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Radial Basis Function Networks and Complexity
Regularization in Function Learning

Adam Krzyzak, Senior Member, IEEEand Tanas Linder,Member, IEEE

Abstract—In this paper we apply the method of complexity e.g., Jones [5], Barron [3], and Girosi and Anzellotti [6]. The
regularization to derive estimation bounds for nonlinear function  generalization ability of networks from a finite training set has

estimation using a single hidden layer radial basis function 5,5, heen extensively studied through bounding the estimation
network. Our approach differs from previous complexity regu-

larization neural-network function learning schemes in that we €'TOT by, €.g., White [7], Barron [8], Haussler [9], and Farag
operate with random covering numbers andl; metric entropy, and Lugosi [10]. Barron [11] combined approximation and
making it possible to consider much broader families of acti- estimation bounds and obtained the convergence rates for
vation functions, namely functions of bounded variation. Some  sjgmoidal neural networks in function estimation. His results

constraints previously imposed on the network parameters are
also eliminart)ed this zvay.pThe network is traineg by means of were extended and sharpened by McCafirey and Gallant [12]

complexity regularization involving empirical risk minimization. ~ and Leeet al. [13]. ' o
Bounds on the expected risk in terms of the sample size are In recent years a special class of artificial neural net-

obtained for a large class of loss functions. Rates of convergenceworks, the radial basis function (RBF) networks have received
to the optimal loss are also derived. considerable attention. RBF networks have been shown to
Index Terms—Complexity regularization, convergence rates, be the solution of the regularization problem in function
function estimation, radial basis functions, random covering estimation with certain standard smoothness functionals used
numbers. as stabilizers (see Girosi [14], Girosit al. [15], and the
references therein). Universal convergence of RBF nets in
I. INTRODUCTION function estimation and classification has been proven by

RTIFICIAL neural networks have been found ef.fectivé«zy'zaket al.[16]. Approximation error convergence rates for
in learning input—output mappings from noisy examplegBF networks have _bee_n studie_d b)_/ Girosi an_d Anzellotti [6].
In this learning problem an unknown target function is tJ! @ recent paper Niyogi and Girosi [17] studied the tradeoff
be inferred from a set of independent observations dralfWeen approximation and estimation errors and provided an
according to some unknown probability distribution from th€Xtensive review of the problem. -
input—output spacéi® x R. Using this data set the learner N this paper we consider one-h_ldden-lay_er RBF netvyorks.
tries to determine a function which fits the data in the sen¥¥e 100k at the problem of choosing the size of the hidden
of minimizing some given empirical loss function. The targd@yer as a function of the available training data by means
function may or may not be in the class of functions whicAf complexity regularization. Complexity regularization ap-
are realizable by the learner. In the case when the classPé®ach has been applied to model selection by Barron [8],
realizable functions consists of some class of artificial neufdil] resulting in near optimal choice of sigmoidal network
networks, the above problem has been extensively studi@ameters. Our approach here differs from Barron’s in that
from different viewpoints. we are usind; metric entropy instead of the supremum norm.
Approximation results (see, e.g., Cybenko [1], Horatkal. This allows us to consider a more general class of activation
[2], Barron [3], and Cheret al. [4]) show that virtually any functions, namely the functions of bounded variation, rather
real function of interest ink? can be appropriately approx-than a restricted class of activation functions satisfying a
imated by one-hidden-layer sigmoidal networks. Bounds dspschitz condition. In our complexity regularization approach
the approximation error as a function of the networks size amg are able to choose the network parameters more freely,
incremental approximation schemes have been developed &yd no discretization of these parameters is required. For RBF
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II. PROBLEM FORMULATION of probability distributions) one can obtain predictors whose
The task is to predict the value of a real random variabfPected risk converges to the optimum, i.e.,
Y upon the observation of ai? valued random vectoX . EJ(f.) — J(f*) asn — oo
The accuracy of the predictof : R¢ — R is measured by "
the expected risk (see, e.g., [11], [19], [12], and [16]). It is clear that the choice
of k(n) (e.g., the number of hidden units for neural-network
J(f) = EL(f(X),Y) learning) is determined by the need of balancing between two

. . ) quantities, the estimation error
whereL : R x R — R* is a nonnegative loss function. It

will be assumed that there exists a minimizing (measurable) EJ(f,) — inf J(f)
predictor f* such that JET

I = img J(F)

and the approximation error

fien]f'k JO) =)
When the probability law governingX,Y’) is known, the
optimal predictorf* can be determined in principle. In theThe complexity regularization principle for the learning prob-
learning model, however, the distribution is only known to biém was introduced by Vapnik [20] and fully developed
a member of a larger class of distributions. A good predigtor by Barron [8], [11] (see also Lugosi and Zeger [19] and
is to be determined based on the da#, Y1), --,(X,,Y,) Devroyeet al. [21]). It enables the learning algorithm to
which are independent and identically distributed (i.i.d.) copi@00seF;, automatically. Complexity regularization penalizes
of (X,Y). The goal is to make the expected riEk/(f,,) as the large candidate classes, which are bound to have small
small as possible, whilef, is chosen from among a givenapproximation error, in favor of the smaller ones. One form
class F of candidate functions. of this method, the minimum description length principle [22]
In this paper the set of candidate functiofs will be Uuses as the penalty the length of a binary code describing the
single-layer feedforward neural networks with RBF activatioflass. In a recent work Lugosi and Nobel [23] investigate a
units. Some of the results, however, will be valid in a mor@ovel complexity regularization approach, in which the penalty
general setting, so that at this point we only specify th#'m is data-dependent.
F =7 | Fr, whereFy, F», - is a a sequence of families We develop below estimation bounds on the expected risk of
of candidate functions, typically of increasing complexity. Fogomplexity regularized neural networks in a framework which
neural networks, théth family will be networks witht hidden €xtends previous work. The need for such bounds stems from
nodes whose weight parameters satisfy certain constraintsth@ fact that in [11] the class of activations was restricted

