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Radial Basis Function Networks and Complexity
Regularization in Function Learning
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Abstract—In this paper we apply the method of complexity
regularization to derive estimation bounds for nonlinear function
estimation using a single hidden layer radial basis function
network. Our approach differs from previous complexity regu-
larization neural-network function learning schemes in that we
operate with random covering numbers andl1 metric entropy,
making it possible to consider much broader families of acti-
vation functions, namely functions of bounded variation. Some
constraints previously imposed on the network parameters are
also eliminated this way. The network is trained by means of
complexity regularization involving empirical risk minimization.
Bounds on the expected risk in terms of the sample size are
obtained for a large class of loss functions. Rates of convergence
to the optimal loss are also derived.

Index Terms—Complexity regularization, convergence rates,
function estimation, radial basis functions, random covering
numbers.

I. INTRODUCTION

A RTIFICIAL neural networks have been found effective
in learning input–output mappings from noisy examples.

In this learning problem an unknown target function is to
be inferred from a set of independent observations drawn
according to some unknown probability distribution from the
input–output space . Using this data set the learner
tries to determine a function which fits the data in the sense
of minimizing some given empirical loss function. The target
function may or may not be in the class of functions which
are realizable by the learner. In the case when the class of
realizable functions consists of some class of artificial neural
networks, the above problem has been extensively studied
from different viewpoints.

Approximation results (see, e.g., Cybenko [1], Horniket al.
[2], Barron [3], and Chenet al. [4]) show that virtually any
real function of interest in can be appropriately approx-
imated by one-hidden-layer sigmoidal networks. Bounds on
the approximation error as a function of the networks size and
incremental approximation schemes have been developed by,
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e.g., Jones [5], Barron [3], and Girosi and Anzellotti [6]. The
generalization ability of networks from a finite training set has
also been extensively studied through bounding the estimation
error by, e.g., White [7], Barron [8], Haussler [9], and Faragó
and Lugosi [10]. Barron [11] combined approximation and
estimation bounds and obtained the convergence rates for
sigmoidal neural networks in function estimation. His results
were extended and sharpened by McCaffrey and Gallant [12]
and Leeet al. [13].

In recent years a special class of artificial neural net-
works, the radial basis function (RBF) networks have received
considerable attention. RBF networks have been shown to
be the solution of the regularization problem in function
estimation with certain standard smoothness functionals used
as stabilizers (see Girosi [14], Girosiet al. [15], and the
references therein). Universal convergence of RBF nets in
function estimation and classification has been proven by
Krzyżaket al. [16]. Approximation error convergence rates for
RBF networks have been studied by Girosi and Anzellotti [6].
In a recent paper Niyogi and Girosi [17] studied the tradeoff
between approximation and estimation errors and provided an
extensive review of the problem.

In this paper we consider one-hidden-layer RBF networks.
We look at the problem of choosing the size of the hidden
layer as a function of the available training data by means
of complexity regularization. Complexity regularization ap-
proach has been applied to model selection by Barron [8],
[11] resulting in near optimal choice of sigmoidal network
parameters. Our approach here differs from Barron’s in that
we are using metric entropy instead of the supremum norm.
This allows us to consider a more general class of activation
functions, namely the functions of bounded variation, rather
than a restricted class of activation functions satisfying a
Lipschitz condition. In our complexity regularization approach
we are able to choose the network parameters more freely,
and no discretization of these parameters is required. For RBF
regression estimation with squared error loss, we considerably
improve the convergence rate result obtained by Niyogi and
Girosi [17].

In Section II the problem is formulated. In Section III two
results on the estimation error of complexity regularized RBF
nets are presented: one for general loss functions (Theorem 1)
and a sharpened version of the first one for the squared loss
(Theorem 2). The proofs are given in Section IV. Approxima-
tion bounds are combined with the obtained estimation results
in Section V yielding convergence rates for function learning
with RBF nets.
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248 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 2, MARCH 1998

II. PROBLEM FORMULATION

The task is to predict the value of a real random variable
upon the observation of an valued random vector .

The accuracy of the predictor is measured by
the expected risk

where is a nonnegative loss function. It
will be assumed that there exists a minimizing (measurable)
predictor such that

When the probability law governing is known, the
optimal predictor can be determined in principle. In the
learning model, however, the distribution is only known to be
a member of a larger class of distributions. A good predictor
is to be determined based on the data
which are independent and identically distributed (i.i.d.) copies
of . The goal is to make the expected risk as
small as possible, while is chosen from among a given
class of candidate functions.

