
Learning and Design of Principal Curves
BalaÂzs KeÂgl, Student Member, IEEE, Adam Krzyzak, Senior Member, IEEE,

TamaÂs Linder, Member, IEEE, and Kenneth Zeger, Fellow, IEEE

AbstractÐPrincipal curves have been defined as ªself-consistentº smooth curves which pass through the ªmiddleº of a d-dimensional

probability distribution or data cloud. They give a summary of the data and also serve as an efficient feature extraction tool. We take a

new approach by defining principal curves as continuous curves of a given length which minimize the expected squared distance

between the curve and points of the space randomly chosen according to a given distribution. The new definition makes it possible to

theoretically analyze principal curve learning from training data and it also leads to a new practical construction. Our theoretical

learning scheme chooses a curve from a class of polygonal lines with k segments and with a given total length to minimize the average

squared distance over n training points drawn independently. Convergence properties of this learning scheme are analyzed and a

practical version of this theoretical algorithm is implemented. In each iteration of the algorithm, a new vertex is added to the polygonal

line and the positions of the vertices are updated so that they minimize a penalized squared distance criterion. Simulation results

demonstrate that the new algorithm compares favorably with previous methods, both in terms of performance and computational

complexity, and is more robust to varying data models.

Index TermsÐLearning systems, unsupervised learning, feature extraction, vector quantization, curve fitting, piecewise linear

approximation.
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1 INTRODUCTION

PRINCIPAL component analysis is perhaps the best known
technique in multivariate analysis and is used in

dimension reduction, feature extraction, and in image
coding and enhancement. Consider a d-dimensional ran-
dom vector X � �X1; . . . ; Xd� with finite second moments.
The first principal component line for X is a straight line
which has the property that the expected value of the
squared Euclidean distance from X to the line is minimum
among all straight lines. This property makes the first
principal component a concise one-dimensional approxi-
mation to the distribution of X and the projection of X to
this line gives the best linear summary of the data. For
elliptical distributions, the first principal component is also
self-consistent, i.e., any point of the line is the conditional
expectation of X over those points of the space which
project to this point.

Hastie [1] and Hastie and Stuetzle [2] (hereafter HS)
generalized the self-consistency property of principal
components and introduced the notion of principal curves.
Let f�t� � �f1�t�; . . . ; fd�t�� be a smooth (infinitely differenti-
able) curve in IRd parametrized by t 2 IR and, for any
x 2 IRd, let tf �x� denote the largest parameter value t for
which the distance between x and f�t� is minimized (see
Fig. 1). More formally, the projection index tf �x� is defined by

tf �x� � sup
�
t : kxÿ f�t�k � inf

�
kxÿ f���k	; �1�

where k � k denotes the Euclidean norm in IRd.
By the HS definition, the smooth curve f�t� is a principal

curve if the following hold:

1. f does not intersect itself,
2. f has finite length inside any bounded subset of

IRd, and
3. f is self-consistent, i.e., f�t� � E�Xjtf �X� � t�.

Intuitively, self-consistency means that each point of f is the
average (under the distribution of X) of all points that
project there. Thus, principal curves are smooth self-
consistent curves which pass through the ªmiddleº of the
distribution and provide a good one-dimensional nonlinear
summary of the data.

Based on the self-consistency property, HS developed an
algorithm for constructing principal curves. Similar in spirit
to the Generalized Lloyd Algorithm (GLA) of vector
quantizer design [3], the HS algorithm iterates between a
projection step and an expectation step. When the prob-
ability density of X is known, the HS principal algorithm
for constructing principal curves is the following:

Step 0. Let f �0��t� be the first principal component line for X.
Set j � 1.

Step 1. Define f �j��t� � EÿXjtf �jÿ1� �X� � t�.
Step 2. Set

tf �j� �x� � max
�
t : kxÿ f �j��t�k � min

�
kxÿ f �j����k	

for all x 2 IRd.

Step 3. Compute

��f �j�� � EkXÿ f �j��tf �j� �X��k2:

If j��f �j�� ÿ��f �jÿ1��j < threshold, then Stop. Otherwise, let
j � j� 1 and go to Step 1.
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In practice, the distribution of X is often unknown, but a
data set consisting of n samples of the underlying
distribution is known instead. In the HS algorithm for data
sets, the expectation in Step 1 is replaced by a ªsmootherº
(locally weighted running lines [4]) or a nonparametric
regression estimate (cubic smoothing splines). HS provide
simulation examples to illustrate the behavior of the
algorithm and describe an application in the Stanford
Linear Collider Project [2]. It should be noted that there is
no known proof of the convergence of the hypothetical
algorithm (Steps 0-3; one main difficulty is that Step 1 can
produce nondifferentiable curves, while principal curves
are differentiable by definition). However, extensive testing
on simulated and real examples have not revealed any
convergence problems for the practical implementation of
the algorithm [2].

Alternative definitions and methods for estimating
principal curves have been given subsequent to Hastie
and Stuetzle's groundbreaking work. Banfield and Raftery
[5] (hereafter BR) modeled the outlines of ice floes in
satellite images by closed principal curves and they
developed a robust method which reduces the bias in the
estimation process. Their method of clustering about
principal curves led to a fully automatic method for
identifying ice floes and their outlines. Singh et al. [6] used
principal curves to extract skeletal structures of hand-
written characters in faded documents. Reinhard and
Niranjan [7] applied principal curves to model the short
time spectrum of speech signals. They found that principal
curves can be used efficiently to capture transitional
information between phones. Chang and Ghosh [8], [9]
combined the HS and the BR algorithms to improve the
performance of the principal curve algorithm and used the
modified algorithm for nonlinear feature extraction and
pattern classification. On the theoretical side, Tibshirani [10]
introduced a semiparametric model for principal curves
and proposed a method for estimating principal curves
using the EM algorithm. Close connections between
principal curves and Kohonen's self-organizing maps were
pointed out by Mulier and Cherkassky [11]. Recently,
Delicado [12] proposed yet another definition based on a
property of the first principal components of multivariate
normal distributions.

There remains an unsatisfactory aspect of the definition
of principal curves in the original HS paper, as well as in
subsequent works. Although principal curves have been
defined to be nonparametric, their existence has been proven

only for some special densities, such as radially symmetric
densities, and for the uniform density on a rectangle or an
annulus in the plane [13]. At present, it is an open problem
whether HS principal curves exist for all ªreasonableº
densities. It is also unknown how the hypothetical HS
algorithm behaves for a probability density for which an HS
principal curve does not exist. At the same time, the
problem of existence makes it difficult to theoretically
analyze (in terms of consistency and convergence rates) any
estimation scheme for HS principal curves.

In this paper, we propose a new definition of principal
curves to resolve this problem. In the new definition, a
principal curve is a continuous curve of a given length L
which minimizes the expected squared distance between X
and the curve. In Section 2 (Lemma 1), we prove that, for
any X with finite second moments, there always exists a
principal curve in the new sense. We also discuss connec-
tions between the newly defined principal curves and
optimal vector quantizers. Then, we propose a theoretical
learning scheme in which the model classes are polygonal
lines with k segments and with a given length, and the
algorithm chooses a curve from this class which minimizes
the average squared distance over n training points. In
Theorem 1, we prove that, with k suitably chosen as a
function of n, the expected squared distance of the curve
trained on n data points converges to the expected squared
distance of the principal curve at a rate O�nÿ1=3� as n!1.

Two main features distinguish this learning scheme from
the HS algorithm. First, the polygonal line estimate of the
principal curve is determined via minimizing a data
dependent criterion directly related to the definition of
principal curves. This facilitates the theoretical analysis of
the performance. Second, the complexity of the resulting
polygonal line is determined by the number of segments k,
which, when optimally chosen, is typically much less than
n. This agrees with our mental image that principal curves
should provide a concise summary of the data. In contrast,
for n data points, the HS algorithm with scatterplot
smoothing produces polygonal lines with n segments.

Though amenable to analysis, our theoretical algorithm
is computationally burdensome for implementation. In
Section 3, we develop a suboptimal algorithm for learning
principal curves. The practical algorithm produces poly-
gonal line approximations to the principal curve just as the
theoretical method does, but global optimization is replaced
by a less complex iterative descent method. In Section 4, we
give simulation results and compare our algorithm with
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Fig. 1. Projecting points to a curve.



previous work. In general, on examples considered by HS,
the performance of the new algorithm is comparable with
the HS algorithm, while it proves to be more robust to
changes in the data generating model. In Section 4, we also
report some preliminary results on applying the polygonal
line algorithm to find the medial axes (ªskeletonsº) of pixel
templates of handwritten characters.

