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High-Resolution Source Coding for Non-Difference
Distortion Measures: Multidimensional Companding

Tamas Linder,Member, IEEE Ram Zamir,Member, IEEE and Kenneth ZegeSenior Member, Member, IEEE

Abstract—Entropy-coded vector quantization is studied using quantizers. On the practical side, the expressions for quantizer
high-resolution multidimensional companding over a class of non- performance provide useful guidance for quantizer design at
difference distortion measures. For distortion measures which even small to moderate rates.

o1 pocally quadrate 5 rigorous dervalion o 1he SSYONS  Source coding is less understood wihen the distorton is no
ders is given along with conditions for the optimal choice of Measured by a difference distortion measure. Non-difference
the compressor function. This optimum compressor, when it distortion measures occur naturally in source-coding problems.
exists, depends on the distortion measure but not on the source Prominent examples include the log spectral distortion and the
distribution. The rate-distortion performance of the companding ltakura—Saito distortion which are used in linear predictive

scheme is studied using a recently obtained asymptotic expression h codi 7 tai tual distorti .
for the rate-distortion function which parallels the Shannon lower SP€€Ch €0dINg [7], certain perceptual distortion measures in

bound for difference distortion measures. It is proved that the image coding [8], and most distortion measures that arise
high-resolution performance of the scheme is arbitrarily close in noisy (or remote) source coding if the original distortion

to the rate-distortion limit for large quantizer dimensions if measure is other than the squared error. The design of vector
the compressor function and the lattice quantizer used in the o antizers for certain classes of non-difference distortion mea-

companding scheme are optimal, extending an analogous state- . ibl ina th lized Liovd—M lqorith
ment for entropy-coded lattice quantization and MSE distortion. SUfeS 1S pOsSibie using the generalized Lioyd—liax aigorithm

The companding approach is applied to obtain a high-resolution [9], and the same approach can be extended to modified
quantizing scheme for noisy sources. distortion measures in noisy source coding [10].

Index Terms—Asymptotic quantization theory, entropy coding, Due to the difficulty in a”a'YZ'”g SUCh, systems,. thgre e)_('St
lattice quantizers, multidimensional companding, non-difference Only a few known results for high-resolution quantization with
distortion measures, rate-distortion function. non-difference distortion measures. By assuming the existence
of a limiting quantizer point density, a lower bound was
calculated in [11] for the high-resolution performance of fixed
rate optimal vector quantizers for locally quadratic distortion

HE high-resolution (asymptotic, low-distortion) behaviomeasures. The log spectral distortion and the Itakura—Saito

of vector quantizers is relatively well understood fofjistortion are examples of such measures. A more formal
so-called difference distortion measures where the distortig@atment of the same lower bound is given in [8], and a
is measured by a function of the difference between thgw lower bound on the variable rate (i.e., entropy-coded)
source and the reproduction vectors. In particular, for thsrformance is developed using optimal point densities. It
mean-squared error, and more generally for “nice” functions also pointed out in [8] that some important “perceptual
of a norm-based distance measure, the asymptotic distort@stortion measures” in image coding are locally quadratic. In
of optimal quantizers, as well as the asymptotic distortiqn2], an asymptotically tight expression for the rate distortion
of sequences of quantizers with a given “point densityfunction is derived for locally quadratic distortion measures.
have been identified as a function of the codebook size, A§ will be shown in this paper, the expression given in [12]
as a function of the entropy of the output [1]-[6]. Thesplays the same important role in high-resolution quantization
results give insight to the structure of asymptotically optimaér these distortion measures as does the Shannon lower bound

in quantizing for squared-error loss.
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whereQy; is a uniform or lattice quantizer. In this paper, theserve as a basis for the development of a rigorous theory of
output of the quantizer is entropy-coded and the rate of theantizers with a given point density.
system is given by the Shannon entropy(af. In this paper, we consider entropy-coded multidimensional
In a classical paper [2], entropy-coded scalar quantizatieompanding quantizers with non-difference distortion mea-
with mean-squaredlistortion was considered. It was foundsures satisfying rather general regularity conditions. The main
that for smooth sources, uniform scalar quantizers have asyrrgguirement is a smoothness condition which implies that the
totically the minimum possible entropy of all scalar quantizedstortiond(x,y) betweenz,y € R* can be approximated as
with a given distortionD, and this minimum entropy is given d(z, y) = (z —y)* M (z)(z —y) for y close toz, whereM (z)

for small D by is an input-dependent positive-definite matrix and where the
1 superscriptl” stands for transpose. In Section 1ll, Theorem
H(Qu(X)) = h(X) — 5108‘(1217) (1) 1, we give a rigorous derivation of the asymptotic entropy-

where H and » denote discrete and differential entropiescoded rate as a function of the distortion for sources with
respectively, the logarithm is base and ~ means that the densities. A general sufficient condition for the optimal choice
difference between the corresponding quantities goes to z&8foth® compressor function is derived in Theorem 2, and
as D — 0. Thus the optimal compressor characteristic fdP<@mples are shown for the existence of optimal compressors,
entropy-coded scalar quantizationtisiform More generally, Which are determined by the distortion measure and do not
the entropy of a lattice quantizep that encodes a Smoothdepend on the source distribution. In Section IV, the rate-

k-dimensional vector sourc& with squared distortiorD is di;tortion perfqrmar?ce is cor;]sidgfre:. Using a resfult from
given for smallD by [3] [12] we prove in Theorem 4 that if the compressor function

2 satisfies the sufficient condition for optimality, and if the lattice
H(Q(X)) = MX) - 5log(D/(ch(Po))) (2) quantizer used in the companding scheme is optimal, then

h d h lized q ‘ the high-resolution performance of the scheme is arbitrarily
where L(I%) denotes the normalized second moment of thg,ge 14 the rate-distortion limit for large quantizer dimensions.

basic cell of the lattice (see also [13] and [14]). The abo\gen specialized to mean-squared error, this result gives back
implies (by means of the Shannon lower bound [15]) that the \vell.known fact that for large rate and large quantizer
asymptotic rate redundancy of an entropy-coded lattice qufiyensjon, lattice quantizers combined with entropy coding
tizer above the rate-distortion function §log (2meL(F))  gre asymptotically optimal.
bits per dimension [2], [4]. In this paper, we will show that The gpove results can be applied to obtain a simple encoding
analogous results hold for locally quadratic non-differencgneme for guantizing sources corrupted by noise. In this
distortion measures. For example, the optimal compressgpplem, the original distortion measure in the “source space”
function is again independent of the source distribution. Hows transformed into a modified distortion measure in the “mea-
ever, the compressor now depends on the distortion measgifement space.” We show in Theorem 5 that if the modified
through the so-called sensitivity matrix. distortion measure satisfies certain regularity conditions, then
We have two main reasons for considering a compandigg estimation-companding quantization scheme gives asymp-
realization of vector quantizers. First, in [12] it has beefytically optimal performance. This is the asymptotic analog
observed that for a large class of non-difference distortiqs the well-known separation principle in the “Wolf—Ziv type”

measures the asymptotically optimal forward test channghcoding [21] of noisy sources with MSE original distortion
which realizes Shannon'’s rate-distortion function has a certajteasure.