particular, for RBF'sF;, is the family of networks to continuous sigmoids satisfying a Lipschitz condition. This
restriction excludes activation units with jump discontinuities

k (e.g., perceptrons). The complexity penalties proposed in this
f(z) = Z wiK([x — ci|" Al — Ci]) +wo paper make possible to obtain the same good bounds for more
i=1 general activations. Though the results are mostly specialized
where wo,wr,---,w, are real numbers called Weights,t‘_) RBF networks, similar statements can b_e obtained for
1, cx € RY, A; are nonnegative definité x d matrices, sigmoidal networks, or other nonlinear estimation schemes.
and z! denotes the transpose of the column veator
The method of empirical minimization is a theoretically Ill. ESTIMATION BOUNDS THROUGH
attractive tool for choosing the predictor from the training data. COMPLEXITY REGULARIZATION
It selects anf € F which minimizes the empirical risk Let F be a subset of a spac¥ of real functions over
1 & some set, and lep be a pseudometric o®’. For ¢ > 0
In(f) == Z L(f(X3),Y3). the covering numbetV (¢, 7, p) is defined to be the minimal
niT1 number of closed balls whose union covefF. In other words,

N(e, F, p) is the least integer such that there exigt- - -, fa
The well-known problem of overfitting, however, makes i\tNi,E;’ N,p:) N(e, F, p) satis?ying st

impossible to directly apply empirical minimization in many

cases. If# is rich enough to contain good predictors for a sup min_ p(f, fi) <e.

reasonably large class of distributions, the output of empirical feFlsish

minimization will (almost) perfectly fit the data, but it is\ye will mainly be concerned with the case wh&ris a family
also bound to have an expected risk much larger than that.ea) functions onR™, and p is given by

of the optimal predictor in the class. The method of sieves
[18] applied to this problem offers the following remedy: for

n

each data set size the empirical minimization is carried p(f,9) = EZU(%) = 9(z)]
out over Fi,), wherek(n) is a predetermined function of =t
n. By the appropriate choice df(n) (which depends on the for any two functionsf and g, where z;,---,2, are n

loss function, the type of network considered, and the famibtiven points in R™. In this case we will use the notation
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N(e, F,p) = N(e, F, 2z7), emphasizing the dependence of the Theorem 1:For anyn and % the complexity regularization
metric p on 21 = (z1,- -, zn ). estimate (4) satisfies

Let us consider the task of predicting the value of a real
random variablé” using a function of thek¢ valued random EJ(fn) = J(f*) £ 1’}1>1n <Rkn + inji J(f) - J(f*))
vector X. The accuracy/(f) of the prediction is measured =t JET
by the expected risk where

J(f) = EL(f(X),Y) Rpp = min (u + 9Be_"“2/(51232)).
U220k

where L is a nonnegative loss function of two real argu-

ments. We assume that there exists a measurgblsuch We V_Vi” now gi\_/e an expli<_:it choice fo.ﬁ’“" which works
that EL(f*(X),Y) is minimal over all measurablg. The well in typical situations. SinceV (e, Hy,) is an upper bound

distribution of (X,Y) is assumed to be unknown, but wen the random covering numbers, we can assume without loss
) )

are given the i.i.d. copie&Xy, Y1), ---,(Xn, Y,) of (X, Y). of generality thalog N(e, H,,) > 1 for all e > 0 andn. Then

Based on this data, we are to pick Afrom one of the families loe N(B//n.Hi) + ¢ 8B
of candidate functions’y, 75, ---. Let us define the families \/12832 Rl /\/n_’ OREL > 7n

of functionsHy, k = 1,2,--- by
Since N(¢, Hy) is nonincreasing i, the choice
M= {LUf().): f € ). (e 7t) g

Thus each member off;, maps R%*! into R. It will be Apn = \/12832103;]\7(3/\/777 H) + cr (5)
assumed that for each we are given a finite, almost sure n
uniform upper bound on the random covering numbesatisfies (3).

N(e, Hy, Z7), where Z7 = ((X1,Y1), -, (X,, Y)). For the problems we investigate in this paper, we will find
Denoting this upper bound b¥ (e, H;,), we thus have (see Section V) tha¥ (¢, H;,) = (A, /¢)*2* satisfies condition
N(e,Hk,Zf) < N(e,Hy) as. 1) (1) for some positive constantd; and A,. The ¢, may be

chosen asc;, = 2logk + co with cg > log(>" .o, 572).
Note that we have suppressed in the notation the possiRoosingAy, as in (5) then gives B
dependence of this bound on the distribution( &f, Y"). Also,

we may assume without loss of generality théfe, ;) is , kAzlog (AITQ/H) + 2log k + co
monotone decreasing in Finally, assume thal(f(X),Y") is D = \/ 1288 n
uniformly almost surely bounded by a constdhti.e., Flogn
We define the complexity penalty of th¢h class fom training /(51287 ) S
samples as any nonnegative numbgy,, satisfying Since(u+9Be” ) < 2uif u > /(25682 logn)/n,
we have obtained that
log N(Apn /8, Hy) + cx ey
App > \/12832 & ( k / k) k 3) Ry, = min (u+9Be—n'u /(512B ))
" u>dAn

where the nonnegative constamjs satisfy >~ ; ¢~ < 1. [klogn
The reason behind defining,, this way will become clear = |
later in the proof of Theorem 1. Note that sind&e, ;) is

nonincreasing i, it is possible to choose suaky,, for all & Thus we have proved the following corollary of Theorem 1.
andn. We can now define our estimate. Let Corollary 1: Assume thatV (e, Hy) < (£)42k for all k.

