; V), (21)

where (18) follows from Jensen’s inequality, (19) follows from (17), in (20) we used the
Cauchy–Schwarz inequality, and the last equality follows from (11).

Proof of Theorem 3. Let Ȳ and X̄ be random variables, such that PȲ|T(X̄) = PY|T(X), PX̄|T(X̄)

= PX|T(X), PT(X̄) = PT(X), and Ȳ and X̄ are conditionally independent given T(X̄). Thus,
the joint distribution of the triple (Ȳ, X̄, T(X̄)) is PȲX̄T(X̄) = PY|T(X)PX|T(X)PT(X).

We apply Lemma 1 with U = Y, V = X, and h(u, v) = `(y, f ′(x)). Note that, using the
conditions of the theorem, we can choose an ε-optimal f ′, such that for every y, `(y, f ′(X))
is conditionally σ2(y)-sub-Gaussian given T(X). Consider E[`(Y, f ′(X)) | T(X) = z] and
E[`(Ȳ, f ′(X̄)), | T(X̄) = z] as regular (unconditional) expectations taken with respect to
PYX|T(X)=z and PȲX̄|T(X̄)=z respectively, and consider I(Y; X|T(X) = z) as regular mutual
information between random variables with the distribution PYX|T(X)=z. Since Ȳ and X̄ are
conditionally independent given T(X̄) = z, Lemma 1 yields∣∣E[`(Y, f ′(X)) | T(X) = z]−E[`(Ȳ, f ′(Ȳ)) | T(X̄) = z]

∣∣
≤
√

2E[σ2(Y)|T(X) = z]I(X; Y|T(X) = z) .

Recalling that T(X̄) and T(X) have the same distribution, and applying Jensen’s inequality
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and the Cauchy–Schwarz inequality as in (18) and (20), we obtain∣∣E[`(Y, f ′(X))]−E[`(Ȳ, f ′(X̄))]
∣∣

≤
∫ ∣∣E[`(Y, f ′(X)) | T(X) = z]−E[`(Ȳ, f ′(X̄)) | T(X̄) = z]

∣∣ PT(X)(dz)

≤
∫ √

2E[σ2(Y)|T(X) = z]I(Y; X|T(X) = z) PT(X)(dz)

≤
√

2
∫

E[σ2(Y)|T(X) = z] PT(X)(dz)
√∫

I(Y; X|T(X) = z) PT(X)(dz)

=
√

2E[σ2(Y)]I(Y; X|T(X)) . (22)

On the one hand, we have

E
[
`(Ȳ; f ′(X̄))

]
≥ L∗` (Ȳ|X̄) = L∗` (Ȳ|T(X̄)) = L∗` (Y|T(X)), (23)

where the first equality follows from Theorem 1 with the conditional independence of Ȳ
and X̄ given T(X̄), and the second follows, since (Ȳ, T(X̄)) and (Y, T(X)) have the same
distribution by construction. On the other hand, L∗` (Y|X) ≥ E[`(Y, f ′(X))] − ε. Thus,
(22) and (23) imply

0 ≤ L∗` (Y|T(X))− L∗` (Y|X) ≤ E[`(Ȳ, f ′(X̄))]−E[`(Y, f ′(X))] + ε

≤
√

2E[σ2(Y)]I(Y; X|T(X)) + ε,

which proves the upper bound in (15), since ε > 0 is arbitrary. By expanding I(Y; X|Z) in
two different ways using the chain rule for mutual information (e.g., Cover and Thomas
([22], Thm. 2.5.2)), and using the conditional independence of Y and T(X) given X, one
obtains I(Y; X|T(X)) = I(Y; X)− I(Y; T(X)), which shows the equality in (15).

We state two corollaries for special cases. In the first, we assume that ` is uniformly
bounded, i.e., ‖`‖∞ = supy,y′∈Y `(y, y′) < ∞. For any c > 0, let L(c) denote the collec-
tion of all loss functions ` with ‖`‖∞ ≤ c. Recall the notion of a universally δ-lossless
transformation from Definition 2.

Corollary 1. Suppose the loss function ` is bounded. Then, for any measurable T : Rd → Rd′ ,
we have

L∗` (Y|T(X))− L∗` (Y|X) ≤ ‖`‖∞√
2

√
I(Y; X)− I(Y; T(X)) . (24)

Therefore, whenever

I(Y; X)− I(Y; T(X)) ≤ 2δ2

c2 , (25)

the transformation T is universally δ-lossless for the family L(c), i.e., L∗` (Y|T(X))− L∗` (Y|X) ≤ δ
for all ` with ‖`‖∞ ≤ c.

Remark 3. (i) The bound of the theorem can be used to give an estimation-theoretic motivation
of the information bottleneck (IB) problem; see Section 4.4.