structure very similar to that of multidimensional companding
quantizers. It has also been conjectured that such a companding II. PRELIMINARIES
scheme, together with entropy coding, performs arbitrarily

close to the rate-distortion limit. Second, our aim is to develop A k-dimensionalector quantizer? is a mapping defined by

a rigorous theory. In high-resolution quantization theory it is Q(z) = yi, if z€ B,
rather common t tain results via informal r nin . .
ather common to obtain resu ° €asoning (Sev?hereBl, -, B, form a measurable partition &*, and the

e.g., [16], [2][4], [11], [8]) and most of the rigorously derived
results deal with fixed rate quantization [5], [6], [17], [18], [19]2

Sdue primarily to the. d'i,ff_iculty of handling the problem Of'.e., the codebook of) can contain countably infinite number
guantizer point density” in the variable-rate case, e.g., [20 f codepoints. The distortion betweerand(z) is measured
On the other hand, for the purpose of directly relating t d(z,Q(z)), whered : R* x R¥ — [0,00) is a Borel

quantlzers performanpe to the r:?\te—d|stort|on function it heasurable function. The expected distortion in quantizing a
more suitable to consider the variable rate performance. RO

) : ) "Rhimensional random vectaX is
this reason we choose to introduce structure in the coding
scheme by using a companding realization which allows D(Q) = E[d(X, Q(X))]

us to deal with the point density problem for variable-ratgnd we assume the expectation is finite. Fae of Q will be

quantizers. , _ o _measured by the Shannon entropy@X ) in bits per k-block
As will be seen in the paper, in some cases it is not possible

to realize a (heuristically derived) desired optimal point density H(Q) = — ZP{Q(X) =y tlog P{Q(X) = v; }
using a compander. However, the companding approach can i

ollection of codepointsy; € R*, 1 < ¢ < n is called the
odebook We do not eliminate the possibility that = <o,
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where the logarithm is base two. The per-dimension rate of theOur goal is to analyze the entropy-coded ratetnf » as

system can reach withi% of the normalized entropyﬁH(Q) a function of its distortion for absolutely continuous source

by use of entropy coding techniques. distributions and non-difference distortion measures. In gen-
The basic building block in a multidimensional compandingral, an analytical evaluation of the rate is not possible for

quantizer is a lattice quantizer, tikedimensional generaliza- any givena > 0, so we alternatively take a high-resolution

tion of a uniform scalar quantizer. Lét be ak-dimensional approach and determine the asymptotic behavior of the rate as

nonsingular lattice, i.e.A is the set of all points of the form the distortion (or, equivalentlyy) tends to zero.

Zle n;v;, Wherevy, - - -, v, are linearly independent vectors

of R¥ (the basis vectors of the lattice) afwl, - - -, ny) ranges [Il. M ULTIDIMENSIONAL COMPANDING

over all k-tuples of integers. Forx > 0 let «A denote the

scaled latticexA = {«z : z € A}. The lattice quantize€),» A. Asymptotic Performance

is then defined so that its codepoints are the points/ofind

its quantization regions are the corresponding Voronoi regio

of aA, i.e.,

Let z = (z1,---,z)T € R*, v = (y1,--,m)? € RE,
HRd assume that the distortion meast(e, y) satisfies the
following three conditions.

Qorn(m) =z € alif ||z — 2| < ||z —7/||, forall 2’ € aA a) For all fixedz € R*, d(x, ) is three times continuously
differentiable in the variablg, and the third-order partial
where || - || denotes the Euclidean norm, and ties are broken derivatives

arbitrarily. The quantization regions ofA are translated and Bd(z,y) .
scaled copies off,, the basic Voronoi cellof A, which is W’ i, J,n €41, k} 3)
defined by rreTam
are uniformly bounded.
Py={z eR":|lz|| < ||z — z|| for all z € A}. b) For allz,y € R*, d(z,y) > 0 with equality if and only

if vy = =
An important performance figure of is the (dimensionless) c) LetyM(a:) = {m;;(z)} be thek x k matrix whoseijth
normalized second moment of its basic cell, namely, element is gi\/erjl by' |

fpo | dz 1 9%d(z,y)
=0 () = = —=—"22 . 4
L(F) KV (Bo)2/A+1 mij () 2 9y 0y, y=z @
where V(B) denotes the volumek{dimensional Lebesgue ThenM (x) is positive-definite for all- and its elements
measure) of any measurabieC R*. For a givenk, we call a m;;(x) are continuous functions.

lattice optimal if its normalized second moment is minimum
over all k-dimensional lattices [22]. It was proved in [23] tha
the basic cell of an optimal lattice ighitein the sense that if
Z = (Zy,-,Z)" is a random vector uniformly distributed
over Fy, then the covariance matrix df is

M(x) is symmetric by a). Condition b) implies that the
tgradient ofd(x,y) with respect toy is zero aty = x. Thus
for any fixedz, a second-order Taylor expansion dfz, v)

in y gives

dz,y) = (z — )" M(z)(@ —y) + Oz —yI’). (5

Sinced(z,y) > 0 if y # z, a) and b) already imply through
wherel denotes thé: x & identity matrix. In other words, the (5) that M (x) is nonnegative-definiteMd (x) was named the
Z; are uncorrelated and have equal second moments. We wéhsitivity matrixof d in [11] where the fact that certain useful
assume that the lattic& used in the companding scheme hagdistortion measures can be represented in the form of (5) was
a white basic cellF,. first pointed out.

The concept of a companding realization of a nonuniform . . .
quantizer origpinates frompBenneq[t [16]. The idea is to apply a Remarl_<s: 1) The conditions given above are not the_weak_est
nonlinear transformation (called the compressor) to the inpl',]l{,]der which we can prove our results. For exgmple, it suffices
followed by a uniform (more generally, a lattice) quantizerto assume that the elements bf(x) are continuous on an

and then the inverse of the transformation to obtain tl?é’en set Of probability.z.AIso,'if d(z,y)is assumed to be three
reproduction. LetF : R — R* be a one-to-one Continuouslytlmes continuously differentiable as a function B&*, then

differentiable mapping whose derivative matéiX(z) is non- :)he tf:jlrdd-o_r_d ecr: par'F:;al de_nvat![ves _|nhg3zjneed dn(itmt;_eturll_formly
singular for allz. ThenF has an inversé’—! = G which is ounded. ii) Consider amput weighted quadraticiistortion

continuously differentiable on its domain and whose derivativgeasure given by
@ is nonsingular.F” and @ are called thecompressorand d(z,y) = |W(z)(z — )|
expanderfunctions, respectively. ] ) ) )

The companding vector quantize®.,, r realized by the yvhereW(a:) is a nonsingulak x k mTatn); depending on the
compressor functio is defined in terms of the scaled latticdPut @ [24]. Sinced(z,y) = (z — )" W5 (x)W (z)(z —y),
quantizerQ,, as and sinceM (z) = W (x)" W (z) is positive-definite, it is easy

to see thatd(z,y) satisfies condition a)—c) if the elements
Qo r(r) = G(Qun(F(2)), xRN of W(z) are continuous functions of. iii)y Very similar

E[ZZ%] = 0?1



LINDER et al. HIGH-RESOLUTION SOURCE CODING FOR NON-DIFFERENCE DISTORTION MEASURES—PART I 5561

conditions are used in [8] to compute lower bounds on théheorem 1 is proved by noticing that by Proposition 1
asymptotic distortion of a sequence of fixed-rate quantizers

with a given point density. Some important measures of - log D(Q. r) — k log «

image quality [25], [26] satisfy these regularity conditions, L

for example. -5 log (L(Po)E [tr {I'(X)}]) +1og V(Fo)

