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Correspondence

A Zero-Delay Sequential Scheme for Lossy Coding of In this work, we consider the problem of zero-delay source coding in
Individual Sequences a deterministic setting. Inspired by recent work on prediction of indi-
vidual sequences, we study zero-delay sequential quantization of indi-
Tamas Linder Senior Member, IEEEand vidual sequences. In this setting, itis not assumed that the source is gen-
Gabor LugosiMember, IEEE erated by an underlying probabilistic mechanism. In general, the goal

is to construct ainglezero-delay scheme whose cumulative distortion

] ] ) ) ~onevery bounded sequence is very close to that of the best scheme for
_ Abstract—We consider adaptive sequential lossy coding of bounded in- ¢ given sequence within a family of fixed zero-delay schemes. The
dividual sequences when the performance is measured by the sequentially o . . .
accumulated mean-squared distortion. The encoder and the decoder are Probabilistic analog of this problem is the problem of zero-delay uni-
connected via a noiseless channel of capacifg and both are assumed to  versal coding with respect to a given class of sources.
have zero delay. No probabilistic assumptions are made on how the se-  The theory of lossy compression for individual sequences originates
?hueegics‘i;’ﬁgﬁ ?Qgﬁﬁggéii’ingéﬁffa ';‘S’rtﬁfe‘yng‘r’;g‘ﬁigg dsggumeuf;ggv‘g lﬁgt%trh in Ziv's fundamental work [5] on finite-state lossy compressibility of
tion of the sequential scheme minus the normalized cumulative distortion |nd|V|du€_iI Seq_”enc‘?s- -In_ [5], the analog of the distortion-rate fgncthn
of the best scalar quantizer of rate R which is matched to this particular Was defined in an individual sequence setting as the least distortion
sequence. We demonstrate the existence of a zero-delay sequential schemasymptotically achievable when the sequence is encoded byban
which uses common randomization in the encoder and the decoder such trary finite-state encoder at a given fixed rate. A crucial difference be-
that the normalized maximum distortion redundancy converges to zero tween Ziv's setup and the problem we consider is that we do not allow
at a rate n /% log n as the length of the encoded sequenae increases . S L L
without bound. any delay in the system, while in Ziv's definition of compressibility
and in the corresponding coding theorem encoders with arbitrary delay
are allowed. As a consequence, the results of [5] are asymptotic in the
coding delay, and they offer little guidance on how to approach the
fixed-delay problem.
|. INTRODUCTION Although lossless sequential source coding has been extensively
In a widelv used model of lossy source coding. an infinite se uenstudied (see Merhav and Feder [6] for a thorough survey), no results
y y . 9. . AUeNEEem to be available concerning its lossy counterpart. One main
of real-valued source symbols , x», ... is transformed into a se- ... . . o
uence of channel symba} (assumed to take values from adlfflculty with the lossy case is that, unlike in the lossless case, the
4 ymoass, g2, - . . ecoder does not have access to the past source outputs. Therefore,

fm'te. alphabet) which are transmitted through a noiseless channe_l. the well-developed arsenal of universal lossless coding and sequential
received channel symbols are then used to produce the reproduction s

quencet;, 2, .... Such a system is calledhusalif the reproduction prgdlctlon cannot be directly applied.

of the current source svmbol depends on the present and past so rIn this correspondence, we investigate the possibility of zero-delay
y P P And p Poggy coding of individual sequences. Our main result, in Section Il, de-
symbols, but not on the future ones. In general, very little is known

. - . scribes a zero-delay sequential adaptive coding scheme which, asymp-
about the optimum performance theoretically attainable (OPTA) f?c,';tically, achieves a cumulative mean-squared distortion achieved by

c_ausal coding of probabilistic sources. For the §peC|aI case of a IKE best scalar guantizer of a given rate matched to the actual bounded
tionary and memoryless source, Neuhoff and Gilbert [1] showed thsagurce sequence. In other words, the proposed method has to compete
the OPTA function of causal codes is achieved by time-sharing of . '

; e.Qtéquentially with an “anticipating” scheme that sees the entire sequence
tropy-coded scalar quantizers.