1 & Then the complexity regularized estimate of Theorem 1 gives
frn = argmin J, (f) = argmin — >~ L(f(X;), Y)
fEF, Jer Mid EJ(fn) = J(f")

that is, fr, minimizes the empirical risk for. training sam- ) klogn . "
ples overF;. (We assume the existence of such minimizing < 1’}121111 O n T flen;k J(f) = I )
function for eachk andn.) The penalized empirical risk is
defined for eachf € 7;, as A. Squared Error Loss

Jnlf) = Tulf) + Dgn. For the special case when
Our estimatef,, is then defined as they,, minimizing the Lz, y) = (z —y)?

penalized empirical risk over all classes
we can obtain a better upper bound. The estimate will be the
same as before, but instead of (3), the complexity penalty

We have the following theorem for the expected estimatioAnk" now has to satisfy
IOgN(Akn/CQ, Fk) + ¢k

error of the above complexity regularization scheme. The A > C
theorem is proved in Section IV. =1 n

fn = argmin jn(fkn) 4)

knihZ

(6)
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where C; = 3499C*,Cy = 256C3, and C' = max{B,1}. =

Here N(e, F:) is a uniform upper bound on the random ZP Sup [J() = TN 2 €/2+ Ajn
Iy covering numbersN (e, Fi, XT'). Assume that the class Foi

F = J,, F is convex, and le# be the closure af in L2(;), (®)

where, denotes the distribution oX'. Then there is a unique = £
J € F whose squared los$(f) achievesinfcr J(f). We
have the following bound on the differen@J(f,,) — J(f). X exp <

< Z8N (€/2+ D) /8 H;)

2 2
€ Ajn

: | =555 + =2ms
Theorem 2: Assume that¥ = |J, i is a convex set of "|51282 T 12882

)

functions, and consider the squared error loss. Suppose that ., oo 9
|f(zx)] < B foral z € R* and f € F. Then complexity (g) Z 8N (( 6/2+A’")/8 L% )exp<—rn—62 _ q)
regularization estimate with complexity penalty satisfying (6) j=1 (Ajn/8:H;) 512B
gives < ge—ne*/(5125%) Z o
C1 - £

EJ(f.) - (f)<2m1n <Akn+ 1nf J(f) J(f)) +%

The proof, which is given in Section IV, uses an idea of

Barron [8] and a Bernstein-type uniform probability inequalityvhere in (a) we used Pollard’s inequality (see the Appendix)
(Lemma 3 in the Appendix) recently obtained by Leeal. for the class of functiong;, and in (b) we used the defining
[13]. Note that sinceJ(f) — J(f*) > 0, we can substitute inequality (3) forA;,,. The probability in (8) can be bounded
J(f*) in place of J(f) in the statement of the Theoremfor ¢/4 > Ay, as follows:

However, due to the extra factor of two on the right-hand

< 86—n€2/(512B2)

side, this form of the statement would be weaker. P{Jn(fn) = J(f2) 2 €/2}

Just as in the proof of Corollary 1, it is easy to see that < PLIn(frn) = J(f7) > ¢/2}
when N (e, Hx) = (A1/€)**", the term Ay, can be chosen <P = JUD) > ¢/2)
such thatA,, = O(klogn/n). Thus we obtain the following _ i
. =P{Jn(fx) = J(fK) 2 €/2 = Awn}
improvement of Corollary 1.

Corollary 2: Assume thatV(e, Hy) < (2+)42F for all k. S P{Jz(fk)z J(fi) z /4
Then the complexity regularized estimate of Theorem 2 for < e /(887

squared error loss gives ) ) ) ) )
where the last inequality follows from Hoeffding’s inequality.

EJ(fn) = J(f) Thus we have proved that for all> 44,
) — klogn 1 oo s ) )
<21kn>1111 <f1€n]‘£kj(f)—<]( )+O<T>>+O<E> P{J(fn)_J(f’;k)Ze}S8e—ne /(512B )+6—ne /(8B%)

< 96—n€2/(512B2)'
IV. PROOFS

Proof of Theorem 1:To simplify the proof we will as- Since J(fa) < B a.s., for allu > 44, we obtain

sume that for any: there exists a function minimizing the E[J(fn) = J(f)] < w+ BP{J(f.) — J(f1) > u}

risk over Fj, < w4 9Be—w/ (312B%)

fi = argmin J(f). .
* fEF: proving the statement of the theorem. O

Proof of Theorem 2:For the sake of convenience we will

) again assume that for arkythere exists a function minimizing
P{J(fn) = J(fi) 2 ¢} SPLI(fn) = Ju(fa) 2 ¢/2}  (7) the expected squared loss ov&g

+P{Jn(fn) - J(fx) = €/2}. (8) fi = argmin J(f).

Then for any positivee we have

Since J,.(f) = Ju(f) + A, for any f € F;, the right-hand J&Fx
side of (7) is dealt with as follows: Let F be theL?(1:) closure of the convex family of functions
P{J(f,) - jn(fn) > ¢/2} F = Up Frr v_vhe_reu is the_prqbqbility measure induced
by X, and definef as the point inF closest tof*, where
o * = E(Y | X = z). That is, we have
<P (U {I(Fim) = Fulfin) 2 e/z}> fi@) = BY | X = o).
j=1 J(f) = inf J(f).
J (f) = inf J(f)
=P (U 1 (Fin) = Inlfin) Z €/2+ Ajn}) For any f € |, 7., let
j>1 .