To study the rate of),, - as a function of its distortion, one g5, _, (. Combining this with Proposition 2 and the fact that
needs to eliminate the scaling factor One reasonable way ,(p) —, ¢ as D — 0 proves the statement. Note that since
to do this is to choose for eadh > 0 ana(D) > 0 such that {he source density has a bounded SUPPHILQ., 1) is finite

for all « > 0 and, therefore, the conditions of Proposition 2
D(Qa(p).r) = D. (6) P

are satisfied.
If X has a density, it is not hard to see tHafQ. r) isa  Remarks:i) Note that no smoothness conditions are im-
continuous function ofx > 0 which converges to zero asposed on the source density in Theorem 1 except the re-
a — 0. Thus in this case for all small enough > 0 there quirement that the differential entropy be finite. The only
exists an( D) satisfying (6). For such values @ we define restrictive condition is the assumption that the source density
has bounded support (see Proposition 1). In principle, the
Qp,F = QaD),F- distortion formula can be proved for source densities with

The next theorem determines the asymptotic behavior of t gbounded support, but in that case extra conditions on

: e compressor function are needed. These conditions are
rate of Qp r as D — 0 for any source whose density has a ; ; . . X
’ associated with the tail of the source density, leading to a sub-
bounded support.

stantially more complicated proof. ii) Proposition 1 can be used

Theorem 1: Assume that the sourcE has a density which to obtain the high-rate distortion of the companding quantizer
is zero outside a bounded subset ®f and suppose the as a function of the number of codepoints (which is finite since
distortion functiond(z, i) satisfies conditions a)—c). X has the source is bounded). When specialized to mean-squared
a finite differential entropy.(X), then the ratd(Qp r) and error (M(z) = I), we obtain Bucklew’s heuristically derived
the distortionD of the multidimensional companding quantizeformula [27] for fixed-rate multidimensional companding.
Qp,r satisfy

i B. Optimal Compressor Functions
lim <H(QD,F)+§ log D) =h(X)+E [log |det F'(X)]] The question of the optimal choice of the compresBds
considered next. Let us define

+g log (L(Fo)E [tr {I'(X)}]) Cl(F) - E [tl“ {F(X)}]

whereF' is the compressor functiod,(F) is the normalized and
second moment of the basic cell; of the white lattice Co(F) = Elog|det F'(X)]

quantizer,tr {I'(z)} denotes the trace of the matrix _ _ )
wherel'(x) is defined in (7). Then the statement of Theorem

D(z) = F'(z) " M(z)F' ()™ ! (7) 1 becomes
k
. o ) . _ koo
M (z) is the sensitivity matrix ofi(z,y), and F’(z)~* is the 1%1310 <H(QD7F) + 5 log D)

inverse transpose of the derivative bfx).

k k
The above theorem is a consequence of the following two ~ — (X)) + 2 log L(Fo) + Co(F) + 2 log C1(F). (8)
results which determine the asymptotics of the dlstortlon_arﬁqS clear that ifF” minimizes the right-hand side of (8), i.e., if
the rate of Q. r as « — 0. Both results are proved in B L
Section V. Co(F) + 3 log Cy(F) < Co(F) + > log C1 (£
Proposition 1: Assume that the sourc& has a density . _
which is zero outside a bounded subsetRSf and suppose for all allowable £, then Qp r asymptotically outperforms
d(x,y) satisfies conditions a)—c). Then all other companding quantizel@Dj. Thus to find a best
compressor one has to minimize the functional
lim a™*D(Qa,r) = L(Fo)V ()" E [tx {L(X)}]. i
Cao(F) + 5 log Oy (F) ©)

~ Proposition 2: Assume that the sourck has a density and qer gl one-to-one and continuously differentiablesuch that
finite differential entropyh(X). If E[log|det F/(X)|] < F'(x) is nonsingular for altz.

and there exists an > 0 such thatH (@, r) is finite, then A lower bound on (9) is obtained next. Sinckl(x)
. ) is positive-definite andF’(z) is nonsingular, I'(z) =
ilgh[H(Q“’F) + klog o] F'(2)™"M(x)F'(z)~! is also positive-definite. Thus by the

= h(X) + E [log|det F'(X)|] — log V(F,). arithmetic-geometric mean inequality we haue{I'(x)} >
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k(det I'(x))*/* with equality if and only if the eigenvaluesinformal derivation. Assuming that the cells &%, are small
of I'(z) are all equal. Therefore, enough, the overall error in coding satisfies

Slog B (T 2 Slog BMAATCOMY (10 o G(QualF(@))

G(F(x)) — G(Qaa(F(2)))
gE llog (k(det T(X)Y5)]  (11)

G(F(2))(F(z) = Qaa(F(2)))
F'(@)™ (F(z) = Qaa(F(2)))

v
%

- g log k+ %E log(det M(X))]

 Elog| det F/(X))] and, therefore, by (5) the overall distortion can be approxi-

mated by
where (11) follows from Jensen’s inequality. The above is
equivalent to d(z, Qa,r())
i k 1 = (2 — G(Qan(F(2)))) M(2)(x — G(Qaa(F(x))))
5 10g Ol(F) + OQ(F) > 5 10g/€ + 5 E [10g (det M(X))] _ ||F(.’17) _ QQA(F(-T))HQ
(12)

i.e., by the corresponding squared error of the lattice quantizer,

Let us examine the conditions for achieving the abo here we used

lower bound. We have equality in (12) iff both (10) and (11

are equalities. Equality holds in (10) iff the eigenvalues of

['(z) are equal a.e[ux] (where ux denotes the probability

measure induced by onR¥). Sincel'(z) is positive-definite,

this implies that®(z) T(z)®(z) = A(z)I a.e. [ux] for It follows that
some 3(z) > 0 and some orthogonal matri@(z) (i.e.,

® ()T ®(x) = I). This in turn implies that'(z) = B(z)I a.e. Ed(X, Qa0 r(X)] = E|F(X) — Quan(F(X)|?
[ex]. The condition of equality in (11) is that the determinant ~ anL(PO)V(PO)Q/k

of I'(«) be constant a.¢u x]. Thus equality holds in (12) if and

only if I'(x) = I a.e.[ux], where > O is a constant. Thisis : iy
equivalent toM () = BF"(x)T F'(x) a.e.[ux]. SinceM (x) which, together with Proposition 2, enables one to guess the

is positive-definite, it has a unique positive-definite squaﬂptimal rate-distortion chgracte.ristics givenin (13). By analyz-
root W(z) (i.e., W(z) is symmetric and positive-definite'ng the proof of Proposition 1 it also becomes clear that the
and M(z) = W(x)W(z)). Therefore, another equivalentS“ﬁiCiem condition of optimality in the above theorem means
condition is that3~'W (z)[F”(z)]~! be an orthogonal matrix. the following. The optimal compressor function shapes the

We have thus proved the following sufficient condition for thitlice duantizer so that for smail the weighted quantization

optimality of a compressor function in terms of a conditiori]rror vectore = %X))((X._ Q‘LF().())' vxllherehW(X)dis.
involving the sensitivity matrix ofd. the square root ofd/(X), is approximately white and its

conditional powe [||¢||? | Qa,r(X) = ya ;] does not depend
Theorem 2: Assume the conditions of Theorem 1 holdon the codepointy,, ;.