. - o in advance and chooses the best scalar quantizer for this sequence. The
A requirement more restrictive than causality is that of zero delay. A struction builds on techniques developed in the theory of predic-

. S ; 0
lossy coding scheme is said to have zero delay if each channel syn%é)ﬂ of individual sequences, namely, it uses an appropriately modified

yn depends only on Ehe past and present source symgols ., zn version of the exponential weighting method pioneered by Vovk [7],
and the reproductiost, for the present source symbe), depends [8] and Littlestone and Warmuth [10]. The proposed method requires
only on the channel symboiﬁv -+ Yn Teceived so fa_1r. Zero-delay common randomization in the encoder and the decoder. Some aspects
schemes have an obvious advantage over other coding methods (%lilccommon randomization are discussed in Section IIl

as block codes) in applications where decoding delay is a crucial factor. )

. . Admittedly, the special class of reference methods (i.e., the family
For memoryless sources, it has been shown by Ericson [2] and Gaar&eé” fixed-rate scalar quantizers) limits the scope of this result, but it

and Slepian [3] (see also [4]) that the zero-delay OPTA function 18 still of interest, especially in view of the previously cited results of

achieved by the optimal (Lloyd-Max) scalar quantizer for the SOUrCEicson [2] and Gaarder and Slepian [3]. To our knowledge, this is the
first result concerning zero-delay sequential lossy coding of individual

Index Terms—individual sequences, scalar quantization, sequential pre-
diction, zero-delay lossy source coding.

sequences.
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on the interval[0, 1]. (Note that thelU; need not be independent.)input sequence, performs asymptotically as well as the best scalar quan-
The input to the encoder is a sequence of real numbers:», ... tizer of rateR matched to the entire sequence.

assumed to be bounded such tkate [0, 1] for all : > 1. (One Theorem 1:For anv R = log M there exist randomized
could more generally assume that eachis in a fixed interval of eore or any = o8¢ ere exists a randomize
zero- delay sequential source cod¢;. ¢g;}=, of rate R whose

length B, but since squared error distortion will be considered, th
choicex; € [0, 1] does not limit generality.) At each time |nstant Xpected normalized cumulative distortiéh, (=) satisfies, for all

i = 1,2, ..., the encoder observes and the random numbé¥;. €[0. 1]
Based one;, U;, and the past input values™' = (a1, ..., zi—1), Do(e") = DE(x™) < Cn Yo logn 1)
the encoder produces a channel symhat {1, 2, ..., M} whichis ' " - °

then transmitted to the decoder. After receivingthe decoder outputs whereC' is a constant independentefandz? . In particular
the reconstruction valu¢, based onl/; and the channel symbols
y' = (y1, ..., yi) received so far. limsup max (5”(.7“") - Dfl(,r")) <0
More formally, the code is given by a sequence of encoder—decoder n—oco TUE[0A"
functions{fi, ¢;}{=., where
Remarks:

fi [0, 1]i x[0,1] —{1,2,..., M} a) Theorem 1 considers the expectation of the normalized cumula-
and tive distortionD,, ("), where the expectation is taken over the
randomizing sequendé" = (U, ..., U, ). However, bounds
concerning the sample behavior Bf, (™) can also be derived
if it is additionally assumed thdf;, U-, ... is a sequence of in-
dependent random variables. This problem is discussed in more
detail in Section Il where Corollary 1 shows that, for indepen-
dent randomization, the cumulative distortion satisfies

git {12, ..., M} %[0, 1] — [0, 1]

so thaty; = fL(IL U;)andi; = g,'(yi, U:),i =1, 2,.... Note that
there is no delay in the encoding and decoding processndimaalized
cumulative squared distortioof the sequential scheme at time instant

n is given by
Dn' n — D* T
1 & ) lim sup H <C, almost surely.
D, )= = T, — T n—oo g
(") =~ ; (i = &)

o ) b) The storage and computational complexity of the scheme in
where the dependence &f, on the randomizing sequence is sup-  Theorem 1 is roughly determined by the cardinality of a set of
pressed in the notation. The expected cumulative distortion is weights that must be stored and periodically updated at both

N the encoder and the decoder (see the proof of Proposition 1). In
D (") = E 1 b a2 the present scheme, the number of these weights is proportional
”u )_ n Z(“I” ”E‘) M/5 :
= to n™*/*, wheren is the length of the sequence to be encoded

o _ o and M is the number of channel symbols. This may make the
where the expectation is taken with respect to the randomizing se- scheme prohibitively complex in practice for even moderate

quencel/™ = (Uy, ..., Un).. o _ values of M. It is an interesting open problem to find a modi-
An M -level scalar quantizef) is measurable mapping — C, fication of the scheme where the complexity does not increase
where thecodebook’ is a finite subset oR with cardinality|C| = M. exponentially with the number of channel symbols.