<ZP{J fJ" - fln)>6/2+A1n} and
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Then the estimation error can be written as Finally, this and (10) give
EJ(fx) = J(f) = EH(fa) E[J(f.)] = J(f)
— —9(] — F - 8. 2624C*
+ 2E[J5(fn) = Jn ()] ©) k2l 77 n
The second term on the right-hand side can be bounded a¥/Nich completes the proof. -
E[J.(fn) — Jn(f)] = E[’;gf]L(Jn(fkn) — J(D+ Akn):| V. RBF NETWORKS
B We will consider RBF networks with one hidden layer. Such
<E {inf(Jn(f;j) - J.(f) + Akn)} a network is characterized by a ker#él: R* — R. An RBF
k2l _ net of £ nodes is of the form
< inf B[, (£) = Jn(F) + D] )
=t (J(f{) = J(D) + D). (10) f@) =) wik ([ - el Aile = c]) +wo  (12)
¢ 2 =1
To deal with the first term in (9) let > 0, and consider the where wg, w1, --,ws are real numbers called weights,
probability ci,,cr € R? and the A; are nonnegative definite
o - d x d matrices. Theith candidate clasg;, for the function
PLH(fo) = 2[n(fn) = Jn(F] > £} estimation task is defined as the class of networks With
< P{Sup(H(fkn) — 2H, (fin) — 20kn) > t} nodes which satisfy the weight conditidn+_, |w;| < b for
- k1 a fixedb > 0
> k k
= i=1 i=0
t+ 20k + H(frn) ~ 2

In order to apply Theorem 1 to RBF networks we make the
H(f)-Ha.(f) _1 following assumptions on the distribution 6,Y) and the
P< sup > =5 (11) :
jer t+ 20 +H(f) = 2 loss function L:

o . * Y is bounded almost surely:
In the key step of the proof a probability inequality by Lee

NgERTNgE:

<

=~
Il

1

et al. [13], described in Lemma 3 in the Appendix, is used. P{|Y] > b} = 0; (14)
In Lemma 3 we setf =t + Ap,, vy = App, @anda = 1/2 t0
obtain the upper bound » the loss function satisfies the Lipschitz condition
ol o HD - 1 [L(@.y) = Lz y)| < Mla — 2] (15)
su oy
ek t 20 + H(f) T 2

— 2 . if |z|,|y|,|z| < b. With the above assumptions we obtain

26240 the following result for complexity regularized regression

o _ estimation using RBF networks. The theorem is proved in
It follows from the defining inequality (6) fory.,, that the Appendix B.

above is upper bounded by Theorem 3:Let K be of bounded variation, and assume
3¢ that sup,, | K (z)| < 1. Then with assumptions (14) and (15)
66Xp<—ﬂm - Ck) the estimate satisfies

Since} ", ¢~ < 1, we obtain from this and (11) that EJ(fn) = J(F")

E[H (fn) = 2Jn(fa) = Jn(])] < i <o <\/ “j’f”) + inf J(H) - J( f*)).

< [P - 200 - o) >

A. LP Losses

- G/WZeXP<_”L _ck> dt Condition (15) on the loss function is satisfied for the

I Rt 4-2624C* pth power of theL? loss forl < p < oo. In this case
= 3t Lz,y) = |x -y, J(f) = E[f(X) — Y|P, and (15) holds

< 6/ eXP(‘”m) dit with A = p(20)P~L. Let u denote the probability measure
0 induced byX. Then by the triangle inequality, we have

_8-2624C*
oo T2 = (NP <|If = Fllvgy  (16)
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where || f — g||z»(,) denotes theL?(u) norm ([ |f — f*? If f* € F, this result and (18) give

dp)t/?. Define F to be the closure in.?(;) of the convex { klogn 1
o) +o(i)

hull of the functionsbK ([z — ¢]'Alz — ¢]) and the constant ~ EJ(fn) - }Ielff J(f) < min

1 k

function h(z) = 1,z € R wherelb| < b,c € R% and 12
A varies over all nonnegativé x d matrices. That isF is _ O<<10g”> )
the closure ofF = J, Fi, where 7, is given in (13). Let n

g € F be arbitrary. If, as in Theorem 3, we assume t#ét

is uniformly bounded, then by [24, Corollary 1], we have for

This result sharpens and extends the main result (Theorem

1 < p < 2 that 3.1) of Niyogi and Girosi [17] where the weakeX / *1°&m) 1
1 . . .
inf |[f = gllrern = O(1/VE 17y O(3) convergence rate was obtained (in a PAC-like for-
flenﬂ 1/ = gller (1/VE) 7 mulation) for the squared loss of Gaussian RBF network

regression estimation. Note that our result is valid for a
very large class of RBF schemes, including the Gaussian
RBF networks considered in [17]. Also, our rate is the same
obtained by Barron [11] for sigmoidal networks. Our result,
however, differs from Barron’s. First, due to the technique
of [, covering, we can allow the basis functions to have
] . ] p Y discontinuities, as long as they are of bounded variation. In
flen;k J(f)=J(f)=0 <f1€n;k J(f)) = ()" |- [11] the sigmoids are required to be continuous and satisfy
a Lipschitz condition because covering in supremum norm is

where 7, is given in (13). The constant in th@(1/Vk)
term depends o and p, but not ong. The approximation
error infycr, J(f) — J(f*) can be dealt with using this
result if the optimal f* happens to be inF. In this case,
infrer, J(f)—J(f*) — 0 ask — 0, and we have that