2 LEARNING PRINCIPAL CURVES WITH A LENGTH

CONSTRAINT

A curve in d-dimensional Euclidean space is a continuous
function f : I ! IRd, where I is a closed interval of the real
line. Let the expected squared distance between X and f be
denoted by

��f� � E�inf
t
kXÿ f�t�k2� � EkXÿ f�tf �X��k2; �2�

where the projection index tf �x� is given in (1). Let f be a
smooth (infinitely differentiable) curve and, for � 2 IR,
consider the perturbation f � �g of f by a smooth curve g

such that supt kg�t�k � 1 and supt kg0�t�k � 1. HS proved
that f is a principal curve, if and only if, f is a critical point
of the distance function in the sense that, for all such g,

@��f � �g�
@�

����
��0

� 0:

It is not hard to see that an analogous result holds for
principal component lines if the perturbation g is a straight
line. In this sense, the HS principal curve definition is a
natural generalization of principal components. Also, it is
easy to check that principal components are in fact principal
curves if the distribution of X is elliptical.

An unfortunate property of the HS definition is that, in
general, it is not known if principal curves exist for a given
source density. To resolve this problem, we go back to the
defining property of the first principal component. A straight
line s�t� is the first principal component, if and only if,

E
�
min
t
kXÿ s�t�k2� � E�min

t
kXÿ ŝ�t�k2�

for any other straight line ŝ�t�. We would like to generalize
this property of the first principal component and define
principal curves so that they minimize the expected
squared distance over a class of curves, rather than only
being critical points of the distance function. To do this, it is
necessary to constrain the length1 of the curve since,
otherwise, for any X with a density and any � > 0, there
exists a smooth curve f such that ��f� � � and, thus, a
minimizing f has infinite length. On the other hand, if the
distribution of X is concentrated on a polygonal line and is
uniform there, the infimum of the squared distances ��f� is
0 over the class of smooth curves, but no smooth curve can
achieve this infimum. For this reason, we relax the
requirement that f be differentiable and, instead, we
constrain the length of f . Note that, by the definition of
curves, f is still continuous. We give the following new
definition of principal curves:

Definition 1. A curve f � is called a principal curve of length L
for X if f� minimizes ��f� over all curves of length less than
or equal to L.

A useful advantage of the new definition is that
principal curves of length L always exist if X has finite
second moments, as the next result shows.

Lemma 1. Assume that EkXk2 <1. Then, for any L > 0, there
exists a curve f � with l�f �� � L such that

��f �� � inff��f� : l�f� � Lg:

The proof of the lemma is given in Appendix A.
Note that we have dropped the requirement of the HS

definition that principal curves be nonintersecting. In fact,
Lemma 1 does not hold, in general, for nonintersecting
curves of length L without further restricting the distribu-
tion of X, since there are distributions for which the
minimum of ��f� is achieved only by an intersecting curve,
even though nonintersecting curves can arbitrarily
approach this minimum. Note also that neither the HS
nor our definition guarantees the uniqueness of principal
curves. In our case, there might exist several principal
curves for a given length constraint L, but each of these will
have the same (minimal) squared loss.

Remark (Connection with vector quantization). Our new
definition of principal curves has been inspired by the
notion of an optimal vector quantizer. A vector quantizer
maps a point in IRd to the closest point in a fixed set
(called a codebook) fy1; . . . ; ykg � IRd. The codepoints
y�1; . . . ;y�k 2 IRd correspond to an optimal k-point vector
quantizer if

E
�
min
i
kXÿ y�i k2� � E�min

i
kXÿ yik2�

for any other collection of k-points y1; . . . ;yk 2 IRd. In
other words, the points y�1; . . . ;y�k give the best k-point
representation of X in the mean squared sense. Optimal
vector quantizers are important in lossy data compres-
sion, speech, and image coding [15], and clustering [16].
There is a strong connection between the definition of an
optimal vector quantizer and our definition of a principal
curve. Both minimize the same expected squared
distance criterion. A vector quantizer is constrained to
have at most k points, whereas a principal curve has a
constrained length. This connection is further illustrated
by a recent work of Tarpey et al. [17] who define points
y1; . . . ;yk to be self-consistent if

yi � E�XjX 2 Si�;
where S1; . . . ; Sk are the ªVoronoi regionsº defined as
Si � fx : kxÿ yik � kxÿ yjk; j � 1; . . . ; kg (ties are bro-
ken arbitrarily). Thus, our principal curves correspond to
optimal vector quantizers (ªprincipal pointsº by the
terminology of [17]), while the HS principal curves
correspond to self-consistent points.

While principal curves of a given length always exist, it
appears difficult to demonstrate concrete examples unless
the distribution of X is discrete or is concentrated on a
curve. It is presently unknown what principal curves look
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1. For the definition of length for nondifferentiable curves see
Appendix A where some basic facts concerning curves in IRd have been
collected from [14].



like with a length constraint for even the simplest
continuous multivariate distributions such as the Gaussian.
However, this fact in itself does not limit the practical
significance of principal curves. Analogously, for k � 3
codepoints, there are no known concrete examples of
optimal vector quantizers for even the most common model
distributions such as Gaussian, Laplacian, or uniform (in a
hypercube) in any dimensions d � 2. Nevertheless, algo-
rithms for quantizer design attempting to find near optimal
vector quantizers are of great theoretical and practical
interest. In what follows, we consider the problem of
principal curve design based on training data.

Suppose that n independent copies X1; . . . ;Xn of X are
given. These are called the training data and they are assumed
to be independent of X. The goal is to use the training data to
construct a curve of length at most L whose expected
squared loss is close to that of a principal curve for X.

Our method is based on a common model in statistical
learning theory (e.g., see [18]). We consider classes
S1;S2; . . . ; of curves of increasing complexity. Given n data
points drawn independently from the distribution of X, we
choose a curve as the estimator of the principal curve from
the kth model class Sk by minimizing the empirical error. By
choosing the complexity of the model class appropriately as
the size of the training data grows, the chosen curve
represents the principal curve with increasing accuracy.

We assume that the distribution of X is concentrated on
a closed and bounded convex set K � IRd. A basic property
of convex sets in IRd shows that there exists a principal
curve of length L inside K (see [19], Lemma 1) and, so, we
will only consider curves in K.

Let S denote the family of curves taking values in K
and having length not greater than L. For k � 1, let Sk be
the set of polygonal (piecewise linear) curves in K which
have k segments and whose lengths do not exceed L.
Note that Sk � S for all k. Let

��x; f� � min
t
kxÿ f�t�k2 �3�

denote the squared distance between a point x 2 IRd and
the curve f . For any f 2 S, the empirical squared error of f
on the training data is the sample average

�n�f� � 1

n

Xn
i�1

��Xi; f�; �4�

where we have suppressed in the notation the dependence
of �n�f� on the training data. Let our theoretical algorithm2

choose an fk;n 2 Sk which minimizes the empirical error, i.e,

fk;n � arg min
f2Sk

�n�f�: �5�

We measure the efficiency of fk;n in estimating f� by the
difference J�fk;n� between the expected squared loss of fk;n
and the optimal expected squared loss achieved by f�, i.e.,
we let

J�fk;n� � ��fk;n� ÿ��f�� � ��fk;n� ÿmin
f2S

��f�:

Since Sk � S, we have J�fk;n� � 0. Our main result in this
section proves that if the number of data points n tends to
infinity, and k is chosen to be proportional to n1=3, then
J�fk;n� tends to zero at a rate J�fk;n� � O�nÿ1=3�.
Theorem 1. Assume that PfX 2 Kg � 1 for a bounded and

closed convex set K, let n be the number of training points,
and let k be chosen to be proportional to n1=3. Then, the
expected squared loss of the empirically optimal polygonal line
with k segments and length at most L converges, as n!1,
to the squared loss of the principal curve of length L at a rate

J�fk;n� � O�nÿ1=3�:

The proof of the theorem is given in Appendix B. To
establish the result, we use techniques from statistical
learning theory (e.g., see [20]). First, the approximating
capability of the class of curves Sk is considered and then
the estimation (generalization) error is bounded via cover-
ing the class of curves Sk with � accuracy (in the squared
distance sense) by a discrete set of curves. When these two
bounds are combined, one obtains

J�fk;n� �
������������������������
kC�L;D; d�

n

r
�DL� 2

k
�O�nÿ1=2�; �6�

where the term C�L;D; d� depends only on the dimension d,
the length L, and the diameter D of the support of X, but is
independent of k and n. The two error terms are balanced
by choosing k to be proportional to n1=3, which gives the
convergence rate of Theorem 1.