(ii) Let L∗` (Y) = L∗` (Y|∅) = infy∈Y E[`(Y, y)]. For bounded `, the inequality

L∗` (Y)− L∗` (Y|X) ≤ 2
√

2‖`‖∞

√
I(Y; X)

was proven in Makhdoumi et al. ([24], Theorem 1) for discrete alphabets, to solve the so-
called privacy funnel problem.This inequality follows from (15) by setting Z = T(X) to be
constant there.
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(iii) A simple self-contained proof of (24) (see below) was provided by Or Ordentlich and commu-
nicated to the second author by Shlomo Shamai [25], in response to an early version of this
manuscript. The bound in (24) seems to have first appeared in published form in Hafez-Kolahi
et al. ([26], Lemma 1), where the proof was attributed to Xu and Raginsky [27].

Proof of Corollary 1. If ` is uniformly bounded, then for any f : Rd → Y one has
`(y, f (x)) ∈ [0, ‖`‖∞] for all y and x. Then Hoeffding’s lemma (e.g., Boucheron et al.
([23], Lemma 2.2)) implies that for all y, `(y, f (X)) is conditionally σ2-sub-Gaussian with

σ2 = ‖`‖2
∞

4 given T(X). Since an ε-optimal estimator f ′ exists for any ε > 0 and `(y, f ′(X))
is conditionally σ2-sub-Gaussian, given T(X) using the preceding argument, (24) follows
from Theorem 3. The second statement follows directly from (24) and the fact that ‖`‖∞ ≤ c
for all ` ∈ L(c).

The following alternative argument by Or Ordentlich [25] is based on Pinsker’s inequal-
ity for the total variation distance in terms of the KL divergence (see, e.g., ([9], Theorem 7.9)).
For bounded `, this gives a direct proof of an analogue of the key inequality (22) in the
proof of Theorem 3. This argument avoids Lemma 1 and the machinery introduced by the
sub-Gaussian assumption.

Using the same notation as in the proof of Theorem 3 and letting P = PYXZ and
Q = PȲX̄T(Ȳ), we have

E
[
`(Y, f ′(X))

]
−E

[
`(Ȳ, f ′(X̄))

]∣∣ = ∫
`(y, f ′(x)) dP−

∫
`(y, f ′(x)) dQ

≤ ‖`‖∞dTV(P, Q)

≤ ‖`‖∞√
2

√
D(P‖Q) (by Pinsker’s inequality)

=
‖`‖∞√

2

√
D(PYX|T(X)PZ‖PY|T(X)PX|T(X)PT(X))

=
‖`‖∞√

2

√
D(PYX|T(X)‖PY|T(X)PX|T(X)|PT(X))

=
‖`‖∞√

2

√
I(X, Y|T(X)) .

The rest of the proof proceeds exactly as in Theorem 3.

In the second corollary, we do not require that ` be bounded but assume that an optimal
estimator f ∗` from X to Y exists, such that `(y, f ∗` (X)) is conditionally σ2(y)-sub-Gaussian
given T(X), where E[σ2(Y)] < ∞.

Corollary 2. Assume that an optimal estimator f ∗` of Y from X exists, i.e., the measurable function
f ∗` satisfies E[`(Y, f ∗` (X))] = L∗` (Y|X). Furthermore, suppose that the sub-Gaussian condition of
Theorem 3 holds with f ′ = f ∗` (i.e., (14) holds for f ′ = f ∗` ). Then,

L∗` (Y|T(X))− L∗` (Y|X) ≤
√

2E[σ2(Y)]
(

I(Y; X)− I(Y; T(X))
)

. (26)

Proof. The corollary immediately follows from Theorem 3, since an optimal f ∗` is ε-optimal
for all ε > 0.

For the next corollary, let L̂(c) denote the collection of all loss functions `, such that

`(y, f ∗` (X)) ≤ g`(y) a.s.

for some function g` : Y → R+ with E
[
g2
`(Y)

]
≤ c2.
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Corollary 3. If T is a transformation such that

I(Y; X)− I(Y; T(X)) ≤ 2δ2

c2 ,

then T is universally δ-lossless for the family L̂(c).

Proof. Since `(y, f ∗` (X)) is a.s. upper bounded by g`(y) for any ` ∈ L̂(c), using Hoeffding’s

lemma ([23], Lemma 2.2), we have that `(y, f ∗` (X)) is conditionally g2
` (y)
4 -sub-Gaussian

given T(X). Thus, from Corollary 2, for all ` ∈ L̂(c), we have

L∗` (Y|T(X))− L∗` (Y|X) ≤
√

1
2
E[g2

`(Y)]
(

I(Y; X)− I(Y; T(X))
)

≤
√

c2

2
(

I(Y; X)− I(Y; T(X))
)

≤ δ

if I(Y; X)− I(Y; T(X)) ≤ 2δ2

c2 .