Thus by (16) and (17) we obtain used to obtain bounds on the estimation error. For the same
. _ £ _ reason, the network parameters are discretized in [11], while
flen;k I =07 = O(l/\/E) we allow the minimization in the definition of the estimgtg

for all 1 < p < 2. Values ofp close to one are of great im-to be carried out over a continuum of the parameter values
portance for robust neural-network regression (see, e.g., [28]); ¢i» @ndA;. Third, our only restriction on the parameters is

For 1 < p < 2, Theorem 3 gives the following convergencdne requirement thay _;_, |w;| < b. The location parameters

rate for complexity regularized RBE? regression estimation: ¢ and the matricesi; determining the receptive field size
are varied freely, while in [3] the parametere R¢ for the
EJ(f.) = J(f*) < min

of JElsn\ o[ /1 sigmoidal unitp(atz +b) must have a boundédgd norm which
k>1 n k depends on the sample sizeand on the rate at which(z)

< 1 1/4 approaches its limit af:| — oo. Extending Barron’s result,
< 0gn> )

McCaffrey and Gallant [12] eliminated the need to discretize
the parameters and obtained a convergence rate which is better
r1;or small dimensions and smooth regression functions. This
result also assumes a continuous activation function, namely
the so called cosine squasher.

The above convergence rate results hold in the case when
there exists anf* minimizing the risk which is a member of

n

Forp =1, i.e., for L' regression estimation, this rate is know
to be optimal within the logarithmic factor.

For squared error losg(f) = E(f(X) — Y)? we have
/() = E(Y | X = z), and therefore

() = I =EF(X) = FXOP =1 = 7200 the LP(;:) closure of F = UFy, where
If f* € F, then by specializing (17) tp = 2 (and also by an k . k
earlier result of Jones [5] and Barron [3]) we obtain Fi = {ZwiK([x — il Ailz — ai]) +wo - Z Jwi| < b}-
=1 7=0
uf J() = J(f) = O(/k). (18) (19)

Itis easy to check that the clak$, 7 is convex if theF;, are In other words,f* should bg such that for adl > 0 there exi§ts

the collections of RBF nets defined in (13). This and Lemnfy¥ and a membef of 7 with || f — f*|| » () < €. The precise

4 in the Appendix imply that the conditions of Corollary 2 aréharacterization of- seems to be difficult. However, based on

satisfied, and we can get rid of the square root in TheoremtB& work of Girosi and Anzellotti [6] we can describe a large
Theorem 4: Let sup, |K ()| < 1 and assume thak is of class of functions that isontainedin 7. _

bounded variation. Suppose furthermore tdtis a bounded L€t H(z,z) be a bounded, real, and measurable function

random variable, and leL(z,y) = (z — y)2. Then the of two variablesz € R4 .and.z. € R". Supppse thaik is
complexity regularization RBF squared regression estimateSigned measure oRi™ with finite total variation||A|| (see,
satisfies e.g., Royden [26]). Ifg(x) is defined as
BI() - jut (/) < 2 g I fnL (1) o@) = [ H@2d)
+O<klog”>> + O<l> theng € LP(1) for any probability measurg on R¢. One
n n can reasonably expect thgtcan be approximated well by



KRZYZAK AND LINDER: RADIAL BASIS FUNCTION NETWORKS 253

functions f(x) of the form spaceH?™! of functions whose weak derivatives up to order
‘ 2m are in L*(R?). Note that the class of RBF networks
_ sz o considered in our Theorem 3 and Theorem 4 contain (21) as

a special case.

k
wherezy, -+, z, € RMand)_;_, |wi| < [|Al]. The caser = d VI. CONCLUSION
and H(z,z) = G(xz — z) is investigated in [6], where a de-
tailed description of function spaces arising from the different

stlmat|0n bounds in nonlinear function estimation for a large

choices of the basis functiad is given and approximation by

convex combinations of translates and dilates of a Gaussd%SS of loss functions. This approach has been used to obtain
function is considered. In general we can prove the 1‘oIIowmg?‘e rates of convergence for radial basis nets. The network pa-
Lemma 1: Let ameters were learned by minimizing the penalized empirical
risk and the analysis involved the random covering numbers

g(x) = H(zx, 2)\dz), (20) and metric entropy. The rates obtained in this paper for radial

Rn basis networks substantially improve the existing results by

where H(z, z) and A are as above. Define for eagh> 1 the extending the class of functions to functions of bounded

class of functions variation and by improving on the rates of convergence. An
interesting open problem is to obtain the lower bounds on the

k

G = { Zw (%, 2) Z ;| < ||)\||} rates of convergence of radial basis networks.

¢ = (3 1) . (2 — :
=0

In this paper we applied complexity regularization to obtain

B APPENDIX A
Then for any probability measurg on R? and for any

1 £ p < o0, the functiong can be approximated i&? ()
arbitrarily closely by members &f = UG, i.e.,

Lemma 2 ([28]): Let F be a class of real functions on
R™ with |f(z)] £ B for all f ¢ F, z € R™, and let