Fl(z) " M(2)F'(z)™! = I.

Then for any compressaf” we have Note that the optimality condition of Theorem 2 does not
I depend on the source density. This observation nicely parallels
]%imo <H(QD7F) + 3 log D) the fact that for mean-squared error, and independently of the

source, the asymptotically optimal entropy-coded quantizer is

> h(X) +E log (kL(Pp)) + EE[log(det M(X))] (13) an infinite-level uniform quantizer [2]. It is also analogous
2 2 to a widely cited conjecture made by Gersho [3] that the

with equality if and only if F' satisfies asymptotically optimal entropy-coded quantizer has a so-
o called tessellating structure, i.e., its quantization regions are
Fl(x)" F'(x) = cM(z)  a.e.[u.] (14) congruent polytopes which tessellate the whole space. For

technical reasons (e.g., lack of the whiteness property), we
limit our investigation to lattice quantizers, which are a special
but important case of tessellating quantizers.
lim (H(Qp, #) — H(Qp.r)) > 0 _The c_c)nditionF_’(x)TF’(_x) = M(x) is a system of pc_artial
D—0 ’ differential equations which might not have a solution for
a generalM(z). Thus as in the case of fixed-rate multidi-
mensional companding for the squared error [3], [27], [28],
Remarks: It is interesting to observe that at high rates anih general there may not exist a compressor functiti)
for an optimal compressor satisfying’ (z)? F'(x) = M(x) satisfying the above condition. The following example shows
the squared errorat the output of the lattice quantizer is apthat the condition of Theorem 2 can be satisfied byZan
proximately equal to the overall distortion of the compandingonsisting of scalar compressorgliis a single-letter distortion
scheme. This can be proved by making precise the followimgeasure.

wherec > 0 is a scalar constant. Thus if satisfies (14), then
it is an optimal compressor function in the sense that

for all other compressors’.
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Example 1 (Single Letter Distortion Measureshssume The goal is to minimizeCy(F) + glog Cy(F) subject to
that d(z,y) can be written as the constraint that the compressor be of the form
u F(x) = (Fi(x1),- -, F(ow) "
d(z,y) = di(zi,yi) (15) _
im1 where theF;, : R — R are scalar compressors which are
invertible and possess nonzero and continuous derivafiyes
wherex = (xlv" '7$k)T7 Y= (ylv' o 7yk)T7 and the scalar 1 <4<k Then
distortion measuresl; : R x R — [0,0¢), 1 < i < k -
satisfy conditions a)—c). Namely, for eadh we require that F(z) = diag {F{(z1), - -, F(zn)}
20 i ‘ > i i
4= i(t, w) be uniformly boundedd;(t,u) > 0 with equality -\
iff w = ¢, and L
0 182d;(t, ) Co(F) + 5 log C1(F)
m; = —-—
2 our |, = E[log|det F'(X)]]
2 k - -
be positive and continuous for afl Since aa;(g;j) =0 if + 5 log Etr {F'(X)""M(X)F'(X)™}]
i # 4, M(xz) becomes the diagonal matrix k 1 B ma(X)
=Y Ellog|F/(X;)]|+ =log E “
M(z) = diag{mi(x1), - -, mu(z)}. ; log | £ (X0l 2 ; FI(X;)?
Define F(x) = (Fi(x),---, Fx(x))T by setting . , k (X))
’ ’ :ZE[IOg|E(XZ)|]+§IOgE ZF/(X)Q (16)
x; i=1 j=1 "\
Fi(z) = S(D)Y? dt
() /0 mi(t) where
where we used the convention thf = — [ if a > b. ai(zi) = E[mi(X) | X; = xi]. 17

ThenF'(x) is_ one-to-one and con_tinuously differentiaple sinclt-f1 the Appendix we show thaf”,---, ¥ minimize (L6) if
eachm,(t) is positive and continuous by assumption. Obénd only if
viously, F'(x) is diagonal and[F’(x)]*> = M(z) so the
optimality condition of Theorem 2 is satisfied. Note that  F/(z;) = cqs(x;)'/? a.e. [1x.], 1<i<k (18)
the ith component off" is a scalar compressor which is
optimal for d;. There is an interesting analogy wifixed- for some nonzero constamt Now suppose that the density
rate multidimensional companding for squared error. For thgf X is continuous and positive on the closedlimensional
problem it has recently been reported [29] that if the sourcel¥percube[—B, B]* and vanishes outside this hypercube.
stationary and memoryless, then the optimal compressor fuéen sincen;;(z) is continuous and positive (recall thaf(x)
tion compresses each vector component independent]y, uéﬁ]@OSitiVE'de'ﬁnite), it is easy to see that the conditional ex-
the scalar compressor optimal for the marginal distribution 8ectation defining;(x;) has a strictly positive and continuous
the source. version on[—B, B]. With theseg;, define

The above discussion of single-letter distortion measures @;
can be extended to the case wh#n, y) is given as the sum Fi(z:) = / q(t)!/?dt, x;€[-B,B], 1<i<k (19)
of n-dimensional distortion measures wherdlividesk. 0

Consider now the more general case whim,y) is not Then eacl¥ is a valid scalar compressor function pRB, B]
a single-letter distortion measure, but there exists an orthqudF{’ . F}i satisfy (18). Thereforel” = (Fi, e ’ﬁk)T is
onal transformation such tha(z,y) becomes a single-letter an optimal solution. (The definition of outside[— B, B]* is
distortion measure in the transformed space. That is, immaterial.) Furthermore, for this optima we have

d(z,y) = d*(Va,Vy) ok ok 1<
Co(F) + 5 log C1(F) = S loghk + 5 > B loggi(Xy)]. (20)
whereV is a fixed orthogonal matrix and" is in the form of i=1
(15). Then it is easy to see that tt:e_ optimal comp*re.%éax; The excess rate resulting from using an optimal scalar com-
given by F'(x) = F*(Vx), where F™ is optimal for d". pressor instead of a globally optimal compressor can be

Example 2 (Scalar Compressorslet us consider now the calculated from (13) and (20). Suppodé is a globally
problem of optimizing the asymptotic performance for @ptimal compressor given in Theorem 2 (so tiaachieves
generald(z,y) with sensitivity matrix M(z) = {m;(x)} equalityin(12))and lef’ be an optimal componentwise scalar
under the constraint thdf compresses the vector coordinate§ompressor given in (19). Then

independently. An obvious advantage of such a companding 1 e
scheme is a dramatic decrease in complexity. Another intetim (HQp ) — HQp,r)) = _Ellog<M>]
esting application of independent companders can be given fi~° ’ 2 det M(X)

lossy multiterminal source coding [30]. (22)
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The expectation on the right-hand side is of course nonnegate resulting from designing the compander for a mismatched
tive, and equals zero if and only if, on a set containiigvith  distortion measure. This problem was also considered in [11]
probability one,M(x) is diagonal and each;;(x) depends where an asymptotic expression was heuristically derived for

only on z;. the distortion redundancy due to using quantizers whose point
density is optimized for a mismatched distortion measure.
C. Source and Distortion Measure Mismatch Since I ()T F'(z) = M(x), we have