The next corollary generalizes and gives a much simplified proof of Faragó and
Györfi [28], see also Devroye, Györfi, and Lugosi ([10], Theorem. 32.3). This result states for
binary classification (Y is 0-1-valued and `(y, y′) = Iy 6=y′ ) that if a sequence of functions
Tn : Rd → Rd is such that ‖X− Tn(X)‖ → 0 in probability as n→ ∞, then L∗` (Y|Tn(X))→
L∗` (Y|X) as n→ ∞.

Corollary 4. Assume that a sequence of transformations Tn : Rd → Rd is such that Tn(X)→ X
in distribution (i.e., PTn(X) → PX weakly) as n→ ∞. Then, for any bounded loss function `,

lim
n→∞

L∗` (Y|Tn(X)) = L∗` (Y|X). (27)

Note that this corollary and its proof still hold without any changes if X takes values
in an arbitrary complete separable metric space. For example, in the setup of function
classification, X may take values in an Lp function space for 1 ≤ p < ∞, and Tn is a
truncated series expansion or a quantizer. Interestingly, here the asymptotic losslessness
property is guaranteed, even in the case where the sequence of transformations Tn and the
loss function ` are not matched at all.

Proof. If Tn(X) → X in distribution, then clearly (Y, Tn(X)) → (Y, X) in distribution.
Thus, the lower semicontinuity of mutual information with respect to convergence in
distribution (see, e.g., Polyanskiy and Wu ([9], Equation (4.28))) implies

lim inf
n→∞

I(Y; Tn(X)) ≥ I(Y; X).

Since I(Y; Tn(X)) ≤ I(Y; X) for all n, we obtain

lim
n→∞

I(Y; Tn(X)) = I(Y; X).

Combined with Corollary 1 (with T replaced with Tn), this gives

0 ≤ lim
n→∞

L∗` (Y|Tn(X))− L∗` (Y|X) ≤ lim
n→∞

‖`‖∞√
2

√
I(Y; X)− I(Y; Tn(X))

= 0.
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4. Applications
4.1. Classification

For classification, Y is the finite set {1, . . . , M} and the cost is the 0− 1 loss

`(y, y′) = Iy 6=y′ .

In this setup, the risk of estimator f is the error probability P(Y 6= f (X)). With the notation

Py(x) = P(Y = y|X = x),

the optimal estimator is the Bayes decision

f ∗(x) = arg max
y∈Y

Py(x),

and the minimum risk is the Bayes error probability

L∗(X) = 1−E
[

max
y∈Y

Py(X)
]
.

If L∗(T(X)) = 1−E
[

maxy E[Py(X) | T(X)]
]

stands for the Bayes error probability of the
transformed observation vector T(X), then (24) with ‖`‖∞ = 1 yields the upper bound

L∗(T(X))− L∗(X) ≤ 1√
2

√
I(Y; X)− I(Y; T(X));

see also ([4], Corollary 2) for a similar bound in the context of Bayesian learning.
As a special case, the feature selector X 7→ XS is lossless if

L∗(X) = L∗(XS). (28)

Györfi and Walk [29] studied the corresponding hypothesis testing problem. Using a
k-nearest-neighbor (k-NN) estimate of the excess Bayes error probability L∗(XS)− L∗(X),
they introduced a test statistic and accepted the hypothesis (28), if the test statistic is less
than a threshold. Under certain mild conditions, the strong consistency of this test has
been proven.

4.2. Nonparametric Regression

For the nonparametric regression problem, the cost is the squared loss

`(y, y′) = (y− y′)2, y, y′ ∈ R,

and the best statistical inference is the regression function

m(X) = E[Y|X]

(here, we assume E[Y2] < ∞). Then, the minimum risk is the residual variance

L∗` (Y|X) = E[(Y−m(X))2].

If L∗(X) = L∗` (Y|X) and L∗(T(X)) = L∗` (Y|T(X)) denote the residual variances for
the observation vectors X and T(X), respectively, then

L∗(T(X))− L∗(X) = E
[
(Y−E[m(X) | T(X)])2]−E

[
(Y−m(X))2]

= E
[
(m(X)−E[m(X) | T(X)])2].

Note that the excess residual variance L∗(T(X))− L∗(X) does not depend on the distribu-
tion of the residual Y−m(X).
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Next, we show that the conditions of Corollary 2 hold with f ∗` (x) = m(x) for the
important case

Y = m(X) + N,

where N is a zero-mean noise variable that is independent of X and satisfies E[N4] < ∞,
and m is bounded as |m(x)| ≤ K for all x. For this model, we have

`(y, f ∗(X)) = (y−m(X))2 ≤ (|y|+ |m(X)|)2 ≤ (|y|+ K)2.