In this paper the set of candidate functions will be
single-layer feedforward neural networks with RBF activation
units. Some of the results, however, will be valid in a more
general setting, so that at this point we only specify that

, where is a a sequence of families
of candidate functions, typically of increasing complexity. For
neural networks, theth family will be networks with hidden
nodes whose weight parameters satisfy certain constraints. In
particular, for RBF’s is the family of networks

where are real numbers called weights,
are nonnegative definite matrices,

and denotes the transpose of the column vector.
The method of empirical minimization is a theoretically

attractive tool for choosing the predictor from the training data.
It selects an which minimizes the empirical risk

The well-known problem of overfitting, however, makes it
impossible to directly apply empirical minimization in many
cases. If is rich enough to contain good predictors for a
reasonably large class of distributions, the output of empirical
minimization will (almost) perfectly fit the data, but it is
also bound to have an expected risk much larger than that
of the optimal predictor in the class. The method of sieves
[18] applied to this problem offers the following remedy: for
each data set size the empirical minimization is carried
out over , where is a predetermined function of

. By the appropriate choice of (which depends on the
loss function, the type of network considered, and the family

of probability distributions) one can obtain predictors whose
expected risk converges to the optimum, i.e.,

as

(see, e.g., [11], [19], [12], and [16]). It is clear that the choice
of (e.g., the number of hidden units for neural-network
learning) is determined by the need of balancing between two
quantities, the estimation error

and the approximation error

The complexity regularization principle for the learning prob-
lem was introduced by Vapnik [20] and fully developed
by Barron [8], [11] (see also Lugosi and Zeger [19] and
Devroye et al. [21]). It enables the learning algorithm to
choose automatically. Complexity regularization penalizes
the large candidate classes, which are bound to have small
approximation error, in favor of the smaller ones. One form
of this method, the minimum description length principle [22]
uses as the penalty the length of a binary code describing the
class. In a recent work Lugosi and Nobel [23] investigate a
novel complexity regularization approach, in which the penalty
term is data-dependent.

We develop below estimation bounds on the expected risk of
complexity regularized neural networks in a framework which
extends previous work. The need for such bounds stems from
the fact that in [11] the class of activations was restricted
to continuous sigmoids satisfying a Lipschitz condition. This
restriction excludes activation units with jump discontinuities
(e.g., perceptrons). The complexity penalties proposed in this
paper make possible to obtain the same good bounds for more
general activations. Though the results are mostly specialized
to RBF networks, similar statements can be obtained for
sigmoidal networks, or other nonlinear estimation schemes.

III. ESTIMATION BOUNDS THROUGH

COMPLEXITY REGULARIZATION

Let be a subset of a space of real functions over
some set, and let be a pseudometric on . For
the covering number is defined to be the minimal
number of closed balls whose union cover . In other words,

is the least integer such that there exist
with satisfying

We will mainly be concerned with the case whenis a family
of real functions on , and is given by

for any two functions and , where are
given points in . In this case we will use the notation
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, emphasizing the dependence of the
metric on .

Let us consider the task of predicting the value of a real
random variable using a function of the valued random
vector . The accuracy of the prediction is measured
by the expected risk

where is a nonnegative loss function of two real argu-
ments. We assume that there exists a measurablesuch
that is minimal over all measurable. The
distribution of is assumed to be unknown, but we
are given the i.i.d. copies of .
Based on this data, we are to pick anfrom one of the families
of candidate functions . Let us define the families
of functions by

Thus each member of maps into . It will be
assumed that for each we are given a finite, almost sure
uniform upper bound on the random covering numbers

, where .
Denoting this upper bound by , we thus have

a.s. (1)

Note that we have suppressed in the notation the possible
dependence of this bound on the distribution of . Also,
we may assume without loss of generality that is
monotone decreasing in. Finally, assume that is
uniformly almost surely bounded by a constant, i.e.,

(2)

We define the complexity penalty of theth class for training
samples as any nonnegative number satisfying

(3)

where the nonnegative constants satisfy .
The reason behind defining this way will become clear
later in the proof of Theorem 1. Note that since is
nonincreasing in, it is possible to choose such for all
and . We can now define our estimate. Let

that is, minimizes the empirical risk for training sam-
ples over . (We assume the existence of such minimizing
function for each and .) The penalized empirical risk is
defined for each as

Our estimate is then defined as the minimizing the
penalized empirical risk over all classes

(4)

We have the following theorem for the expected estimation
error of the above complexity regularization scheme. The
theorem is proved in Section IV.