Consider first the situation where the source statistics are {ﬁ/(x)—TM(x)ﬁ/(x)—l} — tr {M(x)_lM(x)}
imperfectly known. In [8] this problem was treated for fixed-
rate coding of memoryless sources. It was found that if the . 1 .
quantizer's point density is optimized for a model probability log| det £(z)| = 5 log (det M (x)).
density f instead of the true source densify the resulting

excess distortion in decibels is proportional to the re|at|\,§_,uppose first that there exists an optimal compander
entropy of f and f, namely F'(2)YF'(x) = M(z), where M(z) is the sensitivity matrix

of d(z,y). Then, if the distortion is measured usidgez, ),

D(f||f) _ /f(a:) log Ji(ﬂf) do the asymptotic rate redundancy @ij over Qp g Is given
f(x) by Theorems 1 and 2 as
for large quantizer dimensions and small distortions. hm( (QD 7)) —H@Qpr))
We obtain a similar result for the rate redundancy due to
source mismatch. In fact, the derivation is straightforward _ EE ll <det M(X))
in our case, since the asymptotically optimal compressor - det M(X)

(when it exists) and the lattice quantizer are independent of N

the source density and therefore knowledge of the source n EIOgE ltr {M(X) MX )}]_ (22)
statistics is only needed for designing the lossless variable- 2

length code. Suppose we model the true source derfsity

by f such thatD(f||f) is finite. Let the random vector
X have densityf. Thus the variable-rate lossless code i ide of (22) is the rate redundancy QfD F over the lower
designed to be optimal for the known model distribution g ound of Theorem 2. Note that (22) reduces to (21) of Example

: AN if I is the compressor with optimal scalar components. In
the quantizer outpu F(X)) instead of the true output ., . . ;
g PUQan (F(X)) P that case/’ is the globally optimal compressor for a distortion

distribution of Q. (F(X)), where &« = «(D) (see the 0 L
definition of «(D) in (6)). For any pair of random vectoii$ measure whose sensiivity marix is
andY such that either both have discrete distributions or both M(x) = diag {q1(x1), -, qu(xr)}
have densities, leD(Y'||Y") denote the relative entropy [31]
between the corresponding probability distributionstoind Whereg;(z;) = E[m;;(X) | X; = z;].
Y. It is known [31] that the rate increase due to designing
an optimal variable-length code fa.,(F (X)) and then IV. RATE-DISTORTION PERFORMANCE
using it for QA (£(X)) is within 1 bit of the relative entropy
D(Qua(F(X))||Qaa(F(X))). The Voronoi partitions oR* A, Asymptotic Optimality
induced by the family of scaled latticds:A; v > 0} generate
the Borelo-field in R*. Sincea(D) — 0 asD — 0, we have dezzzdr%?/e -distortion function of the random vectar is

If the optimal compressor does not exist, then the right-hand

Hm D(Qaa (F(X)[|Qan(F(X X)) = D(F(X)||[F(X)) R(D) = inf{I(X,Y) : E[d(X,Y)] < D} (23)
(see [32, Corollary 5.2.4]). Sinc is invertible where I(X;Y) denotes the mutual information between the
D(F(X)||F(X)) = D(X||X) the k-dimensional random vectors and}’, and the infimum

is taken over all joint distributions of the paftX,Y’) such

and we conclude that the asymptotic rate redundancy duethat E [d(X,Y)] < D. By definition R(D) = o if no such
source mismatch is within 1 bit (of/k bit per dimension) Y exists. The rate-distortion function characterizes the lowest
of the relative entropyD(X||X) = D(f||f) between the true rate achievable by any source-coding scheme in coding a
and the model source densities. memoryless vector source with margimalat distortion level

Consider now the effect of distortion mismatch. Assum®. In particular, R(D) is a lower bound on the rate of any
that the compressoi” satisfies the optimality condition vector quantizer forX whose distortion is less than or equal
F'(z)TF'(z) = M(z) for a distortion measuré(z, y) whose to D. In what follows we describe a result given in [12] that
sensitivity matrix is M(a:). There can be many reasonsnakes it possible to relate the asymptotic performance of the
for optimizing the compressor foti(z,y) instead of the compander to the optimal performance given/®§D).
true distortion measurel(x,y). For example, the optimal We consider a more general class of distortion measures for
compressor fod may have simpler structure, or the optimalityeasons that will later be apparent. The principal difference is
condition could be satisfied faf (see Example 1 in Sectionthat now we do not require that for a giventhe distortion
[1I-B) but not for d. In this case, one is interested in the excedakes its minimum aty = =z, but rather that the unique
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minimum occurs ay = »(z), wherer(z) is a smooth function Assume now that there exists a compredsarhich is optimal
of . To be more concrete, we require th#t:, y) satisfy the in the sense of Theorem 2. Then we also have
following. . k D
d) For all fixedr € R*, d(z,v) is three times continuously ,%1210 <H(QD7F) + B log <m))
differentiable in the variabley, and the third-order

1
partial derivatives =h(X)+ 3 E[log(det M(X))]. (26)
M7 i,5,n € {1, -, k} Combining (25) and (26) gives the following result.
9y 0y Oyn

Theorem 4: SupposeX has a density which vanishes out-
are uniformly bounded. side a bounded sek(X) is finite, and assumé(x, y) satisfies
') There is a functionr : R* — R* such that for all the conditionsg—d) above withr(x) = = andmin,, d(x,y) =
x € R¥, d(x,y) > d(z,7(z)) with equality if and only 0. If A (z) is positive-definite for alkz, and the compressor
if ¥ = r(x). Assumer(z) is continuously differentiable £ is optimal, then the low-distortion asymptotic behavior of
and has a continuously differentiable invegse- r—*.  the multidimensional companding quantizer relativeld))

c) Illilﬁlinf d(z,y) > 0 for all x € R*. is given by
yll—oo
d) Let M(z) be ak x k matrix with entriesm,;(x), where gIHO(H(QD,F) — R(D)) = glog(ZweL(Po)). 27)
2
myj(r) = 1 M Thus for low distortions, the per-dimension rate @f p is

2 0yiy; |ym(a) about} log (2meL(P,)) bits above the rate-distortion function.
Proof: We only have to check the validity of (25) and
(26). The conditions given are clearly strong enough to imply
(25) by Theorem 1. On the other hand, since the elements
Let us definely,iq(x) = d(x,r(x)). Conditions §, b), and of M(zx) are continuous, it follows thatr {M—!(x)} and
a second-order Taylor expansion imply thafjgs-7(z)|| — 0 |log(det M (x))| are continuous functions, and sindé(x)
) T ) is positive-definite, they are also bounded on the compact
Az,9) = duin(@) + (# (x)g_ y) M(z)(r(@) = y) support of the density of{. Similarly, ||#(z)|*> is bounded
+ O([lr(x) = wlI*) (24)  on the support ofX by condition B). Thus the conditions of

where M(z) (the sensitivity matrix) is symmetric and 1heorem 3 are satisfied and (26) holds. =
nonnegative-definite, analogous to (5). Furthermore, define  Remark: This statement has a well-known analog for mean-
Duin = Elduin(X)] squared error and entropy-coded lattice (or tessellating) quan-
i ”““ tizers [2], [4]. In fact, the same upper bound applies there, but
and assume thdb,.;, is finite (otherwise, all quantizers havethe result is conceptually much simpler since the well-known
infinite distortion). Note thatR(D) = oo by definition if Shannon lower bound for the squared error can be used in
D < Dyin. place of Theorem 3.