2y = (Zy,--+,Zy) be R™ valued i.i.d. random variables.
f1€n£ lf = gller(y — 0 ask — oo. Then for anye > 0
In other words,g € G. sup Zf —Ef(Z)] > ¢
To prove this lemma one need only slightly adapt the proof of feF
Theorem 8.2 in [6], which is based on the notion of vector- < 8EN(e/8,J-", 7 )e—nez/IQSBZ'

valued integration and proves convergencéiR?). A more

elementary, probabilistic proof can be based on the proof of The next result is a probability inequality by Leeal. [13].
Theorem 1 of [16]. It is worth mentioning that in general, thé1 a sense, it provides a sharpening of Pollard’s inequality
closure of UG}, is richer than the class of functions havindor the uniform deviation of the squared error loss. As in

representation as in (20). the proof of Theorem 2, leF = | J, Fi, where theF;, are
To apply the lemma for RBF networks considered ifamilies of real functions onk?¢ which have uniform upper
this paper, leth = d*> +d, » = (A,c), and H(z,2) = boundsN(e, F;) on theirl; random covering numbers. Let
K([z — ¢! A[z — ¢]). Then we obtain thaf contains all the X be anR¢ valued random vector and [&t be a real random

functions g with the integral representation variable. Denote byF the closure ofF in L?(y), wherep is

the probability measure induced by, and letf € F be the

g(z) = /d , K([z — d*Alz — d)MdcdA) function closest tof*(z) = E[Y | X = ] in L*(x) norm,

RT that is,

for which ||A]| < b, whereb is the constraint on the weights
as in (19). One important example of functiopsbtainable

in this manner is given by Girosi [14]. He uses the Gaussqrét (X1,Y1)
basis function '

I = EIFCX) = Y = L (1),

-, (X,,Y,) bei.i.d. copies of X,Y"), and for
any f € F define

H(z,2) = H(z,c,0) = eXP<—M) H(f)=J(f)=J(F) and H.(f)=Ju(f) = Ju(f)

g
_ -1\ AR VAT ;
wherec € R%, o > 0, andt = (¢, o). Using results from Stein where Jn(f) =n" 3. (F(Xs) - Yi)°. Then the following

. olds.
[27] he shows that m_embers of the Bess'el pptentlal space Oiemma 3 ([13, Th. 3]):Assume thatF is convex and
order 2m > d have integral representation in the form o{

L - (X)| < Bforall f e Fandx € R%. Suppose furthermore
gggt\.’;ﬁz t(f)\flstlr:Ie(gz:f,o;;%,1 and that they can be approximated b hat P{]Y| > B} = 0. Let C = max{B, 1}, and let3,~ > 0

and0 < « < 1/2. Then for anyn and %k we have

[l = el czll
§ S ew(-2220) H(f) - ()
PUR B ap 2
in L2(R%) as well as in supremum norm, and thuslif(y:). 6N(

—3a? Bn/(2624C*)
The space of functions thus obtained includes the Sobolev '

12803’]:’“)6
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APPENDIX B Definition 1: Let C be a collection of subsets dt™. The
Proof of Theorem 3:We only have to show that the 7th shatter coefficien(n,C) of C is defined as the maximum

conditions of Theorem 1 and Corollary 1 hold. First consid&umber of distinct subsets can pick from a finite set of
condition (2). SincdK| < 1, we havelf| < b for all f € F, €lements

and all%. Combining this with|Y| < & a.s. and the Lipschitz S(n,C) = max |[{ANC:Cec)|
condition (15), we obtain ﬁ}_‘im
L(f(X),Y) < 2Mb. The VC dimensionof C (denoted byV;) is the largestn
satisfying S(n,C) = 2™. By definition Vz = oo if S(n,C) =
Thus (2) holds with B = 2Mb. In the rest of the 27 for all n.

proof we will prove that for appropriate positive constants Proof: Sincek is of bounded variation it can be decom-
A; and A4, (2)4* is an a.s. uniform upper boundposed as the difference of two monotone increasing functions:
on N(e, Hy,27) for each k and n. First we consider K = K; — K,. Let G be the collection of functiongz —

the connection betweemV (e, Hy, Z7') and N(e, i, XT'), c]*A[z — ¢] parameterized by € R? and the nonnegative

where Z' = ((X1,Y1),---,(Xy,Yy)). For any 2f' = definite matrixA. Also, let %; = {Ki(g()): g € G},i = 1,2,
((z1,91), (20, yn)) With max; [y;| < b, and for anyf1, f> and letF = {K(g(-)) : ¢ € G}. Then by a lemma of Pollard
with |f1],]f2] < b we have [29] concerning the covering number of sums of families of
functions, we have
1« . .
- Z |L(fu(@i), yi) — L(f2(2a), i)l N(e, F) < N(¢/2, F1)N(e/2, F2) (23)
n becauseF C {f1 — f2 : f1 € Fi,f2 € Fa}. SinceG spans
Z — fal@)]. ad®+d+1- dlmenS|onaI vector space, by Pollard [28] the

collection of setg+ = {{(z,t) : g(x) -t >0} : g€ G} has
VC dimensionV;+ < d? 4+ d + 2. Since K; is monotone, it

It follows that with probability 1 we have follows from Noland and Pollard [30] thaty+ < d? +d+2,

N(e,Hy, Z7) < N(e/M, Fy, X7) where the families of sel‘.i*s‘";r are defined just ag* with %;

in place ofG. Let V; andV; be the total variations ak’; and

so that K, respectively. TheV =V, 4+ 1V, and0 < Ki(z) + oy <
Vi,x € R,i = 1,2, for suitably chosen constantg and «.