Thus, `(y, f ∗(X)) is a nonnegative random variable a.s. bounded by (|y| + K)2, which
implies via Hoeffding’s lemma (e.g., ([23], Lemma 2.2)) that it is σ2(y)-sub-Gaussian given

T(X) with σ2(y) = (|y|+K)4

4 . We have

E[σ2(Y)] =
E
[
(|Y|+ K)4]

4

≤
E
[
(|N|+ |m(X)|+ K)4]

4

≤
E
[
(|N|+ 2K)4]

4

≤
8E
[
|N|4 + (2K)4]

4
≤ 2E[N4] + 32K4

< ∞,

thus, the conditions of Corollary 2 hold and we obtain

L∗` (Y|T(X))− L∗` (Y|X) = E[(Y−E[Y|T(X)])2]−E[(Y−E[Y|X])2]

≤
√(

2E[N4] + 32K4
)(

I(Y; X)− I(Y; T(X))
)

.

Again, the feature selection XS is called lossless, when L∗(X) = L∗(XS) holds. As a
test statistic, Devroye et al. [30] introduced a 1-NN estimate of L∗(XS)− L∗(X) and proved
the strong consistency of the corresponding test.

4.3. Portfolio Selection

The next example is related to the negative of the log-loss or log-utility; see Algoet and
Cover [31], Barron and Cover [32], Chapters 6 and 16 in Cover and Thomas [22], Györfi
et al. [33].

Consider a market consisting of da assets. The evolution of the market in time is
represented by a sequence of (random) price vectors S1, S2, . . . ∈ Rda

+ with

Sn = (S(1)
n , . . . , S(da)

n ),

where the jth component S(j)
n of Sn denotes the price of the jth asset in the nth trading

period. Let us transform the sequence of price vectors {Sn} into the sequence of return
(relative price) vectors {Rn}, defined as

Rn = (R(1)
n , . . . , R(da)

n ),

where

R(j)
n =

S(j)
n

S(j)
n−1

.

Constantly rebalanced portfolio selection is a multi-period investment strategy, where
at the beginning of each trading period the investor redistributes the wealth among the
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assets. The investor is allowed to diversify their capital at the beginning of each trading
period according to a portfolio vector b = (b(1), . . . b(da)). The jth component b(j) of b
denotes the proportion of the investor’s capital invested in asset j. Here, we assume that
the portfolio vector b has nonnegative components with ∑da

j=1 b(j) = 1. The simplex of
possible portfolio vectors is denoted by ∆da .

Let S0 = 1 denote the investor’s initial capital. Then, at the beginning of the first
trading period, S0b(j) is invested into asset j, and this results in return S0b(j)R(j)

1 , and
therefore at the end of the first trading period the investor’s wealth becomes

S1 = S0

da

∑
j=1

b(j)R(j)
1 = 〈b , R1〉,

where 〈 · , · 〉 denotes the standard inner product in Rda . For the second trading period, S1
is the new initial capital

S2 = S1 · 〈b , R2〉 = 〈b , R1〉 · 〈b , R2〉.

By induction, for the trading period n, the initial capital is Sn−1, and therefore

Sn = Sn−1〈b , Rn〉 =
n

∏
i=1
〈b , Ri〉.

The asymptotic average growth rate of this portfolio selection strategy is

lim
n→∞

1
n

log Sn = lim
n→∞

1
n

n

∑
i=1

log〈b , Ri〉

assuming a limit exists.
If the market process {Ri} is memory-less, i.e., it is a sequence of i.i.d. random return

vectors, then the strong law of large numbers implies that the best constantly rebalanced
portfolio (BCRP) is the log-optimal portfolio:

b∗ = arg max
b∈∆da

E
[

log〈b , R1〉
]
,

while the best asymptotic average growth rate is

W∗ = max
b∈∆da

E
[

log〈b , R1〉
]
.

Barron and Cover [32] extended this setup to portfolio selection with side information. As-
sume that X1, X2, . . . are Rd valued side information vectors, such that (R1, X1), (R2, X2), . . .
are i.i.d. and in each round n the portfolio vector may depend on Xn. The strong law of
large numbers yields

lim
n→∞

1
n

log Sn = lim
n→∞

1
n

n

∑
i=1

log〈b(Xi) , Ri〉 = E
[

log〈b(X1) , R1〉
]

a.s.

Therefore, the log-optimal portfolio has the form

b∗(X1) = arg max
b∈∆da

E
[

log〈b , R1〉 | X1
]
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and the best asymptotic average growth rate is

W∗(X) = E
[

max
b∈∆da

E
[

log〈b , R1〉 | X1
]]

.

Barron and Cover ([32], Thm. 2) proved that

W∗(X)−W∗ ≤ I(R1; X1). (29)

The next theorem generalizes this result by upper bounding the loss of the best asymptotic
growth rate when, instead of X, only degraded side information T(X) is available.