The next theorem is a slightly specialized form of [12, Let Gy be the minimum value ofL(F) for any k-
Theorem 1]. It describes the asymptotic behaviorR{fD) dimensional lattice. Based on a result of Poltyrev it was
as D — D,,;, from above. proved in [23, Lemma 1] that a — oo, G, — (2me)~* at
a ratelog (2reGy) = O(k~!logk). Thus for optimal lattices
and compressors

Assume that for alli,j, the functionsm,;(z) are
continuously differentiable.

Theorem 3: Suppose conditions “ad) hold and as-
sume thath(r(X)), E[log(det M(X))], E[||r(X)]|]?], and
E[(tr {M~1(X)})*?] are finite. Then the low-distortion

i (@)~ B(D) = 0“2

asymptotic behavior oR(D) is given by p=o k k
lim (R(D)+ 2 log (2re(D — D) /F) which indicates tha_t for high dlme_nS|ons _and low dlstortlons,
D— Duin 2 an entropy-constrained companding lattice vector quantizer

with an optimal compressor function can arbitrarily approach

1
= h(r(X)) + 5 Eflog (det M(X))] o rate-distortion performance limit.

if D — D, from above. . L
Observe that ifd(z,y) satisfies conditions a)—c) of theB. NOIsy Source Quantization

previous sections, then it also satisfi@samd B), with »(z) = Let U be ak-dimensional random vector, called tokean

z and d(z,r(x)) = 0. In this case,D,,i, = 0 and if ¢) and sourceand letX be ak-dimensional random vector obtained

d) also hold, we obtain by passing’ through a noisy channel. The encoder has access
3 only to thenoisy sourceX, but the quantized signal(X)

]%il_r}o <R(D) + 5 log (27reD/k)> has to approximate the clean source so that the distortion is

measured by

= h(X)+ %E[Iog(det M(X))]. (25) D(Q) = E [p(U. QX))
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where p is a given distortion measure, called toeiginal respect to the distortion measuge and (29) and Theorem 4
distortion measure This problem can be reformulated byimply

introducing the modified distortion measurgiven by the A I

conditional expectation Lim (H(Qp4Dys,r) — R(D)) = 5 log (2reL(Py)) (30)

dz,y) = Blp(U,y) | X = 2], where R(D) is the rate-distortion function of relative tod.
Then Since Z = »(X) and r is invertible, (29) also implies that
forall D > 0
D(Q) = Eld(X, Q(X))]

and the noisy source problem is reduced to an ordinary quan-b o h ¢

tization problem relative to the modified distortion measuraguPstitution into (30) competes the proof. O

d(x,y) (which, however, depends on the joint distribution of Note that the optimal compander exists if the original

U7 and X). In general, the modified distortion measuris not  distortion measure is additive, i.eu,y) = E?:l pi(ui, ui),

a difference distortion measure arl, y) is not minimized where thep; are appropriate scalar distortion measures, and

in y aty = x. Moreover,E [inf, d(X,y)] = Duin > 0 inall if each U; is conditionally independent of X; : j =

nontrivial cases. I [p(U,y) | X = z] has a unique minimum 1 ... k:j + i} given X;. In this cased will be in the same

y = r(z), thenr(x) can be viewed as the optimal estimatoform with d;(x;,5:) = E[p:(Us.y:) | X; = ], and the

(in the p distortion sense) ot/ given X = z. existence of an optimal compander follows by the Example
By a classical result [15] the ordinary rate-distortion funcafter Theorem 2.

tion R(D) of X relative to the modified distortion measure A discussion on when the modified distortion function

d is equal to the operational rate-distortion function for thgatisfies the regularity conditions is given in [12]. An example
noisy source quantization problem relative to the origingf a family of original non-difference distortion measures is
distortion measurep. Let us assume that(x,y) satisfies given which, if X = U + v, whereU andv are independent
the regularity conditions’g-d’) and consider the compandingand Gaussian, induce modified distortion measures that satisfy
quantizer scheme where the input to the compressofXS. our conditions. In general, the smoothness and integrability
This companding scheme can be visualized as conditions are satisfied for “nice” original distortion measures
_and for “nice” noisy channels such as an additive noise channel
‘ — F7'(:) = X. where the noise density is sufficiently restricted. In fact, the
condition that the sensitivity matrix of be positive-definite
(28) for (almost) allz is less restrictive than the same condition
If M(z) is positive-definite for all: we have the following for the_ original distortion measure. This f(_)llows _bgcause
result for companding quantization of noisy sources. (assum!ng we can exchange the order of differentiation and
integration) we haveM(z) = E[M(U) | X = x|, where
Theorem 5: Suppose the density ok vanishes outside p7(v) is the sensitivity matrix of. Then, for anyy, we have
a bounded set and(X) is finite. Assume the modified 7 rf(z)y = E[yT M(U)y | X = z]. Thus for M(z) to be

distortion measure satisfies conditioriy—e) and thatM(z) positive-definite it suffices that/(w) be positive-definite on

is positive-definite for allz. If there exists a compressd 5 get of nonzerd’|x—, probability.

such thatt”(z)* I (z) = M(r~*(z)), then the low-distortion  As pointed out in [12], the primary restriction is thefz)
asymptotic behavior of the noisy source companding quantizg{ould be invertible. In this respect we note that an alternative

R(D) = R(D + Dmin)'

entropy

X —=7r() = F() = Qanl(-) — coding

is given by condition is that the sensitivity matrix depends enonly
_ Ek through the optimal estimate(z), i.e., M (x) = M (r(z)) for
phm (H(Qp,r) = R(D)) = 5 log(2meL(Fp)). some positive-definitd/(-). Then the asymptotic expansion of

d(z,y) depends or: only throughr(x) and Theorem 5 holds.
Proof: Let Z = r(X). Then, by condition §), Z has a In [10, Theorem 2] it is proved that the modified distortion
density which is zero outside a bounded set. Define the neweasure obtained from noisy source quantization with the

distortion measurel by Itakura—Saito distortion satisfies this condition. In this case
. . . r(z) represents the parameters of the autoregressive model of
d(z,y) = d(r™"(2),y) = dmin(r™"(2)). [/ optimally estimated fromX.