Note that, although the constant hidden in the O notation

depends on the dimension d, the exponent of n is

dimension-free. This is not surprising in view of the fact

that the class of curves S is equivalent in a certain sense to

the class of Lipschitz functions f : �0; 1� ! K such that

kf�x� ÿ f�y�k � Ljxÿ yj (see Appendix A). It is known that

the �-entropy, defined by the logarithm of the � covering

number, is roughly proportional to 1=� for such function

classes [21]. Using this result, the convergence rate O�nÿ1=3�
can be obtained by considering �-covers of S directly

(without using the model classes Sk) and picking the

empirically optimal curve in this cover. The use of the

classes Sk has the advantage that they are directly related to

the practical implementation of the algorithm given in the

next section.
Note also that even though Theorem 1 is valid for any

given length constraint L, the theoretical algorithm itself
gives little guidance about how to choose L. This choice
depends on the particular application and heuristic con-
siderations are likely to enter here. One example is given in
Section 3, where a practical implementation of the poly-
gonal line algorithm is used to recover a ªgenerating curveº
from noisy observations.

Finally, we note that the proof of Theorem 1 also
provides information on the distribution of the expected
squared error of fk;n given the training data X1; . . . ;Xn. In
particular, it is shown at the end of the proof that, for all n
and k and � such that 0 < � < 1, with probability at least
1ÿ � we have
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2. The term ªhypothetical algorithmº might appear to be more accurate
since we have not shown that an algorithm for finding fk;n exists. However,
an algorithm clearly exists which can approximate fk;n with arbitrary
accuracy in a finite number of steps (consider polygonal lines whose
vertices are restricted to a fine rectangular grid). The proof of Theorem 1
shows that such approximating curves can replace fk;n in the analysis.



E
�
��X; fk;n�jX1; . . . ;Xn

�ÿ��f ��

�
�����������������������������������������������������
kC�L;D; d� ÿD4 log��=2�

n

r
�DL� 2

k
;

�7�

where log denotes natural logarithm and C�L;D; d� is the
same constant as in (6).

3 THE POLYGONAL LINE ALGORITHM

Given a set of data points Xn � fx1; . . . ;xng � IRd, the task
of finding a polygonal curve with k segments and length L
which minimizes 1

n

Pn
i�1 ��xi; f� is computationally diffi-

cult. We propose a suboptimal method with reasonable
complexity which also picks the length L of the principal
curve automatically. The basic idea is to start with a straight
line segment f 0;n, the shortest segment of the first principal
component line which contains all of the projected data
points, and in each iteration of the algorithm, to increase the

number of segments by one by adding a new vertex to the
polygonal line fk;n produced in the previous iteration. After
adding a new vertex, the positions of all vertices are
updated in an inner loop.

The inner loop consists of a projection step and an
optimization step. In the projection step, the data points are
partitioned into ªnearest neighbor regionsº according to
which segment or vertex they project. In the optimization
step, the new position of a vertex vi is determined by
minimizing an average squared distance criterion penalized
by a measure of the local curvature, while all other vertices
are kept fixed. These two steps are iterated so that the
optimization step is applied to each vertex vi, i �
1; . . . ; k� 1 in a cyclic fashion (so that after vk�1, the
procedure starts again with v1) until convergence is
achieved and fk;n is produced. Then, a new vertex is added.

The algorithm stops when k exceeds a threshold c�n;��.
This stopping criterion is based on a heuristic complexity
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Fig. 2. The curves fk;n produced by the polygonal line algorithm for n � 100 data points. The data was generated by adding independent Gaussian

errors to both coordinates of a point chosen randomly on a half circle. (a) f 1;n, (b) f2;n, (c) f4;n, and (d) f 15;n (the output of the algorithm).



measure, determined by the number of segments k, the
number of data points n, and the average squared distance
�n�fk;n�.

The flow chart of the algorithm is given in Fig. 3. The
evolution of the curve produced by the algorithm is
illustrated in Fig. 2. As with the HS algorithm, we have
no formal proof that the practical algorithm will converge,
but, in practice, after extensive testing, it seems to
consistently converge.

It should be noted that the two core components of the
algorithm, the projection and the vertex optimization steps,
are combined with more heuristic elements such as the
stopping condition and the form of the penalty term (8) of
the optimization step. The heuristic parts of the algorithm
have been tailored to the task of recovering an underlying
generating curve for a distribution based on a finite data set
of randomly drawn points (see the experimental results in
Section 4). When the algorithm is intended for an applica-
tion with a different objective (such as robust signal
compression), the core components can be kept unchanged,
but the heuristic elements may be replaced according to the
new objectives.

3.1 The Projection Step

Let f denote a polygonal line with vertices v1; . . . ;vk�1 and
line segments s1; . . . ; sk such that si connects vertices vi and
vi�1. In this step, the data set Xn is partitioned into (at most)
2k� 1 disjoint sets V1; . . . ; Vk�1 and S1; . . . ; Sk, the nearest
neighbor regions of the vertices and segments of f ,
respectively, in the following manner: For any x 2 IRd, let
��x; si� be the squared distance from x to si (see
Definition 3), let ��x;vi� � kxÿ vik2, and let

Vi �
�
x 2 Xn : ��x;vi� � ��x; f�;
��x;vi� < ��x;vm�;m � 1; . . . ; iÿ 1

	
:

Upon setting V � Sk�1
i�1 Vi, the Si sets are defined by

Si �
�
x 2 Xn : x =2 V ;��x; si� � ��x; f�;
��x; si� < ��x; sm�;m � 1; . . . ; iÿ 1

	
:

The resulting partition is illustrated in Fig. 4.

As a result of introducing the nearest neighbor regions Si
and Vi, the polygonal line algorithm substantially differs
from methods based on the self-organizing map. Although
we optimize the positions of the vertices of the curve, the
distances of the data points are measured from the segments
and vertices of the curve onto which they project, while the
self-organizing map measures distances exclusively from
the vertices. Our principle makes it possible to use a
relatively small number of vertices and still obtain good
approximation to an underlying generating curve.

3.2 The Vertex Optimization Step

In this step, the new position of a vertex vi is determined. In
the theoretical algorithm, the average squared distance
�n�x; f� is minimized subject to the constraint that f is a
polygonal line with k segments and length not exceeding L.
One could use a Lagrangian formulation and attempt to
find a new position for vi (while all other vertices are fixed)
such that the penalized squared error �n�f� � �l�f�2 is
minimum. Although this direct length penalty can work
well in certain applications, it yields poor results in terms of
recovering a smooth generating curve. In particular, this
approach is very sensitive to the choice of � and tends to
produce curves which, similarly to the HS algorithm,
exhibit a ªflatteningº estimation bias towards the center of
the curvature.

To reduce the estimation bias, we penalize sharp angles
between line segments. At inner vertices vi, 3 � i � kÿ 1,
we penalize the sum of the cosines of the three angles at
vertices viÿ1, vi, and vi�1. The cosine function is convex in
the interval ��=2; �� and its derivative is zero at �, which
makes it especially suitable for the steepest descent
algorithm. To make the algorithm invariant under scaling,
we multiply the cosines by the square of the ªradiusº of the
data defined by r � maxx2Xn



xÿ 1
n

P
y2Xn y



. Note that the
chosen penalty formulation is related to the original
principle of penalizing the length of the curve. At inner
vertices, since only one vertex is moved at a time,
penalizing sharp angles indirectly penalizes long segments.
At the endpoints and at their immediate neighbors (vi,
i � 1; 2; k; k� 1), where penalizing sharp angles does not
translate to penalizing long line segments, the penalty on a
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Fig. 3. The flow chart of the polygonal line algorithm.

Fig. 4. A nearest-neighbor partition of IR2 induced by the vertices and
segments of f . The nearest point of f to any point in the set Vi is the
vertex vi. The nearest point of f to any point in the set Si is a point of the
line segment si.



nonexistent angle is replaced by a direct penalty on the
squared length of the first (or last) segment.