The elements df are called theodepointsThe instantaneous squared ] ] ) ]
distortion ofQ for inputz is ( — Q(x))?. A quantizerq is called a To prove Theorem 1, we first consider the case of sequential coding

nearest neighbor quantizer if it satisfies of sequences of a fixed finite length.
5 . 9 Proposition 1: For anyn > 1 andRR = log M tt]ere~ exists a ran-
Q) —2)" = Iy“é};‘(w 2 domized zero-delay sequential source cod”, ¢\ 17, of rate R

for coding sequences of lengthsuch that for all» < n and for all
for all z. It is immediate from the definition that i) is a nearest " ¢ [0, 1]"

neighbor quantizer an@ has the same codebook@sthen

nD,(z") < nDi(x") + e’/ log it 2

(Q(z) —2)* < (Q(x) — z)°, for all z.
wherec is a positive constant which does not depend:on

For this reason, we will only consider nearest neighbor quantizers
Also, since we consider sequences with componeri iit], we can
assume without loss of generality that the domain of definitiof a§
[0, 1] and that all its codepoints are [, 1].

Let © denote the collection of all/-level nearest neighbor quan-
tizers. For any sequence’, let Dy, (=™) denote the minimum nor-
malized cumulative distortion in quantizing with an} -level scalar D, (2") < Di(a™) + cn Y logn. 3)
quantizer, that is, let

‘Proposition 1 demonstrates the existence of a zero-delay scheme for
sequentially coding sequences of lengtiwhich is asymptotically (for
largen) efficient. To see this, let = 7 in Proposition 1. Then for any

n > 1 there exists a sequential code for sequences of lengtinch

that for anyz" € [0, 1]"

Note that codes achieving (3) depend on the lemgti the sequence
wpmy .1 N N2 to be encoded and, therefore, Proposition 1 does not directly imply the
Dn(a") = Qe n ; (i = Q)" existence of a single sequential cofig, g;}2, capable of coding
sequences of arbitrary length and achieving (1). The following proof
Note that to find aQ € Q achievingD;, (™) one has to know the en- exhibits a simple construction of a sequential céde g; };=, which
tire sequence” in advance. The next theorem asserts that there existtisfies Theorem 1 using the finite-length codes of Proposition 1. The
a zero-delay sequential source code of #atehich, for any bounded proof is inspired by a similar trick in [9].
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Proof of Theorem 1:For anyi = 1, 2, ..., let{ be the non- and setl? = 0. To simplify the description of the code, let us first
neg@tive _intgger that satisfieéd < i < 2'*'. Now use the codes construct a hypothetical coding scheme in which both the encoder and
{fi " gg")};le of Proposition 1 withii = 2' to definef; andg; by decoder have access to the valdds j = 1, ..., N, at each time

, . , instantn. The hypothetical scheme uses the well-known exponential
yi = fi (.1 U,;) = fff;lﬂ (.1’;1, U) weighting method of sequential predic_tion, (_see, e.g., Vovk [7], Little-
stone and Warmuth [10], and Cesa-Bianehal. [9]). Let > 0 be
and . . ) .
. ;o (24 . fixed and forn = 1, ..., 7, define the weights
i =4¢gi (!I » Ul) = gi721+1 (y217 U‘) n—1
N €—nLj
That is, forl = 0, 1, ..., the segments Ay = N .
—7 L:;;
ol+1l_ g N m:le ]
xy, = (Toty oevy Toir1_q)

0 iy (note thatz;.\’:1 A7 = 1). Attime n, the encoder uses the random
are independently encoded using the céd€ . gi*}7_,. The re- numberl, and the weights\" to generate the random indé €

sulting sequencéf;, g: }i2, is clearly a sequential code in the sensg1, ..., N} with distribution
of Theorem 1.
To bound the cumulative distortion, for ay< j < k, we let Pr{J. =j} =], j=1,..., N.
. k ) Then the encoder picks the quantiZgr, to encoder,, and transmits
D(-Tf) =E Z(-Ti - f%‘)z} the channel symbol representing the quantizer outhut(z.. ). After
i=j receiving this channel symbol, the decoder outgiis (z» ) (note that

since the decoder has accesEtoand the\7, it can also generatg, ).
The expected normalized cumulative distortion of the hypothetical
scheme (denoted b, (")) is given by

and also define

.
D*(x}) = ggg > (i = Qi)