4 . - — . The asymptotic expression of Theorem 3 for the rate-
Then d(z,y) 2 0 with equallty. |f_and only ify = z .a}nd It distortion function also holds wher(z) is only “piecewise-
is easy to check thai(z,y) satisfies all of the conditions of . S L
Theorem 4. Note that for alk > 0 we have invertible,” i.e., there are a finite number of open sets
Aq,---, A, such thatr is one-to-one on eachi; and the
E[d(X,Qu.r(Z))] = E[d(Z, Qur(Z)]+ Duin ~ (29) complement of the union of these sets has zero Lebesgue
measure. The companding scheme of (28) can also be
where Dyin = E [din(X)]. Also, the second-derivative ma-extended to this case. Let(x) = ¢ iff = € A;, and let
trix associated withi(z, ) is given by M(z) = M(r~'(z)). F; (for i = 1,---,n) be valid compressor functions. The
Therefore, by (29) the companding scheme is optimal witbmpanding quantizer is then defined as follows’'{fr) = 4,
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the compressor functiod; is used to obtain the quantizerY has a density and finite differential entropy}’), then the
Qp. r,(z), where the lattice scaling is adjusted so that guantizer's entropy is given asymptotically by

E[d(X,Qp, r(X)| X € A] = D; (32) lim [H(Qaa(Y)) + kloga] = h(Y') ~ log V' (F)
subject to the constraint thad = """, p;D;, wherep, = .a S
P(C(X) = i). Since the value ofC(X) is needed for Provided H(Qa(X)) is finite for somec > 0. Thus by
decoding (i.e., for choosing the expand&y), the overall rate SettingY” = F'(X) and using the identity
of the scheme is IWEF(X)) = h(X) + Eflog det I (X)]]
Rp(D)=H(C(X))+H C(X)).
r(D) (CX)) ) (_QD’F | ( ) valid for all one-to-one and continuously differentialdle the
Let Ri(p) .der)ote the rgte—dlstortlon funcupn of the Cond"proposition is proved. 0
tional distribution of X given C(X) = ¢. It is not hard to N _ ‘ ‘
see that the compressors are optimal if for soeme- 0, Proof of Proposition 1: For any mapping”: R* — R* and
F!(z)"F(z) = eM(x) for all 2 € 4;. Then Theorem 5 shows for any setB ¢ R¥, let T'(B) denote the image oB under
that for D; close toD,,, ; = E [dmin(X) | C(X) = i], we have T,ie.,T(B)={T(z) : z € B}. If T is linear, we will use
L the notationT’B = T'(B). Specifically, ifa is a real number,
H(QFrp | C(X) =1) = R(D;) + 5108 (2meL(Fy)). then we writeaB = {az : = € B}. Also, fory € R¥, B+ y
denotes the sefr +y : © € B}.
Th D — Dmin . . . .
us as " The distortion ofQ), r is given by
Rp(D) — R(D) = H(C(X)) + ) _piR(D;) — R(D)
2 D(Qur) = [ d@Qur(@)f(z)ds
-

:Zﬂwﬂ@QWW@M

n where f is the source density andy;, P;} is an enumeration
ZPiR(Di) — R(D) = h(r(X) | C(X)) of the lattice points and their corresponding Voronoi cells such
= thatyo = 0 and F, is the basic cell ofA. Note that only finitely

+ g log (2meL(FPp)). (32)

From Theorem 3 (applied to eacR;(D;) separately) we
obtain

k many of the terms in the sum above are nonzero sjfiée
—h(r(X)) + 5 log (D — Din) zero outside a compact s&f C R*.
First we show that the asymptotics of the distortion are

- EZpi log (D; — D,,.5). unchanged ifd(z,y) is replaced by its second-order Taylor
2 polynomial
By Jensen’s inequalityRr(D) is asymptotically minimized 5 def T
if D; — Dy, ; = D — Dy, for all <. Thus the asymptotically d(z,y) = ( —y)" M(x)(x —y).
optimal choice in (31) i€); = Dim,; + (D — Dwin)- SiNC€  ndeed, since the remainder term@¥||z — y|*) by (5), we
h(r(X)) — h(r(X) | C(X)) = I(r(X); C(X)) have for allz € G(aF;)

it follows from (32) that the asymptotic rate of the scheme |, G(ay;)) — d(z, G(ay;))| = O((diam G(aP,))?) (33)
is given by ; .

lim  (Rp(D)— R(D)) where diam (B) = sup{||r — y|| : =,y € B} denotes the

D—Dyin diameter for anyB C R*. But
k .
=H(C(X)|r(X))+ 3 log (2meL(FPp)). diam (G(aF))) = supp IG(y) — G(2)||
y,zcal’;
In general, ifr(x) is not invertible, the companding scheme < diam (aP) sup |G'(»)]|
may not be asymptotically optimal in the rate-distortion sense. - year;
For example, ifX = (X1, ---, X)) consists of the first sam- = adiam (P;) sup [|G'(y)|l
ples of an independent and identically distributed (i.i.d.) source yEal;

andd i_s a single-letter o_li_stortion measure, thed (C(X) | where||G’()|| denotes the norm of the matri¥ (), defined
7(X)) is the same positive constant for dll and thus the

companding scheme it asymptoticallyoptimal, contrary to
the case of an invertible(x). 1G" (Il = fax 1G" ().

V. PROOFS Let P,(x) denote the lattice quantizer cellF; in which F'(x)
falls. Since’'(K) is a compact set is the support off),

Proof of Proposition 2: The entropy of Q. r(X) : L ) :
G(Qur(F(X))) is equal to the entropy of the lattice quantizelrt follows by the continuity ofG’ that there exists a constant

output Q.4 (F(X)) since G is invertible. It was proved in ?1a>v£s,151UCh that |||fg/(|s)§|r|nill fn.?ﬁgg’ then for alt € K we
[14] using a result of Csigz [33] that if a random vectoy’ Pycpa (@) I = &
is lattice-quantized by the scaled lattice quantiggr,, and diam (G(P,(z)) < éa, reK (34)
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for a constant and for alla small enough. Thus by (33) wewe obtain

ootan cal) = a2 W(@)(& — Qu,r(@))]I
2 /Rk (@, Qa,r(2)) f () du < 7%z = Qa,r(@)|P W ()]
. < o (diam(Sa (@)W ()|
_/[Rk d(z, Qa,r(2))f(z) dz| = O(a) (35) < &|w ()]
as o — 0, so that it suffices to consider if « is small enough. Since the matrix norfiM(z)|| is
. : T bounded inK by the continuity of M (x), so is||W(z)|. It
D(Qar) = Ak(x‘Qa:F(x)) M(z)(x = Qa.r(x))f() dr- fo110ms thatea(x) is bounded ink. Thus (37) gives
LetS.(z) = G(P.(z)) be the image unde¥ of the lattice cell lim / ea(®)f(z) dz = lim / a(®)falz)dz  (38)
in which F'(x) falls. Define the piecewise-constant probability — *—°/r« a—0 /g
density £, by if the limit on the right-hand side exists. Sincg,(z) is
der 1 constant over eacli¥(aF;), we have
fole) e [ twd ~
V(Sa(2)) Js. () / ea(2) fo(x) de
Then by change of variables it oo .
1 ' => 7/ fw) dy/ ca(z) dz

()= ——— G(y))|detG (v)| dy. L4 V(G(aP; P P

) = ) oo, FEEDIAC @ & VGEP) Jetor Glar)
As o — 0, the cellsP,(z) of the scaled latticerA shrink to = Z f(z)ea(x) dz
the point £(z) in such a way that i=0 7 G(al)

i) the diameter ofF,(x) tends to zero; - / éo(@) f(x) dx (39)
ii) there is a constant such that for the smallest hypercube RE

C.(x) which has edges parallel to the coordinate axa¥ereé.(z) is defined by
and that is centered &f'(x) and containsP,(z), we bu(2) def 1 / caly) dy
haveV (C,(z)) < ¢V (P, (z)), for all « small enough. ¢ V(Sa(2) Js, ) ’
Thus by the differentiation theorem of Lebesgue integrals (s&ppose we can prove that
e.g., [34, Theorem 7.16]), we have

X lim, é(2) = L(P)V (Po)** tr {I'(2)} (40)

. !