Theorem 4. For any measurable T : Rd → Rd′ ,

W∗(X)−W∗(T(X)) ≤ I(R1; X1)− I(R1; T(X1))

assuming the terms on the right hand side are finite.

Remark 4. (i) As in Theorem 3, the difference I(R1; X1)− I(R1; T(X1)) in the upper bound is
equal to I(R1; X1|T(X1)), a quantity that is always nonnegative but may be equal to ∞. In
this case, we interpret the right hand side as ∞.

(ii) There is a correspondence between this setup of portfolio selection and the setup in previous
sections. In particular, Y from the previous sections is equal to R with a range Rda

+ and the
inference is b(X) taking values in ∆da . Then, the loss is − log〈b(X) , R〉. If we assume that
for all j = 1, . . . da,

| log R(j)| ≤ cmax a.s., (30)

then

| log〈b(X) , R〉| ≤ cmax a.s.

and so Corollary 1 implies

W∗(X)−W∗(T(X)) ≤ cmax√
2

√
I(R1; X1)− I(R1; T(X1)).

Note that, from the point of view of application, (30) is a mild condition. For example, for
NYSE daily data cmax ≤ 0.3; see Györfi et al. [34].

Proof. Let (R, X) be a generic copy of the (Ri, Xi) . Writing out explicitly the dependence
of W∗ on PR, we have

W∗(X) =
∫

W∗(PR|X=x)PX(dx)

and from (11) we have

I(R; X) =
∫

D(PR|X=x‖PR)PX(dx).

Thus, the bound W∗(X)−W∗ ≤ I(R1; X1) in (29) can be written as∫
W∗(PR|X=x)PX(dx)−W∗ ≤

∫
D(PR|X=x‖PR)PX(dx). (31)

Furthermore, letting Z = T(X), we have

W∗(X)−W∗(Z) =
∫

W∗(PR|X=x)PX(dx)−
∫

W∗(PR|Z=z)PZ(dz).
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Since R→ X → Z is a Markov chain, PR|X=x = PR|X=x,Z=z, and we obtain

W∗(X)−W∗(Z)

=
∫ ( ∫

W∗(PR|X=x,Z=z)PX|Z=z(dx)−W∗(PR|Z=z)

)
PZ(dz).

Applying (31) with W∗(PR|X=x) replaced with W∗(PR|X=x,Z=z) and W∗ replaced with
W∗(PR|Z=z) with z fixed, we can bound the expression in parentheses as∫

W∗(PR|X=x,Z=z)PX|Z=z(dx)−W∗(PR|Z=z)

≤
∫

D(PR|X=x,Z=z‖PR|Z=z)PX|Z=z(dx),

and therefore

W∗(X)−W∗(Z)

≤
∫ ∫

D(PR|X=x,Z=z‖PR|Z=z)PX|Z=z(dx)PZ(dz)

= I(R; X|Z), (32)

where (32) follows from the alternative expression (12) of the conditional mutual information.
As in the proof Theorem 3, the conditional independence of R and Z = T(X) given

X implies
I(R; X|Z) = I(R; X)− I(R; T(X)),

which completes the proof.

4.4. Information Bottleneck

Let X and Y be random variables as in Section 2. When Y → X → Z, the joint
distribution PYXZ of the triple (Y, X, Z) is determined (for fixed PYX) by the conditional
distribution (transition kernel) PZ|X as PYXZ = PYXPZ|X. The information bottleneck (IB)
framework can be formulated as the study of the constrained optimization problem

maximize I(Y; Z)
subject to I(X; Z) ≤ α

(33)

for a given α > 0, where the maximization is over all transition kernels PZ|X .
Originally proposed by Tishby et al. [35], the solution to the IB problem is a transition

kernel PZ|X , interpreted as a stochastic transformation, that “encodes” X into a “compressed”
representation Z that preserves relevant information about Y through maximizing I(Y; Z),
while compressing X by requiring that I(X; Z) ≤ α. The intuition behind this framework is
that by maximizing I(Y; Z), the representation Z will retain the predictive power of X with
respect to Y, while the requirement I(X; Z) ≤ α makes the representation Z concise.