Theorem 1: For any and the complexity regularization
estimate (4) satisfies

where

We will now give an explicit choice for which works
well in typical situations. Since is an upper bound
on the random covering numbers, we can assume without loss
of generality that for all and . Then

Since is nonincreasing in, the choice

(5)

satisfies (3).
For the problems we investigate in this paper, we will find

(see Section V) that satisfies condition
(1) for some positive constants and . The may be
chosen as with .
Choosing as in (5) then gives

Since if ,
we have obtained that

Thus we have proved the following corollary of Theorem 1.
Corollary 1: Assume that for all .

Then the complexity regularized estimate of Theorem 1 gives

A. Squared Error Loss

For the special case when

we can obtain a better upper bound. The estimate will be the
same as before, but instead of (3), the complexity penalty

now has to satisfy

(6)
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where , and .
Here is a uniform upper bound on the random

covering numbers . Assume that the class
is convex, and let be the closure of in ,

where denotes the distribution of . Then there is a unique
whose squared loss achieves . We

have the following bound on the difference .
Theorem 2: Assume that is a convex set of

functions, and consider the squared error loss. Suppose that
for all and . Then complexity

regularization estimate with complexity penalty satisfying (6)
gives

The proof, which is given in Section IV, uses an idea of
Barron [8] and a Bernstein-type uniform probability inequality
(Lemma 3 in the Appendix) recently obtained by Leeet al.
[13]. Note that since , we can substitute

in place of in the statement of the Theorem.
However, due to the extra factor of two on the right-hand
side, this form of the statement would be weaker.

Just as in the proof of Corollary 1, it is easy to see that
when , the term can be chosen
such that . Thus we obtain the following
improvement of Corollary 1.

Corollary 2: Assume that for all .
Then the complexity regularized estimate of Theorem 2 for
squared error loss gives

IV. PROOFS

Proof of Theorem 1:To simplify the proof we will as-
sume that for any there exists a function minimizing the
risk over

Then for any positive we have

(7)

(8)

Since for any , the right-hand
side of (7) is dealt with as follows:

where in (a) we used Pollard’s inequality (see the Appendix)
for the class of functions , and in (b) we used the defining
inequality (3) for . The probability in (8) can be bounded
for as follows:

where the last inequality follows from Hoeffding’s inequality.
Thus we have proved that for all

Since a.s., for all we obtain

proving the statement of the theorem.
Proof of Theorem 2:For the sake of convenience we will

again assume that for anythere exists a function minimizing
the expected squared loss over

Let be the closure of the convex family of functions
, where is the probability measure induced

by , and define as the point in closest to , where
. That is, we have

For any , let

and
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Then the estimation error can be written as

(9)

The second term on the right-hand side can be bounded as

(10)

To deal with the first term in (9) let , and consider the
probability

(11)

In the key step of the proof a probability inequality by Lee
et al. [13], described in Lemma 3 in the Appendix, is used.
In Lemma 3 we set and to
obtain the upper bound

It follows from the defining inequality (6) for that the
above is upper bounded by

Since , we obtain from this and (11) that

Finally, this and (10) give

which completes the proof.

V. RBF NETWORKS

We will consider RBF networks with one hidden layer. Such
a network is characterized by a kernel . An RBF
net of nodes is of the form

(12)

where are real numbers called weights,
, and the are nonnegative definite

matrices. The th candidate class for the function
estimation task is defined as the class of networks with
nodes which satisfy the weight condition for
a fixed

(13)

In order to apply Theorem 1 to RBF networks we make the
following assumptions on the distribution of and the
loss function :

• is bounded almost surely:

(14)

• the loss function satisfies the Lipschitz condition

(15)

if . With the above assumptions we obtain
the following result for complexity regularized regression
estimation using RBF networks. The theorem is proved in
Appendix B.