Note that for allj < &' < k, one has =

n N
’ > P 1 - o 2 > Jp—
D*(TI; U4 Dk < D*(xf)- = ; ;(L —Qur (@) Pr{J; =j}
Therefore, Proposition 1 implies that for allsuch thaR™ < n < 1 oL, o
2t == D> Nl = Q). 4)
=1 j=1
m—1
nD,(z") = Z ﬁ(xiiﬂ—l) + D(x5m) In the Appendix, we show that for all > 1
=0

_ . n  In N )
m—1 ndn(;vn) < min Lj + oy + M.
1< <N 7,

4/5 T
< Z <D* (ar§§+l_l> + C(21> log 21> SN 1 8
=0

Moreover, a simple argument presented in Lemma 2 in the Appendix

(%)

+ D (a5m) 4 ¢(27) " 1og 2™ shows that for eaclV > 2, there exists a collection dff -level nearest

- m N5 neighbor quantizer®x = {Q1, ..., @~}, supported if0, 1], such

<D'")+ ) 0(2 ) log 2 that for allz" € [0, 1]"
=0

kT . .mm 14/5 : "( Q(2

<D 4eton2" 3 () del, 2t A
. 2(711-{—1)% -1 ] n . 1

=nD;(z")+ clog2™ il < tin 2 (#; — Q(zi))* +n N T (6)

*/ on _4/5 o . . . .. .
<nDy(x") 4 Cn " logn Using thisQy in the definition of the hypothetical scheme, we can

whereC' = ¢2%/°/(2%/> — 1) < 2.35¢. We conclude that for all rewrite (5) as

n > 1andz" € [0, 1]*, the normalized cumulative distortion of the

- “/ 1 InN nnp
sequential scheme is upper-bounded as ndu(2") < nDy(2") +n Niar—1 T N + 8 ™
Do(e") < Di(2™) + Cn~ 5 log n Construction of Sequential Schem&he bound (7) implies thaj
- andN can be chosen (as functionsiof such that the cumulative dis-
which proves Theorem 1. g tortion of the hypothetical scheme satisfies
Proof of Proposition 1: Let On = {Q, ..., @~} be a fixed nd, (") < nDj(2") + ()(,11/2 log ﬁ) .

but arbitrary collection ofi-level nearest neighbor scalar quantizers
such that the codepoints of ea@h are insidg0, 1]. Fixz" € [0, 1]",  To achieve this, however, the hypothetical scheme has to transmit the

and forn = 1, ..., 7, let values oij-, j =1,..., N atall time instantg, which requires an
. additional channel of infinite capacity between the encoder and the de-
L= Z (2 = Q;i(x:))? coder. The basic idea for constructing a sequential scheme of true rate

P log M is to periodically transmit approximate (quantized) versions of
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the cumulative quantizer Iossé§ and to use these approximations tavhere S, = max{l: n; < n}. First, we give an upper bound for

form the approximate Weightisi at the decoder. We show that usinghe first term of the right-hand side of (9) in terms of the cumulative

only a small fraction of the overall available rate to transmit the quadistortion of the hypothetical scheme. Sineg;(x) — «)* < 1 for j

tized cumulative distortions, thkgg will sufficiently well approximate andz € [0, 1], (4) implies

the/\j so that the difference between the distortiop(z") of the re- n

sulting sequential scheme and the distortipn:™ ) of the hypothetical Z Z X S —

scheme becomes negligible for large i=1 j=1 i=1 j=1
To describe the scheme, lgh;; I = 1,2, ...} be a strictly in-  gjnce

n

A= X5l (10)

creasing sequence of positive integers suchithat 1. Let K > 1 be Capict it

a fixed integer and lejr denote thel{-level uniform quantizer over Mo 7 and M=% T
J N J N