Note that, in case X is discrete and has finite entropy H(X), setting α = H(X), or
setting formally α = ∞ in the general case, the constraint I(X; Z) ≤ α becomes vacuous
and (assuming the alphabet of Z is sufficiently large) the resulting Z will achieve the upper
bound I(Y; Z) = I(Y; X), so that I(Y; X|Z) = I(Y; X) − I(Y; Z) = 0, i.e., Y → Z → X.
Thus, the solution to (33) can be considered as a stochastically relaxed version of a minimal
sufficient statistic for X in predicting Y (see Goldfeld and Polyanskiy ([36], Section II.C)
for more on this interpretation). Recent tutorials on the IB problem include Asoodeh and
Calmon [37] and Zaidi et al. [38].
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Theorem 3 and its corollaries can be used to motivate the IB principle from an
estimation-theoretic viewpoint. Let

I(α) = sup
PZ|X :I(X;Z)≤α

I(Y; Z)

be the value function for (33) and Zα a resulting optimal Z (assuming such a maximizer
exists). From the remark after Theorem 3, we know that the bounds given in the theorem
and in its corollaries remain valid if we replace T(X) with a random variable Z, such that
Y → X → Z. Then, for example, Corollary 1 implies that

L∗` (Y|Zα)− L∗` (Y|X) ≤ c
√

I(Y; X)− I(α)

for all ` such that ‖`‖∞ ≤
√

2c.
Thus, the IB paradigm minimizes, under the complexity constraint I(X; Z) ≤ α, an

upper bound on the difference L∗` (Y|Z)− L∗` (Y|X) that universally holds for all loss functions
` with ‖`‖∞ ≤

√
2c. The resulting Zα will then have guaranteed performance in predicting

Y with respect to all sufficiently bounded loss functions. This gives a novel operational
interpretation of the IB framework that seems to have been overlooked in the literature.

4.5. Deep Learning

The IB paradigm can also serve as a learning objective in deep neural networks (DNNs).
Here the Lagrangian relaxation of (33) is considered. In particular, letting X denote the
input and Zθ the output of the last hidden layer of the DNN, where θ ∈ Θ ⊂ RK is the
collection of network parameters (weights), the objective is to maximize

I(Y; Zθ)− βI(X; Zθ) (34)

over θ ∈ Θ for a given β > 0. The parameter β controls the trade-off between how
informative Zθ is about Y, measured by I(Y; Zθ), and how much Zθ is “compressed,”
measured by I(X; Zθ). Clearly, larger values of β correspond to smaller values of I(X; Zθ)
and thus to more compression. Here, Zθ is either a deterministic function of X in the form
of Zθ = Tθ(X), where Tθ : Rd → Rd′ represents the deterministic DNN, or it is produced
by a stochastic kernel Pθ

Z|X , parameterized by the network parameters θ ∈ Θ. The latter is
achieved by injecting independent noise into the network’s intermediate layers.

In addition to the motivation explained in the previous section, the IB framework for
DNNs can be thought as a regularization method that results in improved generalization
capabilities for a network trained on data using stochastic gradient-based methods, see,
e.g., Tishby and Zaslavsky [39], Shwartz-Ziv and Tishby [40], Alemi et al. [41], as well as
many other references in the excellent survey article Goldfeld and Polyanskiy [36], and the
special issue [42] on information bottleneck and deep learning.

As in the previous section, our Theorem 1 and corollaries can serve as a (partial)
justification for setting (34) as a learning objective. Assume that after training with a given
β > 0, the obtained Zθ(β) has (true) mutual information I(Y; Zθ(β)) with Y (typically, this
will not be the optimal solution, since maximizing (34) is not feasible and in practice only
a proxy lower bound is optimized during training, see, e.g., Alemi et al. [41]). Then, by
Corollary 1 the obtained network has a guaranteed predictive performance

L∗` (Y|Z
θ(β)) ≤ L∗` (Y|X) + cε

for all loss functions ` with ‖`‖∞ ≤
√

2c, where

ε =
√

I(Y; X)− I(Y; Zθ(β)) .
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5. Proof of Theorem 2

Proof of Theorem 2.

(a) The bounds given in the proof of Theorem 1 in [2] imply

Ln ≤ Jn,1 + Jn,2 + Jn,3 + Jn,4 + Jn,5,

where

Jn,1 = ∑
A∈Pn ,B∈Qn ,C∈Rn

|Pn
XYZ(A, B, C)− PXYZ(A, B, C)|,

Jn,2 = ∑
B∈Qn ,C∈Rn

|PYZ(B, C)− Pn
YZ(B, C)|,

Jn,3 = ∑
A∈Pn ,C∈Rn

|PXZ(A, C)− Pn
XZ(A, C)|,

Jn,4 = ∑
C∈Rn

|Pn
Z(C)− PZ(C)|,

and

Jn,5 = ∑
A∈Pn ,B∈Qn ,C∈Rn

∣∣∣∣PXYZ(A, B, C)− PXZ(A, C)PYZ(B, C)
PZ(C)

∣∣∣∣ .