Formally, let 
i denote the angle at vertex vi, let
��vi� � r2�1� cos 
i�, let ���vi� � kvi ÿ vi�1k2, and let
�ÿ�vi� � kvi ÿ viÿ1k2. Then, the penalty P �vi� at vertex vi
is given by

P �vi� �

���vi� � ��vi�1� if i � 1
�ÿ�vi� � ��vi� � ��vi�1� if i � 2
��viÿ1� � ��vi� � ��vi�1� if 2 < i < k
��viÿ1� � ��vi� � ���vi� if i � k
��viÿ1� � �ÿ�vi� if i � k� 1:

8>>>><>>>>: �8�

The local measure of the average squared distance is
calculated from the data points which project to vi or to the
line segment(s) starting at vi (see Projection Step). Accord-
ingly, let

���vi� �
X
x2Si

��x; si�

�ÿ�vi� �
X

x2Siÿ1

��x; siÿ1�

��vi� �
X
x2Vi

��x;vi�:

Now, define the local average squared distance as a
function of vi by

�n�vi� �
��vi� � ���vi� if i � 1
�ÿ�vi� � ��vi� � ���vi� if 1 < i < k� 1
�ÿ�vi� � ��vi� if i � k� 1:

8<:
�9�

We use an iterative steepest descent method to minimize

G�vi� � 1

n
�n�vi� � �p 1

k� 1
P �vi�;

where �p > 0. Note that the local squared distance term
�n�vi� and the local penalty term P �vi� are normalized by
the number of data points n and the number of vertices
�k� 1�, respectively. This normalization ensures that the
magnitude of the global objective function

Pk�1
i�1 G�vi� is

approximately invariant to changes in the number of data
points or the number of line segments.

We search for a local minimum of G�vi� in the direction
of the negative gradient of G�vi� by using a procedure
similar to Newton's method. Then, the gradient is recom-
puted and the line search is repeated. The iteration stops
when the relative improvement of G�vi� is less than a preset
threshold. It should be noted that �n�vi� is not differenti-
able at any point vi such that at least one data point falls on
the boundary of a nearest neighbor region Siÿ1, Si, or Vi.
Thus, G�vi� is only piecewise differentiable and the variant
of Newton's method we use cannot guarantee that the
global objective function

Pk�1
i�1 G�vi�will always decrease in

the optimization step. During extensive test runs, however,
the algorithm was observed to always converge. Further-
more, we note that this part of the algorithm is modular, i.e.,
the procedure we are using can be substituted with a more
sophisticated optimization routine at the expense of in-
creased computational complexity.

One important issue is the amount of smoothing
required for a given data set. In the HS algorithm, one

needs to determine the penalty coefficient of the spline
smoother or the span of the scatterplot smoother. In our
algorithm, the corresponding parameter is the curvature
penalty factor �p. If some a priori knowledge about the
distribution is available, one can use it to determine the
smoothing parameter. However in the absence of such
knowledge, the coefficient should be data-dependent. Based
on heuristic considerations explained below, and after
carrying out practical experiments, we set

�p � �0pknÿ1=3�n�fk;n�1=2rÿ1;

where �0p is an experimentally determined constant.
By setting the penalty to be proportional to the average

distance of the data points from the curve, we avoid the zig-
zagging behavior of the curve resulting from overfitting
when the noise is relatively large. At the same time, this
penalty factor allows the principal curve to closely follow
the generating curve when the generating curve itself is a
polygonal line with sharp angles and the data is concen-
trated on this curve (the noise is very small). The penalty is
set to be proportional to the number of segments k because,
in our experiments, we have found that the algorithm is
more likely to avoid local minima if a small penalty is
imposed initially and the penalty is gradually increased as
the number of segments grows. Since the stopping condition
(Section 3.4) indicates that the final number of line segments
is proportional to the cube root of the data size, we
normalize k by n1=3 in the penalty term. The penalty factor
is also normalized by the radius of the data to obtain scale
independence. The value of the parameter �0p was deter-
mined by experiments and was set to a constant 0:13.

3.3 Adding a New Vertex

We start with the optimized fk;n and choose the segment
that has the largest number of data points projecting to it. If
more than one such segment exists, we choose the longest
one. The midpoint of this segment is selected as the new
vertex. Formally, let

I � i : jSij � jSjj; j � 1; . . . ; k
� 	

;

and ` � arg maxi2I kvi ÿ vi�1k. Then, the new vertex is
vnew � �v` � v`�1�=2.

3.4 Stopping Condition

According to the theoretical results of Section 2, the number
of segments k is an important factor that controls the
balance between the estimation and approximation errors
and it should be proportional to n1=3 to achieve the O�nÿ1=3�
convergence rate for the expected squared distance.
Although the theoretical bounds are not tight enough to
determine the optimal number of segments for a given data
size, we found that k � n1=3 works in practice. We also
found that, similarly to the penalty factor �p, the final value
of k should also depend on the average squared distance to
achieve robustness. If the variance of the noise is relatively
small, we can keep the approximation error low by allowing
a relatively large number of segments. On the other hand,
when the variance of the noise is large (implying a high
estimation error), a low approximation error does not
improve the overall performance significantly, so, in this
case, a smaller number of segments can be chosen. The
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stopping condition blends these two considerations. The
algorithm stops when k exceeds

c n;�n�fk;n�
ÿ � � �n1=3�n�fk;n�ÿ1=2r; �10�

where � is a parameter of the algorithm which was
determined by experiments and was set to the constant
value 0:3.

Note that, in a practical sense, the number of segments
plays a more important role in determining the computa-
tional complexity of the algorithm than in measuring the
quality of the approximation. Experiments showed that, due
to the data dependent curvature penalty and the constraint
that only one vertex is moved at a time, the number of
segments can increase even beyond the number of data
points without any indication of overfitting. While increas-
ing the number of segments beyond a certain limit offers
only marginal improvement in the approximation, it causes
the algorithm to slow down considerably. Therefore, in on-
line applications where speed has priority over precision, it
is reasonable to use a smaller number of segments than
indicated by (10) and, if ºaestheticº smoothness is an issue,
to fit a spline through the vertices of the curve.

3.5 Computational Complexity

The complexity of the inner loop is dominated by the
complexity of the projection step, which is O�nk�. Increasing
the number of segments one at a time (as described in
Section 3.3), the complexity of the algorithm to obtain fk;n is
O�nk2�. Using the stopping condition of Section 3.4, the
computational complexity of the algorithm becomes
O�n5=3�. This is slightly better than the O�n2� complexity
of the HS algorithm.

The complexity can be dramatically decreased in certain
situations. One possibility is to add more than one vertex at
a time. For example, if, instead of adding only one vertex, a
new vertex is placed at the midpoint of every segment, then
we can reduce the computational complexity for producing
fk;n to O�nk log k�. One can also set k to be a constant if the
data size is large since increasing k beyond a certain
threshold brings only diminishing returns. Also, k can be
naturally set to a constant in certain applications, giving
O�nk� computational complexity. These simplifications
work well in certain situations, but the original algorithm
is more robust.

4 EXPERIMENTAL RESULTS

We have extensively tested the proposed algorithm on two-
dimensional data sets. In most experiments, the data was
generated by a commonly used (see, e.g., [2], [10], [11])
additive model

X � Y� e; �11�
where Y is uniformly distributed on a smooth planar curve
(hereafter called the generating curve) and e is bivariate
additive noise which is independent of Y.

In Section 4.1, we compare the polygonal line algorithm,
the HS algorithm, and, for closed generating curves, the BR
algorithm [5]. The various methods are compared subjec-
tively based mainly on how closely the resulting curve
follows the shape of the generating curve. We use varying
generating shapes, noise parameters, and data sizes to

demonstrate the robustness of the polygonal line algorithm.
For the case of a circular generating curve, we also evaluate,
in a quantitative manner, how well the polygonal line
algorithm approximates the generating curve as the data
size grows and as the noise variance decreases.

In Section 4.2, we show two scenarios in which the
polygonal line algorithm (along with the HS algorithm) fails
to produce meaningful results. In the first, the high number
of abrupt changes in the direction of the generating curve
causes the algorithm to oversmooth the principal curve, even
when the data is concentrated on the generating curve. This
is a typical situation when the penalty parameter �0p should
be decreased. In the second scenario, the generating curve is
too complex (e.g., it contains loops, or it has the shape of a
spiral), so the algorithm fails to find the global structure of
the data if the process is started from the first principal
component. To recover the generating curve, one must
replace the initialization step by a more sophisticated routine
that approximately captures the global structure of the data.

In Section 4.3, an application in feature extraction is
briefly outlined. We depart from the synthetic data
generating model in (11) and use an extended version of
the polygonal line algorithm to find the medial axes
(ªskeletonsº) of pixel templates of handwritten characters.
Such skeletons can be used in handwritten character
recognition and compression of handwritten documents.