[0, 1]. Introducé > e—nlizt > e—nLiTt

m=1 m=1

bi= K logy m]- Lemma 3 in the Appendix implies that

For anyl! > 1,if by < ni41 — ng, then in the time interval =

ny, ..., nip1 — 1, the encoder transmits losslessly the values.of Z
qr (x),r =1, ..., n;—1, using the firsb; of the availabler;; —n; 7=l
channel uses. (Note that this is possible since the number of differ&uw it is easy to see that for any nearest neighbor quan€izeup-
ways of partitioning:; — 1 points into/k” cells is not greater tham.)  ported in[0, 1] and anyz, @ € [0, 1], we have

Fi—1 i—1
Lt -t

1<]<N

In these time instants (far = ny, ..., n; + b — 1) the decoder’s . T .
output is set to a constant value (say= 1/2). In the remaining time (2 = Q)" = (& = Q())*| < 2| — 2.
instants’ = n; + bi—1, ..., ni+1 — 1, the encoder forms the approx-Thjs implies that for alk = n, ..., i1 — landalj =1, ..., N
imate weights )
s e
) 777L7.71 'v _ 'v _ ~ » _
M=\ J=1l...N ) ' = Zl (@ = Qy(@ Z(’"' (@)’
Z e*TILzmi,l ”7_1
m=1 P ~ . 2
where <2 X 1o -arl+ 5 - Q)
_ r= 7‘:77,[
_ o (2 ))2 i = N i—=; (n—1)
_Z(I,,—QJ(I,)) , j=1,....N, i=mn;, ..., np — 1. Si[’ + (i1 — 1)
— A%
(Note that for fixed;, the approximate weighd’ is constant for Where the second inequality follows since
i=mn;+bi—1, ..., mu+1 — 1.) Usingl;, the encoder then generates ey — & = |r — qie ()] < 1/(2K)

the random index; with distributionPr{.J; = j} = A}, picks Q.
to quantizex;, and transmits the channel symbol for the quantize8ummarizing these bounds, we obtain

output® . (x;). Observe that at the same time instants, the decoder_
: nD, (") — nd,(2™)

has already access to agl,r=1,..., n,—1,and thusitcan S|mul
taneously calculatd’; forj = 1, ..., N,andi = ny, ..., nip1 — 1. Sn on
Using U; and the received channel symbol, the decoder can output < Z bi+2n Z<"’+1 ™ < K (i1 = "‘)) - (11)
&= Q5 (.1 ).
If mﬂ — n; < by for somel, then the encoder is defined to be in arcombining this with the bound (7) on the cumulative distortion of the
idle state in the time segment= n;, ..., niy1 — 1 and the decoder hypothetical scheme, for all < 7 we obtain
outputs some preset constant value (8ay= 1/2). = oy megom
Analysis of Distortion: Fori = mny, ..., ni41 — 1 such that nDn )_ ”np”('}“ 2 ., - .
ni41 — Ny g b/, we have(;ri - :f?i)z g 1.If Nigp1 — Ny > bl, then = (’LDn(‘I )_ nd., (‘L )) ("d”(w ) - "Dn(w )
(j“ —#;)? < 1fori =ny, ..., n;+ b — 1. On the other hand, for 1 N ny
z:nl—i—bl,...,nHl—lWehave S'LW-Fi-F*-FZb[
E(xi —#;)° (2; — Qj(x:))’ Pr{ :)} al n ,
Z + 2y Z(nz+1 - nz)( L2 (g — nz)) .
=1
= Z i HEAENS z:))>. It only remains to choose the parametgrsV, K, and the sequence

{n:} appropriately. We do this by setting = |/*| for somea > 1
Fix n < n and consider the cumulative distortion at timeExtending which allows us to approximately optimize the upper bound by an ap-
the definition (8) of the approximate weightstoatn,, ..., n,y1—1, propriate choice of the constamt In this case, we hav§, ~ nt/a
we can now upper-bound the expected cumulative distortion as  and (ignoring the constants) the upper bound has the form

7 2
_ Elx; — i) n In N - 1/a ’ Mmoo ai/a
) Z (wi — 2i) Ni/T + —77 +nn+ Kn“logn + % + nn .
N < S Straightforward calculation reveals that ignoring logarithmic and con-
< Z Z Al = Qi)™ + Z b (9)  stantfactors, the choice that approximately minimizes this upper bound