Using large deviation inequalities from Beirlant et al. [43] and in Biau and Györfi [18],
Györfi and Walk [2] proved that for all εi > 0, i = 1, . . . , 4 and δ > 0,

P(Ln > ε1 + ε2 + ε3 + ε4 + δ)

≤ P(Jn,1 > ε1) + P(Jn,2 > ε2) + P(Jn,3 > ε3) + P(Jn,4 > ε4) + IJn,5>δ

≤ 2mn ·m′n ·m′′n e−nε2
1/2 + 2m′n ·m′′n e−nε2

2/2 + 2mn ·m′′n e−nε2
3/2 + 2m′′n e−nε2

4/2

+ IJn,5>δ. (35)

We note that the bounds on the probabilities P(Jn,i > εi) for i = 1, . . . , 4 were proven
in [2] without either assuming the null hypothesisH0 or using the condition that the
partitions are nested. Under the null hypothesis, Györfi and Walk [2] claimed that

Jn,5 = 0.

As Neykov et al. [12] observed, this was incorrect. In order to resolve the gap, we
show that under limn hn = 0 and condition (5) and under the null hypothesis, the last
term in (35) is o(1), i.e.,

I
∑A∈Pn ,B∈Qn ,C∈Rn

∣∣∣PXYZ(A,B,C)− PXZ(A,C)PYZ(B,C)
PZ(C)

∣∣∣>δ
= 0

if n is large enough. The null hypothesis implies that
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PXYZ(A, B, C)− PXZ(A, C)PYZ(B, C)
PZ(C)

= P(X ∈ A, Y ∈ B, Z ∈ C)− PXZ(A, C)P(Y ∈ B, Z ∈ C)
PZ(C)

= E
[
P(X ∈ A, Y ∈ B | Z)IZ∈C

]
−E

[
P(Y ∈ B | Z)IZ∈C

]PXZ(A, C)
PZ(C)

= E
[
P(X ∈ A | Z)P(Y ∈ B | Z)IZ∈C

]
−E

[
P(Y ∈ B | Z)IZ∈C

]PXZ(A, C)
PZ(C)

.

Thus,

∑
A∈Pn ,B∈Qn ,C∈Rn

∣∣∣∣PXYZ(A, B, C)− PXZ(A, C)PYZ(B, C)
PZ(C)

∣∣∣∣
≤ ∑

A∈Pn ,B∈Qn ,C∈Rn

E
[
P(Y ∈ B | Z)

∣∣∣∣P(X ∈ A | Z)IZ∈C − IZ∈C
PXZ(A, C)

PZ(C)

∣∣∣∣]
= ∑

A∈Pn ,C∈Rn

E
[∣∣∣∣P(X ∈ A | Z)IZ∈C − IZ∈C

PXZ(A, C)
PZ(C)

∣∣∣∣].

Let p( · | z) and Cn(z) be as in Condition 1. Then,

∑
A∈Pn ,C∈Rn

E
[∣∣∣∣P(X ∈ A | Z)IZ∈C − IZ∈C

PXZ(A, C)
PZ(C)

∣∣∣∣]

= ∑
A∈Pn ,C∈Rn

∫
C

∣∣∣∣∣
∫

A
p(x | z)PX(dx)−

∫
A[
∫

C p(x | z′)PZ(dz′)]PX(dx)
PZ(C)

∣∣∣∣∣PZ(dz)

≤
∫ ∫ ∣∣∣∣∣p(x | z)−

∫
Cn(z)

p(x | z′)PZ(dz′)

PZ(Cn(z))

∣∣∣∣∣PZ(dz)PX(dx)

≤ C∗hn, (36)

where in the last step we use condition (5). The inequalities (35) and (36) imply that

P
(

Ln > c1

(√mnm′nm′′n
n

+

√
m′nm′′n

n
+

√
mnm′′n

n
+

√
m′′n
n

)
+ (log n)hn

)
≤ 4e−(c

2
1/2−log 2)m′′n + IC∗hn>(log n)hn

≤ 4e−(c
2
1/2−log 2)m′′n ,

if n ≥ eC∗ . Since m′′n is proportional to 1/hd′
n , condition (8) on hn implies ∑∞

n=1 P(Ln ≥
tn) < ∞, and thus using the Borel–Cantelli lemma, after a random sample size, the
test has no error with a probability of one.

(b) This proof is a refinement of the proof of Corollary 1 in [2], in which we avoid the
condition used there that the sequences of partitions Pn and Qn are nested. According
to the proof of Part (a) (see the remark after (35)), we obtain that

lim inf
n→∞

Ln ≥ lim inf
n→∞

(Ln − Jn,5) + lim inf
n→∞

Jn,5 = lim inf
n→∞

Jn,5 a.s.

To simplify the notation, let PXY|z = PXY|Z=z, PX|z = PX|Z=z, and PY|z = PY|Z=z. Let
L∗ be the expected total variation distance between PXY|z and PX|zPY|z :

L∗ =
∫

sup
F

∣∣PXY|z(F)− PX|zPY|z(F)
∣∣ PZ(dz),
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where the supremum is taken over all Borel subsets F of Rd ×Rd′ . It suffices to prove
that using the condition limn hn = 0,

lim inf
n→∞

Jn,5 ≥ 2L∗ > 0.