4.1 Experiments with the Generating Curve Model

In general, in simulation examples considered by HS, the
performance of the new algorithm is comparable with the
HS algorithm. Due to the data dependence of the curvature
penalty factor and the stopping condition, our algorithm
turns out to be more robust to alterations in the data
generating model, as well as to changes in the parameters of
the particular model.

We use model (11) with varying generating shapes, noise
parameters, and data sizes to demonstrate the robustness of
the polygonal line algorithm. All plots show the generating
curve, the curve produced by our polygonal line algorithm
(Polygonal principal curve), and the curve produced by the
HS algorithm with spline smoothing (HS principal curve),
which we have found to perform better than the HS
algorithm using scatterplot smoothing. For closed generat-
ing curves, we also include the curve produced by the BR
algorithm [5] (BR principal curve), which extends the HS
algorithm to closed curves. The two coefficients of the
polygonal line algorithm are set in all experiments to the
constant values � � 0:3 and �0p � 0:13.

In Fig. 5a, the generating curve is a circle of radius r � 1
and e � �e1; e2� is a zero mean bivariate uncorrelated
Gaussian with variance E�e2

i � � 0:04, for i � 1; 2. The
performance of the three algorithms (HS, BR, and the
polygonal line algorithm) is comparable, although the HS
algorithm exhibits more bias than the other two. Note that
the BR algorithm [5] has been tailored to fit closed curves
and to reduce the estimation bias. In Fig. 5b, only half of the
circle is used as a generating curve and the other
parameters remain the same. Here, too, both the HS and
our algorithm behave similarly.

When we depart from these usual settings, the polygonal
line algorithm exhibits better behavior than the HS
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algorithm. In Fig. 6a, the data was generated similarly to the
data set of Fig. 5 and, then, it was linearly transformed
using the matrix

0:7 0:4
ÿ0:8 1:0

� �
:

In Fig. 6b, the transformation

ÿ1:0 ÿ1:2
1:0 ÿ0:2

� �
was used. The original data set was generated by an
S-shaped generating curve consisting of two half circles of

unit radii to which the same Gaussian noise was added as in
Fig. 5. In both cases, the polygonal line algorithm produces
curves that fit the generator curve more closely. This is
especially noticeable in Fig. 6a, where the HS principal curve
fails to follow the shape of the distorted half circle.

There are two situations when we expect our algorithm
to perform particularly well. If the distribution is concen-
trated on a curve, then, according to both the HS and our
definitions, the principal curve is the generating curve itself.
Thus, if the noise variance is small, we expect both
algorithms to very closely approximate the generating
curve. The data in Fig. 7a was generated using the same
additive Gaussian model as in Fig. 5, but the noise variance
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Fig. 5. (a) Circle, 100 data points: The BR and the polynomial line alogorithms show less bias than the HS algorithm. (b) Half circle, 100 data points:

The HS and the polygonal line algorithms produce similar curves.

Fig. 6. Transformed Data Sets. The polygonal line algorithm still follows fairly closely the ªdistortedº shapes. (a) Distorted half circle, 100 data points.

(b) Distorted S-shape, 100 data points.



was reduced to E�e2
i � � 0:0001 for i � 1; 2. In this case, we

found that the polygonal line algorithm outperformed both
the HS and the BR algorithms.

The second case is when the sample size is large.
Although the generating curve is not necessarily the
principal curve of the distribution, it is natural to expect
the algorithm to well approximate the generating curve as
the sample size grows. Such a case is shown in Fig. 7b,
where n � 10; 000 data points were generated (but only
2; 000 of these were actually plotted). Here, the polygonal
line algorithm approximates the generating curve with
much better accuracy than the HS algorithm.

Although in the model (11), the generating curve is, in
general, not the principal curve in our definition (or in the HS
definition), it is of interest to numerically evaluate how well
the polygonal line algorithm approximates the generating
curve. In these experiments, the generating curve g�t� is a
circle of unit radius centered at the origin and the noise is
zero mean bivariate uncorrelated Gaussian. We chose 21
different data sizes ranging from 10 to 10; 000 and seven
different noise standard deviations ranging from � � 0:01 to
� � 0:4. For the measure of approximation, we chose the
average distance defined by � � 1

l�f�
R

mins kf�t� ÿ g�s�kdt,
where the polygonal line f is parametrized by its arc length.
To eliminate the distortion occurring at the endpoints, we
initialized the polygonal line algorithm by an equilateral
triangle inscribed in the generating circle. For each particular
data size and noise variance value, 100 random data sets
were generated and the resulting � values were averaged
over these experiments. The dependence of the average
distance � on the data size and the noise variance is plotted
on a logarithmic scale in Fig. 8. The resulting curves justify
our informal observation made earlier that the approxima-
tion substantially improves as the data size grows and as the
variance of the noise decreases.

4.2 Failure Modes

We describe two specific situations when the polygonal
line algorithm fails to recover the generating curve. In the
first scenario, we use zig-zagging generating curves f i for
i � 2; 3; 4, consisting of 2i line segments of equal length
such that two consecutive segments join at a right angle
(Fig. 9). In these experiments, the number of the data points
generated on a line segment is constant (it is set to 100) and
the variance of the bivariate Gaussian noise is l2 � 0:0005,
where l is the length of a line segment. Fig. 9 shows the
principal curves produced by the HS and the polygonal
line algorithms in the three experiments. Although the
polygonal principal curve follows the generating curve
more closely than the HS principal curve in the first two
experiments (Fig. 9a and Fig. 9b), the two algorithms
produce equally poor results if the number of line
segments exceeds a certain limit (Fig. 9c). The data
dependent penalty term explains this behavior of the
polygonal line algorithm. Since the penalty factor �p is
proportional to the number of line segments, the penalty
relatively increases as the number of line segments of the
generating curve grows. To achieve the same local
smoothness in the four experiments, the penalty factor
should be gradually decreased as the number of line
segments of the generating curve grows. Indeed, if the
constant of the penalty term is reset to �0p � 0:02 in the
fourth experiment, the polygonal principal curve recovers
the generating curve with high accuracy (Fig. 11a).

The second scenario when the polygonal line algorithm
fails to produce a meaningful result is when the generating
curve is too complex, so the algorithm does not find the
global structure of the data. To test the gradual degradation
of the algorithm, we used spiral-shaped generating curves
of increasing length, i.e., we set gi�t� � �t sin�i�t�; t cos�i�t��
for t 2 �0; 1� and i � 1; . . . ; 6. The variance of the noise was
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Fig. 7. (a) Small noise variance and (b) large sample size. The curves produced by the polygonal line algorithm are nearly indistinguishable from the

generating curves.



set to 0:0001 and we generated 1; 000 data points in each

experiment. Fig. 10 shows the principal curves produced by

the HS and the polygonal line algorithms in three experi-

ments (i � 3; 4; 6). In the first two experiments (Fig. 10a and

Fig. 10b), the polygonal principal curve is almost indis-

tinguishable from the generating curve, while the HS

algorithm either oversmoothes the principal curve

(Fig. 10a) or fails to recover the shape of the generating

curve (Fig. 10b). In the third experiment, both algorithms

fail to find the shape of the generating curve (Fig. 10c). The

failure here is due to the fact that the algorithm is stuck in a

local minima between the initial curve (the first principal

component) and the desired solution (the generating curve).

If this is likely to occur in an application, the initialization

step must be replaced by a more sophisticated routine that

approximately captures the global structure of the data.

Fig. 11b indicates that this indeed works. Here, we manually

initialize both algorithms by a polygonal line with eight

vertices. Using this ªhint,º the polygonal line algorithm

produces an almost perfect solution, while the HS algorithm

still cannot recover the shape of the generating curve.

4.3 Recovering Smooth Character Skeletons

In this section, we use the polygonal line algorithm to find
smooth skeletons of handwritten character templates. The
results reported here are preliminary and the full treatment
of this application is presented in [19]. Principal curves have
been applied by Singh et al. [6] for similar purposes. In [6],
the initial trees are produced using a version of the SOM
algorithm and then the HS algorithm is applied to extract
skeletal structures of handwritten characters. The focus in
[6] was on recovering the topological structure of noisy
letters in faded documents. Our aim with the polygonal line
algorithm is to produce smooth curves which can be used to
recover the trajectory of the penstroke.