=1 = =1 isa =5/2,n~a"Y" K ~ n2/>. The number of reference quan-

1[£] denotes the smallest integer not less thaand | t| denotes the largest tizersN must be such tha‘rl/w is bounded by a polynomial af and
integer not greater than its order is at least'/®. Computationally, it may be advantageous to
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chooseV as small as possible (i.e., lettity ~ 7.'7/®). Resubstituting we defineW, = >

these values into the upper bound above gives the desired restilt. hand, we have

N 717L7.171
e 3

=1 . Then, sincé?; = N, on the one

J\T
Wha —pLm .
lll. REMARKS ON COMMON RANDOMIZATION In WTI =y e ™ —InN
=
The proposed quantization scheme has an obvious weakness: it re- !
quires that the same sequence of uniform random variéhlegs, . .. > In < max e ) —In N
be available at both the encoder and the decoder. This assumption is not l*’f" N .
uncommon in universal quantization of probabilistic sources (see the =0 B Lj —InN. (13)

works of Ziv [11] and Zamir and Feder [12]) where the sequence o, the other hand, recalling that by Hoeffding’s inequality [13], for
represents “subtractive dither.” In practice, these may be replaced by 2ndom variabl& € [0, 1] ands € R, B(e") < eSE(X)+s?/8

pseudorandom sequence generated at both the sender and receiver side.

Observe that the only requirement Gy, Us, ... is that their dis- In Wosr _ Zln Wit
tribution should be uniform. No assumption on the joint distribution W & W
of these variables is necessary for Theorem 1. In an extreme case, as N
in [11], one may even tak&, = U, = ---, that is, use thsame n Z: e "
variable at each time instance. This has no effect on the expected be- = Zln ’\7171
havior of the distortion. On the other hand, using the same random- =1 3 e~
izing variable at all time instants hides a danger of instability, as the j=1

true (random) distortioD,, (+™) may be far from its expected value

o n(ri= @) gLyt
- nle; = ;(x; .
D, (2") = ED, (z"). The next fact shows that one may avoid insta- 2 € «

=1
bility by using an independent randomizing sequence. = Zln N i
i=1 8*’7 5
Lemmal: If Uy, Us, ... areindependent and uniformly distributed G=1
over|0, 1], then the distortiorD,, (™) of the quantization scheme of n N .
Theorem 1 satisfies, for all > 0 = Zln (Z Ajemnwim Qi) )
=1 j=1

PI{|Dn(Ln) — En(:vn)’ > t} < 2672“12.

N

< <cfn2j:1 x;’-<xr@j<xf))2+n2/s)
=1

(b_y Hoeffding's inequality)

n N

=0 >0 Nl = Q) + -

In particular, by the Borel-Cantelli lemma, combining Lemma 1
with Theorem 1 yields the following.

Corollary 1: Assume that a sequence of independent uniform

random variables is available at both the encoder and the decoder. i=1 j=1
Then there exists a randomized zero-delay sequential source code - . nn?
{fi. g:}21 of rate R whose normalized cumulative distortion = —nndn(x") + R
D,.(z") satisfies, for alfx; };2, such that; € [0, 1] for all i Combining the preceding bound with (13) yields
. D, («") — Dy (x" 7 (e i ng N
imoup P EIEE <0 dmostsurely  2) M S ma AT
whereC is the same constant as in Theorem 1. Lemma 2: Let Q denote the family of alll/-level nearest neighbor

. scalar quantizers whose codepoints are all infidé]. Then, for any
Proof of Lemma 1:Recall from the proof of Proposition 1 that N > 2, there exists a collection of scalar quantizers

for all
' — Onv ={Q1,....Qn} C Q
[P (@) = Dn ()] such that for all:" € [0, 1]

1 - 2 : 2 n n 1
- Z <(r7 - C)J;(»ri)) - E(r, - Q/Z(Tv)) )‘ Qrgilnw Z(r, —Q(x:))* ggleué Z(m,:—Q(azi))2+n NUM "
i=1 i=1