(EIE% V(P,(x)) /Pa(l,) F(G())|detG (y)] dy for all z. Sincee,(x) is bounded on the support df, so
= f(G(F(x)))| det G'(F(x))| is é,(z), and, therefore, (38) and (39); and the dominated
— f(x)| det G'(F(x))| convergence theorem implies

for all = except possibly on a set of Lebesgue measure zero % /Rk ca() f(x) du
On the other hand,
= L(Py)V(Py)*/* / tr {T(x)} () da.
V{Salz)) _ 1 / (et G (y)|dy— |det G'(F(x))], .. Rt
V(Pa())  V(Pu(®))Jp, () This and (35) proves the theorem.
asa — 0 The remainder of the proof is devoted to proving (40). Let
us introduce the notatiop.(z) = Q. r(x). We have to find
the limit asa — 0 of

for all z, by the continuity ofG’. This gives

. V(Sa(x)) ’
lim ———5 = [det ' (F(x (36) 4.
a0 V(Pa(.’L')) | ( ( ))| Ca(l') .
d, therefore, = — yal(a))T " .
and, therefore w5 ), o (I B M~ e dy
iigb fa(x) = f(x) Define
almost everywhere. Then by Scheffe’s theorem (see, e.g., ba(z) def a”?
Billingsley [35]) V(G (F(x))aFo)
- —a)'M —z)d
i%/w fal@) = f(x)|dv = 0. (37) g /G’(F(a:))al’o-l-a;(y My =) by
—2
Define the normalized local distortion,(x) by = V(G’(;(x))aPo) / y' M)y dy
G/ (F(z))als

defl

ealz) = a3z — Qap(a:))TM(a:)(a: — Qo r(x)). _ 1 / M () dy.
If W(x) is the positive-definite square root 8f(x), by (34) V(G (F(@)Po) Jar(r@yp,
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To prove (40) it suffices to show that for all > 0 since P, (z) = zo(x) + aFy. By (36) we have
_ 2/k . V(S (x
bo(e) = LWV R wll@) @Dy YD o) vimy) = vie @) p).
and that (43)
1i1n0 éolz) = lim0 bo(x). (42) so that to obtain (42) we have to prove
To prove (41), let us simplify the notation by setting 1;p / yI M)y dy = / yT M(z)y dy.
G'(F(z)) =G, M(z) = M, andW(z) = MY?(z) = W. >0 40 (@) G (F(@) Py
Then In fact, since there exists a bounded set which contains:)
T 5 for all & small enough, it suffices to prove that
/ y Mydy:/ [Wyll” dy _
a'r a'r hlrb V(Au(2)AG (F(2))Py) =0 (44)
= (det W)_I/WG,P lylI* dy where A denotes symmetric difference of setdAB =
V(WG By) ! (A\ B)U(B\ A). The proof of (44) is given in the Appendix.
= TWOE[HZHQ] Thus (42) holds and the proof is complete. O
VIWGE Py) 12
= —F|[||[WGY
qew Ell 17 APPENDIX

where Z and Y are random vectors which are uniformly Proof of the Optimality of (18)For all componentwise sca-
distributed overW &' P, and Py, respectively. It is easy to [ar compressors, we have

k
see that EIOgE (X))
EWGY|?] = e (WG Ry (W)} 2 — F/(X)?
where Ry = E[YY 1] is the covariance matrix df’. But the S EElo ) r (X)) (45)
basic cellF, is white, so thatily- = </ for somee > 0, and, =7 — F/(X;)?
therefore, L L Lk (X))
— . ! gi(Xq
w{(WE) Ry (WG} = et (W) WG} mpleskt §E1°8<E 2 Ff<x>2>
i=1 7N
=etr {(GHYTMG'}. k
R k 1 X (]z(Xz)
Clearly, > 5 logh + §E<E ;log 1 Xi)2> (46)
1 2 2/k
=— dy = L(FPy)V(F k
KV (Po) Jp, lyll” dy = L(Fo)V (o) = Slogh+3 ZEIO@,% (X;) ZElog|F’(X )|

so we conclude that =1 =1

1 where we have used Jensen’s inequality in (45) and (46). We
o / y" My dy btai
V(G'Po) Jerp, obtain
V(WG FR) L k k
= (des W)V(G’PO)L(PO)V(PO)Q/ w{(@) MG Ca(F) + 5 log Co(F) > 7 logh + 5 ZElong(Xz)

i=1
2/k
= LRV (R er{l ()}, where equality holds if and only if
which proves (41). (X)) o
In the last step of the proof we show (42). Let(x) = <F<’(X7<)2 =¢ i=1,-- k) =1
Qar(F(z)), so thaty,(z) = G(z.(z)), and rewriteé,(x) by o

a change of variables as for somec > 0. This condition is equivalent to (18). O
a2 . Proof thatlimg,—.o V(A.(2)AG (F(x))Po) = 0 in (44):
V5@ /S (Y — ya(®)” M(z)(y — yalz)) dy We can assume without loss of generality tRais an open set
“ _”2(“’) sinceF, is a convex polytope so that replacing it by its interior
- “—/ yr M(z)y dy will not change the value of the integrals. Th&!(£'(x))Fy
V(Sa(2)) Js (2)—ya (z) is also open. For any € P, we have
Oék
= VE) /A y' M(z)y dy [G(az + za(2)) — Glza(@)) — G'(F(z))oz]]
where w = [|G(az + za(2)) — G(F(2)) + G(F(x))
~ Glza(®)) — G'(F(x))oz|
Aa(z) = 071 Sa(z) — 0 ya (@) < |G (F(2)(ax + za(z) - F(x))

= a7 G(al + 7a (@) — a7 G(za(2)) — G(F(@))(za(x) - F(2)) — G'(F(x))az]|
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+ of||az + za(z) — F(@)]) + o(||za(z) — F(2)])
o|laz + za(z) — F(2)|)) + of[[2a(x) — F(2)]])
o(a),

asa — 0, since

IF () = za(@)] < diam (Pa(x)) = O(a),

Thus

a Gtz (@) —a L G(za(2) — G'(F(x))z, asa — 0

implying (sinceG'(F(x))FP, is open) that
A tGaz + 24(2)) — a7 G(za(z)) € G'(F(z))Py  (47)
if @ > 0is small enough. Let

B (z) ={z € Py: a 'Glaz + z.(z))

— a7 G(za(@)) & G'(F(x))Po}-

If xg. is the indicator function off,(z), then (47) implies
that lim,—o xg, () = 0 for all z. Thus

lim V(

a—0

E.(x)) = ilg%)/,, XE.(2)dz=0

by bounded convergence. Therefore,

V(Aa(z)\ G'(F(2))Fo)
=V(a'G(aEL(z) + 24(1)) — o G(2a(z)))

ofk/ dy
G(aE.(z)+zq ()

/ |det G (az + z0(2))| dy — 0, asa — 0
Eo (7))

since G’ is continuous and,(z) — F(x). Since we know
by (43) that

lim V(

a—0

Aa(z)) = V(G (F(2)) o)

we obtain

V(G (F(2))Py) = hm[ (Au(2) NG (F(x)) o)

V(Aa(@\G'(F(x)) Po)]
= hm V(Au(x) NG (F(x))Po).

Thus

lim V(G'(F(2) Po\Aa(x)) = 0
implying

lim V(Ao (£)AG (F(x))Fo) = 0

as was to be shown.
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