N(e,Hy) < N(e/M,F). (22) A result of Haussler [31] states thatGf< f(x) < B for all

f € F andz, then

The next lemma determine¥ (e, Fy). 2B
Lemma 4: Assume thaiK(z)| < 1 for all z € R%, and N(e,F) <e(Vr+ 1)< )
suppose tha#( has total variationt’ < oo. Then a uniform ¢
upper boundN (e, ) on the random covering numbers idt follows that
given by o V>d2+d+2

€

2e(b+e)>k+l N(e, %) < e(d +d+3)<

€

(e(d? + d + 3))2+1) <
and sinceV; - Vo < V2/4, this and (23) implies that

2(d® +d+2)
N(e, F) < (d® + d + 3)? <ez/> .

is defined as

€

Velb+ o) 2(k+1)(d* +d+2)

The proof of the lemma is given below. It is immediate thagj, e Fi
the lemma implies

k k
o N\ Ask Fk:{zwifi‘i‘woizwigbvfief}

=1 7=0

using Lemma 5 below witlkh = 26 and B = 1, we obtain

4 i 2e(b Pt 4
for some constantsal; and A,. Hence by (22) we have N(e, Fi) < < e( 6Jr e)) (N(e/(b+ 26), F)*
A Ask k1
Ne M) = <?1> < (A(d? + d+ 3)2+D <@)
N A 2(k4+1)(d*+d+2)
with 4; = MA; and A, = A;. Now Corollary 1 gives the % <V€(b+ 6)> ) 0
desired result. . €



KRZYZAK AND LINDER: RADIAL BASIS FUNCTION NETWORKS

Lemma 5:Let Gy, - -,
the same domain, and defitfé as

255

Gr. be classes of real functions overSince we havd;s < b+ 26, this implies

N(SB + e(b+26), F) < < o(b+26) ) HN 6. Gi)

k

szfz : (wl,---,wk) € R":

zzkl or

Z|wi|gbafi€givi:1""7” Be(b+28/ B\ * &

i=1 N((S—i—e,J”:)S(%) [T~V (e/(v+26/B),Gy).

Let N(e, G;) be the covering number &, with respect to a
norm||-|| over the linear space spanned by theand assume
that|| f|| < B forall f € G;,i =1,---,k. Then we have for
any ¢, 6 > 0

(1

N(c+6,F) < <Beb) HN ¢/(b+26),G:) [2]

Proof of Lemma 5:Let [3]

k
wERk:Z|wi|§b

=1

S, = [4]

[6]
and assume theff, s is a finite subset of?* with the covering
property maxyes, minzes, , [|w — z||1 < 6, where ||y [
denotes thé; norm of anyy € R*. Also, let theG;(¢) be the
minimal covers for theg;, that is, eachy;(¢) has cardinality
N(Gi,e) andmingeg, (o) || f—g|| < eforall f € G;. Letf € F
given by f = °%_ w; f;, and choose: € S, 5 and f; € Gi(c)
with ||w — z|); < 6 and||fi — fil| < &, ¢ = 1,---, k. Since
I f:ll < B for all ¢, we have

k
F=Y wifi
=1

o))

]

(7]

(8]

El

k k k k [20]
Zwifi —Z-Tifi Z-Tifi —Z-Tifi
i=1 i=1 i=1 i=1 [11]
k k X 121
< Jwi = al Ifill + D |l 11 = fil
i=1 i=1
< 6B + ¢bs [13]

wherebs = max,cs, , [|z]]1. It follows that a set of functions [14]
of cardinality:

K
15
|Su,6] - [T V(e Gi) 1ol

i=1 [16]

will (6B + ebs)-cover F. Thus we need only to bound the
cardinality of.S, s. The obvious choice fa$, s is a rectangular ;7
grid with edge lengti2é/k. Define S, s as the points on this
grid whosel; Voronoi regions intersect,. These Voronoi
regions (and the associated grid points) are certainly contai
in Sy12s. Since the volume 0B o5 is (2(b + 26))* /!, the

inali ; [20]
cardinality of 5,405 iSs upper bounded by

A ()

26

<_

k

k(b + 26)
5

(2(b + 26))*
k!

e(b + 26)
5

(22]

=1

O

REFERENCES

G. Cybenko, “Approximations by superpositions of sigmoidal func-
tions,” Math. Contr., Signals, Systvol. 2, pp. 303-314, 1989.

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximatorg\eural Networksvol. 2, pp.
359-366, 1989.

A. R. Barron, “Universal approximation bounds for superpositions of a
sigmoidal function,”|IEEE Trans. Inform. Theoryol. 39, pp. 930-944,
1993.

T. Chen, H. Chen, and R. Liu, “Approximation capability@( k™) by
multilayer feedforward networks and related problem&EE Trans.
Neural Networksvol. 6, pp. 25-30, Jan. 1995.

L. K. Jones, “A simple lemma on greedy approximation in Hilbert
space and convergence rates for projection pursuit regression and neural
networks,” Ann. Statist. vol. 20, pp. 608-613, 1992.

F. Girosi and G. Anzellotti, “Rates of convergence for radial basis
functions and neural networks,” #rtificial Neural Networks for Speech
and Vision R. J. Mammone, Ed. London: Chapman and Hall, 1993,
pp. 97-113.

H. White, “Connectionist nonparametric regression: Multilayer feedfor-
ward networks can learn arbitrary mappingsl@ural Networksvol. 3,

pp. 535-549, 1990.

A. R. Barron, “Complexity regularization with application to artificial
neural networks,” ifNonparametric Functional Estimation and Related
Topics G. Roussas, Ed., NATO ASI Series. Dordrecht, The Nether-
lands: Kluwer, 1991, pp. 561-576.

D. Haussler, “Decision theoretic generalizations of the PAC model for
neural net and other learning applicationisform. Computa.vol. 100,

pp. 78-150, 1992.

A. Farag@ and G. Lugosi, “Strong universal consistency of neural-
network classifiers,” IEEE Trans. Inform. Theoty vol. 39, pp.
1146-1151, 1993.

A. R. Barron, “Approximation and estimation bounds for artificial neural
networks,”Machine Learningvol. 14, pp. 115-133, 1994.