Theorem 3: Let be of bounded variation, and assume
that . Then with assumptions (14) and (15)
the estimate satisfies

A. Losses

Condition (15) on the loss function is satisfied for the
th power of the loss for . In this case

, and (15) holds
with . Let denote the probability measure
induced by . Then by the triangle inequality, we have

(16)
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where denotes the norm
. Define to be the closure in of the convex

hull of the functions and the constant
function , where , and

varies over all nonnegative matrices. That is, is
the closure of , where is given in (13). Let

be arbitrary. If, as in Theorem 3, we assume that
is uniformly bounded, then by [24, Corollary 1], we have for

that

(17)

where is given in (13). The constant in the
term depends on and , but not on . The approximation
error can be dealt with using this
result if the optimal happens to be in . In this case,

as , and we have that

Thus by (16) and (17) we obtain

for all . Values of close to one are of great im-
portance for robust neural-network regression (see, e.g., [25]).
For , Theorem 3 gives the following convergence
rate for complexity regularized RBF regression estimation:

For , i.e., for regression estimation, this rate is known
to be optimal within the logarithmic factor.

For squared error loss we have
, and therefore

If , then by specializing (17) to (and also by an
earlier result of Jones [5] and Barron [3]) we obtain

(18)

It is easy to check that the class is convex if the are
the collections of RBF nets defined in (13). This and Lemma
4 in the Appendix imply that the conditions of Corollary 2 are
satisfied, and we can get rid of the square root in Theorem 3.

Theorem 4: Let and assume that is of
bounded variation. Suppose furthermore that is a bounded
random variable, and let . Then the
complexity regularization RBF squared regression estimate
satisfies

If , this result and (18) give

This result sharpens and extends the main result (Theorem

3.1) of Niyogi and Girosi [17] where the weaker

convergence rate was obtained (in a PAC-like for-
mulation) for the squared loss of Gaussian RBF network
regression estimation. Note that our result is valid for a
very large class of RBF schemes, including the Gaussian
RBF networks considered in [17]. Also, our rate is the same
obtained by Barron [11] for sigmoidal networks. Our result,
however, differs from Barron’s. First, due to the technique
of covering, we can allow the basis functions to have
discontinuities, as long as they are of bounded variation. In
[11] the sigmoids are required to be continuous and satisfy
a Lipschitz condition because covering in supremum norm is
used to obtain bounds on the estimation error. For the same
reason, the network parameters are discretized in [11], while
we allow the minimization in the definition of the estimate
to be carried out over a continuum of the parameter values

, and . Third, our only restriction on the parameters is
the requirement that . The location parameters

and the matrices determining the receptive field size
are varied freely, while in [3] the parameter for the
sigmoidal unit must have a bounded norm which
depends on the sample sizeand on the rate at which
approaches its limit as . Extending Barron’s result,
McCaffrey and Gallant [12] eliminated the need to discretize
the parameters and obtained a convergence rate which is better
for small dimensions and smooth regression functions. This
result also assumes a continuous activation function, namely
the so called cosine squasher.

The above convergence rate results hold in the case when
there exists an minimizing the risk which is a member of
the closure of , where

(19)

In other words, should be such that for all there exists
a and a member of with . The precise
characterization of seems to be difficult. However, based on
the work of Girosi and Anzellotti [6] we can describe a large
class of functions that iscontainedin .

Let be a bounded, real, and measurable function
of two variables and . Suppose that is
a signed measure on with finite total variation (see,
e.g., Royden [26]). If is defined as

then for any probability measure on . One
can reasonably expect that can be approximated well by
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functions of the form

where and . The case
and is investigated in [6], where a de-
tailed description of function spaces arising from the different
choices of the basis function is given and approximation by
convex combinations of translates and dilates of a Gaussian
function is considered. In general we can prove the following.

Lemma 1: Let

(20)

where and are as above. Define for each the
class of functions

Then for any probability measure on and for any
, the function can be approximated in

arbitrarily closely by members of , i.e.,

as

In other words, .
To prove this lemma one need only slightly adapt the proof of
Theorem 8.2 in [6], which is based on the notion of vector-
valued integration and proves convergence in . A more
elementary, probabilistic proof can be based on the proof of
Theorem 1 of [16]. It is worth mentioning that in general, the
closure of is richer than the class of functions having
representation as in (20).