To transform black-and-white character templates into
two-dimensional data sets, we place the midpoint of the
bottom-most left-most pixel of the template at the center of
a coordinate system. The unit length of the coordinate
system is set to the width (and height) of a pixel, so the
midpoint of each pixel has integer coordinates. Then, we
add the midpoint of each black pixel to the data set.

The polygonal line algorithm was tested on images of
isolated handwritten digits from the NIST Special
Database 19 [22]. We found that the polygonal line
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Fig. 9. Abrupt changes in the direction of the generating curve. The polygonal line algorithm oversmoothes the principal curve as the number of
direction changes increases.

Fig. 8. The approximation error � decreases as n grows or � decreases.



algorithm can be used effectively to find smooth medial
axes of simple digits which contain no loops or crossings
of strokes. Fig. 12 shows some of these results.

To find smooth skeletons of more complex characters, we

modified and extended the polygonal line algorithm. We

introduced new types of vertices incident to more than two

line segments to handle loops and crossings, and modified

the vertex optimization step accordingly. The initialization

step was also replaced by a more sophisticated routine

based on a thinning method [23] to produce an initial graph

that approximately captures the topology of the character.

Fig. 13 shows some of the results of the extended polygonal

line algorithm on more complex characters. Details of the

extended polygonal line algorithm and more complete

testing results will be presented in the future.

5 CONCLUSION

A new definition of principal curves has been offered. The

new definition has significant theoretical appeal; the

existence of principal curves with this definition can be

proven under very general conditions and a learning

method for constructing principal curves for finite data

sets yields to theoretical analysis.
Inspired by the new definition and the theoretical

learning scheme, we have introduced a new practical

polygonal line algorithm for designing principal curves.

Lacking theoretical results concerning both the HS and our

polygonal line algorithm, we compared the two methods

through simulations. We have found that, in general, our

algorithm has either comparable or better performance than

the original HS algorithm and it exhibits better, more robust

behavior when the data generating model is varied. We

have also reported preliminary results in applying the

polygonal line algorithm to the problem of handwritten

character skeletonization. We believe that the new principal

curve algorithm may also prove useful in other applications

such as data compression and feature extraction, where a

compact and accurate description of a pattern or an image is

required. These are issues for future work.

292 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22, NO. 3, MARCH 2000

Fig. 10. Spiral-shaped generating curves. The polygonal line algorithm fails to find the generating curve as the length of the spiral is increased.

Fig. 11. Improved performance of the polygonal line algorithm. (a) The penalty parameter is decreased. (b) The algorithms are initialized manually.



APPENDIX A

Curves in IRd

Let f : �a; b� ! IRd a continuous mapping (curve). The length

of f over an interval ��; �� � �a; b�, denoted by l�f ; �; ��, is

defined by

l�f ; �; �� � sup
XN
i�1

kf�ti� ÿ f�tiÿ1�k; �A:1�

where the supremum is taken over all finite partitions of

��; �� with arbitrary subdivision points

� � t0 � t1 < � � � � tN � �
for N � 1. The length of f over its domain �a; b� is denoted

by l�f�. If l�f� <1, then f is said to be rectifiable. It is well-

known that f � �f1; . . . ; fd� is rectifiable if and only if each

coordinate function fj : �a; b� ! IR is of bounded variation.
Two curves f : �a; b� ! IRd and g : �a0; b0� ! IRd are said to

be equivalent if there exist two nondecreasing continuous

real onto functions � : �0; 1� ! �a; b� and � : �0; 1� ! �a0; b0�
such that

f���t�� � g���t��; for t 2 �0; 1�:
In this case, we write f � g and it is easy to see that � is an

equivalence relation. If f � g, then l�f� � l�g�. A curve g

over �a; b� is said to be parametrized by its arc length if

l�g; a; t� � tÿ a for any a � t � b. Let f be a curve over �a; b�
with length L. It is not hard to see that there exists a unique

arc length parametrized curve g over �0; L� such that f � g.
Let f be any curve with length L0 � L, and consider the

arc length parametrized curve g � f with parameter

interval �0; L0�. By (A.1), for all s1; s2 2 �0; L0�, we have

kg�s1� ÿ g�s2�k � js1 ÿ s2j:

Define ĝ�t� � g�L0t� for 0 � t � 1. Then, f � ĝ, and ĝ

satisfies the following Lipschitz condition: For all

t1; t2 2 �0; 1�,
kĝ�t1� ÿ ĝ�t2�k �kg�L0t1� ÿ g�L0t2�k

�L0jt1 ÿ t2j
�Ljt1 ÿ t2j:

�A:2�

On the other hand, note that if ĝ is a curve over �0; 1� which
satisfies the Lipschitz condition (A.2), then its length is at
most L.

Let f be a curve over �a; b� and denote the squared
Euclidean distance from any x 2 IRd to f by

��x; f� � inf
a�t�b

kxÿ f�t�k2:

Note that if l�f� <1, then, by the continuity of f , its graph

Gf � ff�t� : a � t � bg
is a compact subset of IRd and the infimum above is
achieved for some t. Also, since Gf � Gg if f � g, we also
have that ��x; f� � ��x;g� for all g � f .

Proof of Lemma 1. Define

�� � inff��f� : l�f� � Lg:
First, we show that the above infimum does not change if
we add the restriction that all f lie inside a closed sphere
S�r� � fx : kxk � rg of large enough radius r and
centered at the origin. Indeed, without excluding
nontrivial cases, we can assume that �� < EkXk2.
Denote the distribution of X by � and choose r > 3L
large enough such thatZ

S�r=3�
kxk2��dx� > �� � " �A:3�

for some " > 0. If f is such that Gf is not entirely
contained in S�r�, then, for all x 2 S�r=3�, we have
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Fig. 12. Results produced by the polygonal line algorithm on characters

not containing loops or crossings.

Fig. 13. Results produced by the extended polygonal line algorithm on

characters containing loops or crossings.



��x; f� > kxk2 since the diameter of Gf is at most L.
Then, (A.3) implies that

��f� �
Z
S�r=3�

��x; f���dx� > �� � "

and, thus,

�� � inff��f� : l�f� � L;Gf � S�r�g: �A:4�
In view of (A.4), there exists a sequence of curves ffng

such that l�fn� � L, Gfn � S�r� for all n, and ��fn� ! ��.
By the discussion preceding (A.2), we can assume
without loss of generality that all fn are defined over
�0; 1� and

kfn�t1� ÿ fn�t2�k � Ljt1 ÿ t2j �A:5�
for all t1; t2 2 �0; 1�. Consider the set of all curves C over

�0; 1� such that f 2 C if and only if kf�t1� ÿ f�t2�k �
Ljt1 ÿ t2j for all t1; t2 2 �0; 1� and Gf � S�r�. It is easy to

see that C is a closed set under the uniform metric

d�f ;g� � sup0�t�1 kf�t� ÿ g�t�k. Also, C is an equicontin-

uous family of functions and supt kf�t�k is uniformly

bounded over C. Thus, C is a compact metric space by the

Arzela-Ascoli theorem (see, e.g., [24]). Since fn 2 C for all

n, it follows that there exists a subsequence fnk
converging uniformly to an f� 2 C.

To simplify the notation, let us rename ffnkg as ffng.
Fix x 2 IRd, assume ��x; fn� � ��x; f ��, and let tx be
such that ��x; f �� � kxÿ f��tx�k2. Then by the triangle
inequality,

j��x; f �� ÿ��x; fn�j ���x; fn� ÿ��x; f ��
�kxÿ fn�tx�k2 ÿ kxÿ f ��tx�k2

�ÿkxÿ fn�tx�k � kxÿ f��tx�k
�

�kfn�tx� ÿ f��tx�k:
By symmetry, a similar inequali ty holds if

��x; fn� < ��x; f ��. Since Gf� ; Gfn � S�r�, and EkXk2 is

finite, there exists A > 0 such that

E ��X; fn� ÿ��X; f ��j j � A sup
0�t�0

kfn�t� ÿ f��t�k

and, therefore,

�� � lim
n!1��fn� � ��f ��:

Since the Lipschitz condition on f � guarantees that

l�f �� � L, the proof is complete. tu

APPENDIX B

Proof of Theorem 1. Let f �k denote the curve in Sk
minimizing the squared loss, i.e.,

f�k � arg min
f2Sk

��f�:

The existence of a minimizing f �k can easily be shown

using a simpler version of the proof of Lemma 1. Then,

J�fk;n� can be decomposed as

J�fk;n� �
ÿ
��fk;n� ÿ��f�k�

�� ÿ��f �k� ÿ��f���;
where, using standard terminology, ��fk;n� ÿ��f �k� is

called the estimation error and ��f �k� ÿ��f�� is called the

approximation error. We consider these terms separately

first and then choose k as a function of the training data

size n to balance the obtained upper bounds in an

asymptotically optimal way.
Approximation Error. For any two curves f and g of

finite length, define their (nonsymmetric) distance by

��f ;g� � max
t

min
s
kf�t� ÿ g�s�k:

Note that ��f̂ ; ĝ� � ��f ;g� if f̂ � f and ĝ � g, i.e., ��f ;g� is

independent of the particular choice of the parametriza-

tion within equivalence classes. Next, we observe that if

the diameter of K is D, and Gf ; Gg 2 K, then, for all

x 2 K,

��x;g� ÿ��x; f� � 2D��f ;g� �B:1�
and, therefore,

��g� ÿ��f� � 2D��f ;g�: �B:2�
To prove (B.1), let x 2 K and choose t0 and s0 such that

��x; f� � kxÿ f�t0�k2 and

min
s
kg�s� ÿ f�t0�k � kg�s0� ÿ f�t0�k:

Then,

��x;g� ÿ��x; f� �kxÿ g�s0�k2 ÿ kxÿ f�t0�k2

�ÿkxÿ g�s0�k � kxÿ f�t0�k�
�ÿkxÿ g�s0�k ÿ kxÿ f�t0�k�
�2Dkg�s0� ÿ f�t0�k
�2D��f ;g�:

Let f 2 S be an arbitrary arc length parametrized curve

over �0; L0�, where L0 � L. Define g as a polygonal curve

with vertices f�0�; f�L0=k�; . . . ; f��kÿ 1�L0=k�; f�L0�. For

any t 2 �0; L0�, we have jtÿ iL0=kj � L=�2k� for some

i 2 f0; . . . ; kg. Since g�s� � f�iL0=k� for some s, we have

min
s
kf�t� ÿ g�s�k � kf�t� ÿ f�iL0=k�k

� jtÿ iL0=kj � L

2k
:

Note that l�g� � L0, by construction, and, thus, g 2 Sk.
Thus, for every f 2 S, there exists a g 2 Sk such that
��f ;g� � L=�2k�. Now, le t g 2 Sk be such that
��f �;g� � L=�2k�. Then, by (B.2), we conclude that the

approximation error is upper bounded as

��f �k� ÿ��f�� � ��g� ÿ��f ��
� 2D��f �;g�
� DL

k
:

�B:3�

Estimation Error. For each " > 0 and k � 1 let Sk;" be a
finite set of curves in K which form an "-cover of Sk in the
following sense: For any f 2 Sk, there is an f 0 2 Sk;" which
satisfies
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sup
x2K
j��x; f� ÿ��x; f 0�j � ": �B:4�

The explicit construction of Sk;" is given in [19]. Since

fk;n 2 Sk (see (5)), there exists an f 0k;n 2 Sk;" such that

j��x; fk;n� ÿ��x; f 0k;n�j � " for all x 2 K. We introduce

the compact notation Xn � �X1; . . . ;Xn� for the training

data. Thus, we can write

E���X; fk;n�jXn� ÿ��f �k� �
E���X; fk;n�jXn� ÿ�n�fk;n� ��n�fk;n� ÿ��f�k�
� 2"�E���X; f 0k;n�jXn� ÿ�n�f 0k;n� ��n�fk;n� ÿ��f �k�

�B:5�

� 2"�E���X; f 0k;n�jXn� ÿ�n�f 0k;n� ��n�f �k� ÿ��f �k� �B:6�

� 2"� 2 � max
f2Sk;"[ff�g

j��f� ÿ�n�f�j; �B:7�

where (B.5) follows from the approximating property of

f 0k;n and the fact that the distribution of X is concentrated

on K. Equation (B.6) holds because fk;n minimizes �n�f�
over all f 2 Sk, and (B.7) follows because, given

Xn � �X1; . . . ;Xn�, E���X; f 0k;n�jXn� is an ordinary ex-

pectation of the type E���X; f��, f 2 Sk;". Thus, for any

t > 2", the union bound implies

PfE���X; fk;n�jXn� ÿ��f �k� > tg
� Pf max

f2Sk;"[ff�g
j��f� ÿ�n�f�j > t

2
ÿ "g

� jSk;"j � 1
ÿ �

max
f2Sk;"[ff�g

Pfj��f� ÿ�n�f�j > t

2
ÿ "g;

�B:8�

where jSk;"j denotes the cardinality of Sk;".
Recall now Hoeffding's inequality [25] which states

that if Y1; Y2; . . . ; Yn are independent and identically
distributed real random variables such that 0 � Yi � A
with probability one, then, for all u > 0,

P
1

n

Xn
i�1

Yi ÿ EY1

�����
����� > u

( )
� 2eÿ2nu2=A2

:

Since the diameter ofK isD, we have kxÿ f�t�k2 � D2 for

all x 2 K and f such that Gf 2 K. Thus, 0 � ��X; f� � D2

with probability one and by Hoeffding's inequality, for all

f 2 Sk;" [ ff �g, we have

P
�j��f� ÿ�n�f�j > t

2
ÿ "	 � 2eÿ2n��t=2�ÿ"�2=D4

;

which implies, by (B.8), that

P
�
E���X; fk;n�jXn� ÿ��f �k� > t

	
� 2 jSk;"j � 1
ÿ �

eÿ2n��t=2�ÿ"�2=D4 �B:9�
for any t > 2". Using the fact that E�Y � � R10 PfY > tg dt
for any nonnegative random variable Y , we can write for

any u > 0,

��fk;n� ÿ��f �k� �
Z 1

0

P
�
E���X; fk;n�jXn� ÿ��f �k� > t

	
dt

�u� 2"� 2 jSk;"j � 1
ÿ �

�
Z 1
u�2"

eÿ2n��t=2�ÿ"�2=D4

dt �B:10�

�u� 2"� 2 jSk;"j � 1
ÿ �

D4 � e
ÿnu2=�2D4�

nu
�B:11�

�
��������������������������������������
2D4 log�jSk;"j � 1�

n

r
� 2"�O�nÿ1=2�;

�B:12�
where (B.11) follows from the inequalityZ 1

x

eÿt
2=2 dt < �1=x�eÿx2=2;

for x > 0, and (B.12) follows by setting

u �
��������������������������������������
2D4 log�jSk;"j � 1�

n

r
;

where log denotes natural logarithm. The following

lemma, which is proven in [19], demonstrates the

existence of a suitable covering set Sk;".

Lemma 2. For any " > 0, there exists a finite collection of curves

Sk;" in K such that

sup
x2K
j��x; f� ÿ��x; f 0�j � "

and

jSk;"j � 2
LD
" �3k�1 V k�1

d

D2
���
d
p

"
�

���
d
p !d

LD
���
d
p

k"
� 3

���
d
p !kd

;

where Vd is the volume of the d-dimensional unit sphere and D

is the diameter of K.

It is not hard to see that setting " � 1=k in Lemma 2
gives the upper bound

2D4 log�jSk;"j � 1� � kC�L;D; d�; �B:13�
where C�L;D; d� does not depend on k. Combining this

with (B.12) and the approximation bound given by (B.3)

results in

��fk;n� ÿ��f �� �
������������������������
kC�L;D; d�

n

r
�DL� 2

k
�O�nÿ1=2�:

The rate at which ��fk;n� approaches ��f �� is optimized

by setting the number of segments k to be proportional to

n1=3. With this choice, J�fk;n� � ��fk;n� ÿ��f�� has the

asymptotic convergence rate

J�fk;n� � O�nÿ1=3�;
and the proof of Theorem 1 is complete.

To show the bound (7), let � 2 �0; 1� and observe that,
by (B.9), we have

P
�
E���X; fk;n�jXn� ÿ��f�k� � t

	
> 1ÿ �

whenever t > 2" and
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� � 2 jSk;"j � 1
ÿ �

eÿ2n��t=2�ÿ"�2=D4

:

Solving this equation for t and letting " � 1=k as before,
we obtain

t �
�������������������������������������������������������������������������
2D4 log jSk;1=kj � 1

ÿ �ÿ 2D4 log��=2�
n

s
� 2

k

�
��������������������������������������������������������
kC�L;D; d� ÿ 2D4 log��=2�

n

r
� 2

k
:

Therefore, with probability at least 1ÿ �, we have

E���X; fk;n�jXn� ÿ��f�k�

�
��������������������������������������������������������
kC�L;D; d� ÿ 2D4 log��=2�

n

r
� 2

k
:

Combining this bound with the approximation bound
��f�k� ÿ��f�� � �DL�=k gives (7). tu

ACKNOWLEDGMENTS

This research was supported in part by the U.S. National
Science Foundation and NSERC.