D. F. McCaffrey and A. R. Gallant, “Convergence rates for single
hiddden layer feedforward networksNeural Networksvol. 7, no. 1,

pp. 147-158, 1994.

W. S. Lee, P. L. Bartlett, and R. C. Williamson, “Efficient agnostic
learning of neural networks with bounded fan-itEE Trans. Inform.
Theory vol. 42, pp. 2118-2132, Nov. 1996.

F. Girosi, “Regularization theory, radial basis functions and networks,”
in From Statistics to Neural Networks: Theory and Pattern Recognition
Applications V. Cherkassky, J. H. Friedman, and H. Wechsler, Eds.
Berlin: Springer-Verlag, 1992, pp. 166-187.

F. Girosi, M. Jones, and T. Poggio, “Regularization theory and neural-
network architectures,Neural Computavol. 7, pp. 219-267, 1995.

A. Krzyzak, T. Linder, and G. Lugosi, “Nonparametric estimation
and classification using radial basis function nets and empirical risk
minimization,” IEEE Trans. Neural Networksol. 7, pp. 475-487, Mar.
1996.

P. Niyogi and F. Girosi, “On the relationship between generalization
error, hypothesis complexity, and sample complexity for radial basis
functions,” Neural Computa.vol. 8, pp. 819-842, 1996.

U. GrenanderAbstract Inference New York: Wiley, 1981.

G. Lugosi and K. Zeger, “Nonparametric estimation via empirical risk
minimization,” IEEE Trans. Inform. Theorwol. 41, pp. 677-678, 1995.
V. N. Vapnik, Estimation of Dependencies Based on Empirical Data
New York: Springer-Verlag, 1982.

L. Devroye, L. Gyrfi, and G. LugosiA Probabilistic Theory of Pattern
Recognition New York: Springer, 1996.

J. Rissanen, “A universal prior for integers and estimation by minimum
description length,’Ann. Statist.vol. 11, pp. 416-431, 1983.



256 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 2, MARCH 1998

[23] G. Lugosi and A. Nobel, “Adaptive model selection using empiric
complexities,” Dept. Statist., Univ. North Carolina, Chapel Hill, Tech
Rep. 2346, 1996.

[24] C. Darken, M. Donahue, L. Gurvits, and E. Sontag, “Rate of appro:
imation results motivated by robust neural-network learning,Pioc.
6th Annu. Wkshp. Computa. Learning Thed993, pp. 303-309.

[25] W. J. Rey,Introduction to Robust and Quasi-Robust Statistical Method:
Berlin: Springer-Verlag, 1983.

[26] H. L. Royden,Real Analysis New York: Macmillan, 1968.

[27] E. M. Stein,Singular Integrals and Differentiability Properties of Func-
tions. Princeton, NJ: Princeton Univ. Press, 1970.

[28] D. Pollard,Convergence of Stochastic Processeew York: Springer-

Tamas Linder (S'92—M’'93) was born in Budapest,
Hungary, in 1964. He received the M.S. degree from
the Technical University of Budapest in 1988, and
the Ph.D. degree from the Hungarian Academy of
Sciences in 1992, both in electrical engineering.

He was a Postdoctoral Fellow at the University
of Hawaii in 1992, and a Fulbright Scholar at
the Coordinated Science Laboratory, University of
lllinois at Urbana-Champaign in 1993-1994. He has
been an Associate Professor of Electrical Engineer-
ing at the Technical University of Budapest since
1994 and is currently visiting the Department of Electrical and Computer
Verlag, 1984. Engineering, University of California at San Diego. His research interests

—, Empirical Processes: Theory and ApplicationSSF-CBMS  jqj,de communications and information theory, vector quantization, rate-
Regional Conference Series in Probability and Statistics. Haywargs:ortion theory, and machine learning.

CA: Inst. Math. Statist., 1990.

[30] D. Nolan and D. Pollard, “U-processes: Rates of convergentati.
Statist, vol. 15, pp. 780-799, 1987.

[31] D. Haussler, “Sphere packing numbers for subsets of the Bootean
cube with bounded Vapnik—Chervonenkis dimensiah,Combinatorial
Theory Series Avol. 69, pp. 217-232, 1995.

[29]

Adam Krzy zak (M'84-SM’'96) received the M.Sc.
and Ph.D. degrees in computer engineering from the
Technical University of Wroctaw, Poland, in 1977
and 1980, respectively.

In 1980 he became an Assistant Professor in
the Institute of Engineering Cybernetics, Technical
University of Wroctaw, Poland. From November
1982 to July 1983 he was a Postdoctorate Fellow re-
ceiving the International Scientific Exchange Award
in the School of Computer Science, McGill Uni-
versity, Montreal, Quebec, Canada. Since August
1983, he has been with the Department of Computer Science, Concordia
University, Montreal, where he is currently an Associate Professor. In 1991
he held Vineberg Memorial Fellowship at Technion-Israel Institute of Tech-
nology and in 1992 Humboldt Research Fellowship at the University of
Erlangen-Nirnberg, Germany. He visited the University of California Irvine,
Information Systems Laboratory at Stanford University and Riken Frontiers
Research Laboratory, Japan. He has published more than 100 papers in the
areas of pattern recognition, image processing, computer vision, identification,
and nonparametric estimation.

Dr. Krzyzak is an Associate Editor of thBattern Recognition Journal
andInternational Journal of Applied Software Technolagyd coeditor of the
book, Computer Vision and Pattern Recogniti(®ingapore: World, 1989). He
has served on the program committees of Vision Interface’88, Vision Inter-
face’94, Vision Interface’95, and 1995 International Conference on Document
Processing and Applications, Montreal, Canada.