1=1

n

<

where the random variabl# is a function ofU; and the approximate Proof: The statement of the lemma will follow if we can con-

weights\i, j = 1, ..., V. Since the approximate weights are deterStruct a2’ c Q V‘/’ith cardinality|Q'| < N such that for any) € Q
ministic (i.e., their values do not depend on the sequéhcd’,, ..., (hereisay’ € Q satisfying

see (8)), the expression on the right-hand side is an averagemf max |(J, . Q(J,))z —(z- Q/(w))z| < — 1 .
dependent random variables. Now recall Hoeffding’s inequality [13] z€[0,1] NU/M —1

which states that ib, = 3", X;, whereX,, ..., X, are indepen- Toward this end, let: = |N'/™ | and defineQ'* as the family of
dent random variables such thét € [a, 0] with probability one, then nearest neighbor quantizers with or less codepoints which all belong

to the set

o ; . . C™ = {1/(2k). 3/(2k), ..., (2k — 1)/(2k)}.
Letting X; = (v, — @, (:))” andla, b] = [0, 1] yields the claim of  gjnce for any € [0, 1] thereisa/’ € ™) with |y —y'| < 1/(2k), it
the lemma. L s easy to see that for any-level nearest neighbor quantiz@rwith
codepoints insidé), 1] there is aQ’ € Q) with

) ) ) ] max |(J - Q(J))Z —(x — Ql(l))zf <
Proof of (5): Distortion of Hypothetical SchemdJsing a stan- z€[0,1]

dard technique (see, e.g., Cesa-Bianchi [14]) to upper-badund®), Since|Q*)| < k" < N, the lemma follows. O

Pr{n 1|S, — B(Sn)| > t} < 2¢72"/C-07 " forallt > 0.
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Lemma 3: Lety > 0, and for anyv = (v, ..., vy) € RY and On Quantization With the Weaire—Phelan Partition
j=1,..., N, define
, Y5 Navin Kashyap Student Member, IEEEaNd
Aj(v) = /—. David L. Neuhoff Fellow, IEEE
e~ "MV
k=1

Then, for anyy, © € RV, Abstract—Until recently, the solution to the Kelvin problem of finding

N a partition of R? into equal-volume cells with the least surface area was

N - believed to be tessellation by the truncated octahedron. In 1994, D. Weaire
; X (0) = A ()l < 21 195N [y =il and R. Phelan described a);/)artition that outperformed the truncated oc-

’ tahedron partition in this respect. This raises the question of whether the
Proof: Fora € [0, 1], leth;(a) = A;(v + a(? — v)) and let  weaire—Phelan (WP) partition can outperform the truncated octahedron
R'; () denote the derivative @f; (). Then, by the mean value theorempartition in terms of normalized moment of inertia (NMI), thus providing a
of differentiation, for some € (0, 1) we have counterexample to Gersho’s conjecture that the truncated octahedron par-
R ’ ;o tition has the least NMI among all partitions of R® . In this correspondence,
Aj(0) = Aw) = hj(1) = h;(0) = hj(&). we show that the effective NMI of the WP partition is larger than that of
Now the truncated octahedron partition. We also show that if the WP partition
is used as the partition of a three-dimensional (3-D) vector quantizer (VQ),
N I\ with the corresponding codebook consisting of the centroids of the cells,
Z - (v 4 a@(d—v))(0; —v;) then the resulting quantization error is white. We then show that the effec-
= dvi tive NMI of the WP partition cannot be reduced by passing it through an
invertible linear transformation. Another contribution of this correspon-
where dence is a proof of the fact that the quantization error corresponding to an
. ) optimal periodic partition is white, which generalizes a result of Zamir and
1y { =i (1= A;), t=1] Feder.

hj()

dvi —nA; A, i# . Index Terms—Gersho's conjecture, normalized moment of inertia
R (NMI), periodic partition, quantization error.
Therefore, by letting\; = A;(v + &(% — v)) and using the fact that

Z}s:l A; = 1, we obtain

I. INTRODUCTION
I\ (@) = X ()] =0y |(1= X)) (6, —v;) + Z Xi(o; — vi) Consider a source uniformly distributed over a large allin
iy R*, centered at the origin. Suppose that this source is quantized
< pA;2(1 = X;) max |6; — v using ak-dimensional vector quantizer (VQ) specified by a parti-
N 1SN tion S = {Si, So...., Sy} of B, and corresponding codebook
< 2n9)\; max |9 — v, C={er, e, ..., exn)} of points inR*. Let V; denote the volume of
a the cellS;, so thatvol (B) = S_7 V;, and let
which implies the lemma. O o Vo = Za=1 Vo
M(S;, ¢) :/ llz — | dz
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