REFERENCES

[1] T. Hastie, ªPrincipal Curves and Surfaces,º PhD thesis, Stanford
Univ., 1984.

[2] T. Hastie and W. Stuetzle, ªPrincipal Curves,º J. Am. Statistical
Assoc., vol. 84, pp. 502-516, 1989.

[3] Y. Linde, A. Buzo, and R.M. Gray, ªAn Algorithm for Vector
Quantizer Design,º IEEE Trans. Comm., vol. 28, pp. 84-95, 1980.

[4] W.S. Cleveland, ªRobust Locally Weighted Regression and
Smoothing Scatterplots,º J. Am. Statistical Assoc., vol. 74, pp. 829-
835, 1979.

[5] J.D. Banfield and A.E. Raftery, ªIce Floe Identification in Satellite
Images Using Mathematical Morphology and Clustering about
Principal Curves,º J. Am. Statistical Assoc., vol. 87, pp. 7-16, 1992.

[6] R. Singh, M.C. Wade, and N.P. Papanikolopoulos, ªLetter-Level
Shape Description by Skeletonization in Faded Documents,º Proc.
Fourth IEEE Workshop Applications of Computer Vision, pp. 121-126,
1998.

[7] K. Reinhard and M. Niranjan, ªSubspace Models for Speech
Transitions Using Principal Curves,º Proc. Inst. of Acoustics, vol. 20,
no. 6, pp. 53-60, 1998.

[8] K. Chang and J. Ghosh, ªPrincipal Curves for Nonlinear Feature
Extraction and Classification,º Applications of Artificial Neural
Networks in Image Processing III, vol. 3307, pp. 120-129, 1998.

[9] K. Chang and J. Ghosh, ªPrincipal Curve ClassifierÐA Nonlinear
Approach to Pattern Classification,º Proc. IEEE Int'l Joint Conf.
Neural Networks, pp. 695-700, 1998.

[10] R. Tibshirani, ªPrincipal Curves Revisited,º Statistics and Compu-
tation, vol. 2, pp. 183-190, 1992.

[11] F. Mulier and V. Cherkassky, ªSelf-Organization as An Iterative
Kernel Smoothing Process,º Neural Computation, vol. 7, pp. 1,165-
1,177, 1995.

[12] P. Delicado, ªPrincipal Curves and Principal Oriented Points,º
Technical Report 309, Dept. d'Economia i Empresa, Universitat
Pompeu Fabra, 1998.

[13] T. Duchamp and W. Stuetzle, ªGeometric Properties of Principal
Curves in the Plane,º Robust Statistics, Data Analysis, and Computer
Intensive Methods: In Honor of Peter Huber's 60th Birthday, H. Rieder,
ed., vol. 109, pp. 135-152, Springer-Verlag, 1996.

[14] A.N. Kolmogorov and S.V. Fomin, Introductory Real Analysis. New
York: Dover, 1975.

[15] A. Gersho and R.M. Gray, Vector Quantization and Signal
Compression. Boston: Kluwer, 1992.

[16] J.A. Hartigan, Clustering Algorithms. New York: Wiley, 1975.
[17] T. Tarpey, L. Li, and B.D. Flury, ªPrincipal Points and Self-

Consistent Points of Elliptical Distributions,º Annals of Statistics,
vol. 23, no. 1, pp. 103-112, 1995.

[18] V.N. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer-Verlag, 1995.

[19] B. KeÂgl, ªPrincipal Curves: Learning, Design, and Applications,º
PhD thesis, Concorida Univ., Montreal, Canada, 1999.

[20] L. Devroye, L. GyoÈrfi, and G. Lugosi, A Probabilistic Theory of
Pattern Recognition. New York: Springer-Verlag, 1996.

[21] A.N. Kolmogorov and V.M. Tikhomirov, ª"-Entropy and "-
Capacity of Sets in Function Spaces,º Translations Am. Math. Soc.,
vol. 17, pp. 277-364, 1961.

[22] P. Grother, NIST Special Database 19. Nat'l Inst. of Standards and
Technology, Advanced Systems Division, 1995.

[23] S. Suzuki and K. Abe, ªSequential Thinning of Binary Pictures
Using Distance Transformation,º Proc. Eighth Int'l Conf. Pattern
Recognition, pp. 289-292, 1986.

[24] R.B. Ash, Real Analysis and Probability. New York: Academic
Press, 1972.

[25] W. Hoeffding, ªProbability Inequalities for Sums of Bounded
Random Variables,º J. Am. Statistical Assoc., vol. 58, pp. 13-30, 1963.

BalaÂzs KeÂgl received the MSc degree in
computer science from the Technical Univer-
sity of Budapest, Hungary, in 1994, and the
PhD degree in computer science from Con-
cordia University, MontreÂal, Canada, in 1999.
Since January 2000, he has been a post-
doctoral fellow in the Department of Mathe-
matics and Statistics at Queen's University,
Kingston, Canada, receiving an NSERC Post-
doctoral Fellowship. He is a student member

of the IEEE.

Adam Krzyzak received the MSc and PhD
degrees in computer engineering from the
Technical University of Wroclaw, Poland, in
1977 and 1980, respectively, the DSc degree
(habilitation) in electrical engineering from the
Warsaw University of Technology, Poland in
1998. In 1980, he became an assistant
professor at the Institute of Engineering
Cybernetics, Technical University of Wroclaw,
Poland. From November 1982 to July 1983,

he was a postdoctoral fellow receiving the International Scientific
Exchange Award at the School of Computer Science, McGill
University, MontreÂal, Canada. Since August 1983, he has been
with the Department of Computer Science, Concordia University,
MontreÂal, where he is currently an associate professor. In 1991, he
held the Vineberg Memorial Fellowship at Technion-Israel Institute
of Technology and in 1992, Humboldt Research Fellowship at the
University of Erlangen-NuÈrnberg, Germany. He has published in the
areas of pattern recognition, neural networks, image processing,
identification, and nonparametric estimation. He served as an
associate editor of the IEEE Transactions on Neural Networks in
1998-1999, and is presently on the editorial board of the journal
Pattern Recognition and the International Journal of Applied
Software Technology. He is a senior member of the IEEE.

296 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22, NO. 3, MARCH 2000



TamaÂs Linder received the MS degree in
electrical engineering from the Technical Uni-
versity of Budapest, Hungary, in 1988, and the
PhD degree from the Hungarian Academy of
Sciences in electrical engineering in 1992. He
was a postdoctoral fellow at the University of
Hawaii in 1992 and a visiting Fulbright scholar at
the Coordinated Science Laboratory, University,
of Illinois at Urbana-Champaign, in 1993-1994.
From 1994 to 1998, he was a faculty member of

the Technical University of Budapest in the Department of Computer
Science and Information Theory. He was a visiting research scholar in
the Department of Electrical and Computer Engineering, University of
California, San Diego from 1996 to 1998. He is now an associate
professor of mathematics and engineering in the Department of
Mathematics and Statistics, Queen's University, Kingston, Ontario,
Canada. His research interests include communications and information
theory, source coding and vector quantization, machine learning, and
statistical pattern recognition. He is a member of the IEEE.

Kenneth Zeger received both the SB and SM
degrees in electrical engineering and computer
science from the Massachusetts Institute of
Technology (MIT) in 1984, and both the MA
degree in mathematics and the PhD degree in
electrical engineering from the University of
California, Santa Barbara, in 1989 and 1990,
respectively. He was an assistant professor of
electrical engineering at the University of Hawaii
from 1990 to 1992. He was in the Department of

Electrical and Computer Engineering and the Coordinated Science
Laboratory at the University of Illinois at Urbana-Champaign as an
assistant professor from 1992 to 1995 and as an associate professor
from 1995 to 1996. He has been in the Department of Electrical and
Computer Engineering at the University of California at San Diego as an
associate professor from 1996 to 1998 and as a professor from 1998 to
present. He served as the associate editor at-large for the IEEE
Transactions on Information Theory during 1995-1998, is serving as a
member of the Board of Governors of the IEEE Information Theory
Society during 1998-2000, and is a fellow of the IEEE.

K�EGL ET AL.: LEARNING AND DESIGN OF PRINCIPAL CURVES 297