To apply the lemma for RBF networks considered in
this paper, let , and

. Then we obtain that contains all the
functions with the integral representation

for which , where is the constraint on the weights
as in (19). One important example of functionsobtainable
in this manner is given by Girosi [14]. He uses the Gaussian
basis function

where , and . Using results from Stein
[27] he shows that members of the Bessel potential space of
order have integral representation in the form of
(20) with this , and that they can be approximated by
functions of the form

(21)

in as well as in supremum norm, and thus in .
The space of functions thus obtained includes the Sobolev

space of functions whose weak derivatives up to order
are in . Note that the class of RBF networks

considered in our Theorem 3 and Theorem 4 contain (21) as
a special case.

VI. CONCLUSION

In this paper we applied complexity regularization to obtain
estimation bounds in nonlinear function estimation for a large
class of loss functions. This approach has been used to obtain
the rates of convergence for radial basis nets. The network pa-
rameters were learned by minimizing the penalized empirical
risk and the analysis involved the random covering numbers
and metric entropy. The rates obtained in this paper for radial
basis networks substantially improve the existing results by
extending the class of functions to functions of bounded
variation and by improving on the rates of convergence. An
interesting open problem is to obtain the lower bounds on the
rates of convergence of radial basis networks.

APPENDIX A

Lemma 2 ([28]): Let be a class of real functions on
with for all , , and let

be valued i.i.d. random variables.
Then for any

The next result is a probability inequality by Leeet al. [13].
In a sense, it provides a sharpening of Pollard’s inequality
for the uniform deviation of the squared error loss. As in
the proof of Theorem 2, let , where the are
families of real functions on which have uniform upper
bounds on their random covering numbers. Let

be an valued random vector and let be a real random
variable. Denote by the closure of in , where is
the probability measure induced by, and let be the
function closest to in norm,
that is,

Let be i.i.d. copies of , and for
any define

and

where . Then the following
holds.

Lemma 3 ([13, Th. 3]):Assume that is convex and
for all and . Suppose furthermore

that . Let , and let
and . Then for any and we have
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APPENDIX B

Proof of Theorem 3:We only have to show that the
conditions of Theorem 1 and Corollary 1 hold. First consider
condition (2). Since , we have for all
and all . Combining this with a.s. and the Lipschitz
condition (15), we obtain

Thus (2) holds with . In the rest of the
proof we will prove that for appropriate positive constants

and , is an a.s. uniform upper bound
on for each and . First we consider
the connection between and ,
where . For any

with , and for any
with we have

It follows that with probability 1 we have

so that

(22)

The next lemma determines .
Lemma 4: Assume that for all , and

suppose that has total variation . Then a uniform
upper bound on the random covering numbers is
given by

The proof of the lemma is given below. It is immediate that
the lemma implies

for some constants and . Hence by (22) we have

with and . Now Corollary 1 gives the
desired result. .

Definition 1: Let be a collection of subsets of . The
th shatter coefficient of is defined as the maximum

number of distinct subsets can pick from a finite set of
elements

The VC dimensionof (denoted by ) is the largest
satisfying . By definition if

for all .
Proof: Since is of bounded variation it can be decom-

posed as the difference of two monotone increasing functions:
. Let be the collection of functions

parameterized by and the nonnegative
definite matrix . Also, let ,
and let . Then by a lemma of Pollard
[29] concerning the covering number of sums of families of
functions, we have

(23)

because . Since spans
a -dimensional vector space, by Pollard [28] the
collection of sets has
VC dimension . Since is monotone, it
follows from Noland and Pollard [30] that ,

where the families of sets are defined just as with
in place of . Let and be the total variations of and

, respectively. Then and
, for suitably chosen constants and .

A result of Haussler [31] states that if for all
and , then

It follows that

and since , this and (23) implies that

Since is defined as

using Lemma 5 below with and , we obtain
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Lemma 5: Let be classes of real functions over
the same domain, and define as

Let be the covering number of with respect to a
norm over the linear space spanned by the, and assume
that for all . Then we have for
any

Proof of Lemma 5:Let

and assume that is a finite subset of with the covering
property , where
denotes the norm of any . Also, let the be the
minimal covers for the , that is, each has cardinality

and for all . Let
given by , and choose and
with and , . Since

for all , we have

where . It follows that a set of functions
of cardinality:

will -cover . Thus we need only to bound the
cardinality of . The obvious choice for is a rectangular
grid with edge length . Define as the points on this
grid whose Voronoi regions intersect . These Voronoi
regions (and the associated grid points) are certainly contained
in . Since the volume of is , the
cardinality of is upper bounded by

Since we have , this implies

or

REFERENCES

[1] G. Cybenko, “Approximations by superpositions of sigmoidal func-
tions,” Math. Contr., Signals, Syst., vol. 2, pp. 303–314, 1989.