One has that

∑
A∈Pn ,B∈Qn ,C∈Rn

∣∣∣∣PXYZ(A, B, C)− PXZ(A, C)PYZ(B, C)
PZ(C)

∣∣∣∣
≥
∫

∑
A∈Pn ,B∈Qn

∣∣∣PXY|z(A, B)− PX|z(A)PY|z(B)
∣∣∣PZ(dz)−Wn,

where

Wn ≤ ∑
A∈Pn ,B∈Qn

∫ ∣∣∣∣∣
∫

Cn(z)
PXY|z′(A, B)PZ(z′)

PZ(Cn(z))
− PXY|z(A, B)

∣∣∣∣∣PZ(dz) (37)

+ ∑
A∈Pn

∫ ∣∣∣∣∣
∫

Cn(z)
PX|z′(A)PZ(dz′)

PZ(Cn(z))
− PX|z(A)

∣∣∣∣∣PZ(dz) (38)

+ ∑
B∈Qn

∫ ∣∣∣∣∣
∫

Cn(z)
PY|z′(B)PZ(dz′)

PZ(Cn(z))
− PY|z(B)

∣∣∣∣∣PZ(dz) (39)

In [2], it was shown that the condition limn hn = 0 implies limn Wn = 0 if the sequence
of partitions {Pn, Qn}n≥1 is nested. In order to avoid this nestedness condition,
introduce the density p(x, y|z) of the conditional distribution PXY|z with respect to
the distribution PXY of (X, Y) as a dominating measure, and similarly let pn(x, y|z) be
the density of the conditional distribution

∫
Cn(z)

PXY|z′( · , · )PZ(dz′)/PZ(Cn(z)) with
respect to PXY, i.e., pn(x, y|z) =

∫
Cn(z)

p(x, y|z′)PZ(dz′)/PZ(Cn(z)). Then,

∑
A∈Pn ,B∈Qn

∣∣∣∣∣
∫

Cn(z)
PXY|z′(A, B)PZ(dz′)

PZ(Cn(z))
− PXY|z(A, B)

∣∣∣∣∣
≤
∫ ∫

|pn(x, y|z)− p(x, y|z)|PXY(dx, dy),

and therefore the term on the right-hand side of (37) will converge to zero, as long as∫ ∫ ∫
|pn(x, y|z)− p(x, y|z)|PXY(dx, dy)PZ(dz)→ 0,

which follows from limn hn = 0 using the standard technique of the bias of partitioning
regression estimate for the regression function p( · , · |z); see Theorem 4.2 in [44]. The
terms in (38) and (39) can be dealt with analogously. Thus,

lim inf
n→∞

Jn,5 ≥ lim inf
n→∞

∫
∑

A∈Pn ,B∈Qn

∣∣∣PXY|z(A, B)− PX|z(A)PY|z(B)
∣∣∣PZ(dz).

For fixed z, limn hn = 0 implies

lim
n→∞ ∑

A∈Pn ,B∈Qn

∣∣∣PXY|z(A, B)− PX|z(A)PY|z(B)
∣∣∣

= 2 sup
F

∣∣PXY|z(F)− PX|zPY|z(F)
∣∣,



Entropy 2023, 25, 1394 23 of 25

see Abou-Jaoude [45] and Csiszár [46]. Therefore, the dominated convergence
theorem yields

lim
n→∞

∫
∑

A∈Pn ,B∈Qn

∣∣∣PXY|z(A, B)− PX|z(A)PY|z(B)
∣∣∣PZ(dz)

= 2
∫

sup
F

∣∣PXY|z(F)− PX|zPY|z(F)
∣∣ PZ(dz)

= 2L∗.

Note that in the proof of Part (b) the condition (5) is not used, at all.

6. Concluding Remarks

We studied the excess minimum risk in statistical inference and under mild conditions
gave a strongly consistent procedure for testing from data if a given transformation of an
observed feature vector results in zero excess minimum risk for all loss functions. It is an
open research problem whether a strong universal test exists, i.e., a test that is strongly
consistent without any conditions on the transformation and on the underlying distribution.
We also developed information-theoretic upper bounds on the excess risk that uniformly
hold over fairly general classes of loss functions. The bounds were not stated in the most
general form possible, in that the observed quantities were restricted to taking values in
Euclidean spaces and we did not allow transformations that were random functions of the
observation, both of which restrictions could be relaxed.The bounds could be sharpened,
e.g., in specific cases, but in their present form are already useful. For example, they give
an additional theoretical motivation for applying the information bottleneck approach in
deep learning.
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