[2] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,”Neural Networks, vol. 2, pp.
359–366, 1989.

[3] A. R. Barron, “Universal approximation bounds for superpositions of a
sigmoidal function,”IEEE Trans. Inform. Theory, vol. 39, pp. 930–944,
1993.

[4] T. Chen, H. Chen, and R. Liu, “Approximation capability inC( �Rn) by
multilayer feedforward networks and related problems,”IEEE Trans.
Neural Networks, vol. 6, pp. 25–30, Jan. 1995.

[5] L. K. Jones, “A simple lemma on greedy approximation in Hilbert
space and convergence rates for projection pursuit regression and neural
networks,”Ann. Statist., vol. 20, pp. 608–613, 1992.

[6] F. Girosi and G. Anzellotti, “Rates of convergence for radial basis
functions and neural networks,” inArtificial Neural Networks for Speech
and Vision, R. J. Mammone, Ed. London: Chapman and Hall, 1993,
pp. 97–113.

[7] H. White, “Connectionist nonparametric regression: Multilayer feedfor-
ward networks can learn arbitrary mappings,”Neural Networks, vol. 3,
pp. 535–549, 1990.

[8] A. R. Barron, “Complexity regularization with application to artificial
neural networks,” inNonparametric Functional Estimation and Related
Topics, G. Roussas, Ed., NATO ASI Series. Dordrecht, The Nether-
lands: Kluwer, 1991, pp. 561–576.

[9] D. Haussler, “Decision theoretic generalizations of the PAC model for
neural net and other learning applications,”Inform. Computa., vol. 100,
pp. 78–150, 1992.
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Adam Krzy żak (M’84–SM’96) received the M.Sc.
and Ph.D. degrees in computer engineering from the
Technical University of Wrocław, Poland, in 1977
and 1980, respectively.

In 1980 he became an Assistant Professor in
the Institute of Engineering Cybernetics, Technical
University of Wrocław, Poland. From November
1982 to July 1983 he was a Postdoctorate Fellow re-
ceiving the International Scientific Exchange Award
in the School of Computer Science, McGill Uni-
versity, Montreal, Quebec, Canada. Since August

1983, he has been with the Department of Computer Science, Concordia
University, Montreal, where he is currently an Associate Professor. In 1991
he held Vineberg Memorial Fellowship at Technion-Israel Institute of Tech-
nology and in 1992 Humboldt Research Fellowship at the University of
Erlangen-N̈urnberg, Germany. He visited the University of California Irvine,
Information Systems Laboratory at Stanford University and Riken Frontiers
Research Laboratory, Japan. He has published more than 100 papers in the
areas of pattern recognition, image processing, computer vision, identification,
and nonparametric estimation.

Dr. Krzyżak is an Associate Editor of thePattern Recognition Journal
and International Journal of Applied Software Technologyand coeditor of the
book,Computer Vision and Pattern Recognition(Singapore: World, 1989). He
has served on the program committees of Vision Interface’88, Vision Inter-
face’94, Vision Interface’95, and 1995 International Conference on Document
Processing and Applications, Montreal, Canada.

Tamás Linder (S’92–M’93) was born in Budapest,
Hungary, in 1964. He received the M.S. degree from
the Technical University of Budapest in 1988, and
the Ph.D. degree from the Hungarian Academy of
Sciences in 1992, both in electrical engineering.

He was a Postdoctoral Fellow at the University
of Hawaii in 1992, and a Fulbright Scholar at
the Coordinated Science Laboratory, University of
Illinois at Urbana-Champaign in 1993–1994. He has
been an Associate Professor of Electrical Engineer-
ing at the Technical University of Budapest since

1994 and is currently visiting the Department of Electrical and Computer
Engineering, University of California at San Diego. His research interests
include communications and information theory, vector quantization, rate-
distortion theory, and machine learning.


