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High-Resolution Source Coding for Non-Difference
Distortion Measures: Multidimensional Companding
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Abstract—Entropy-coded vector quantization is studied using
high-resolution multidimensional companding over a class of non-
difference distortion measures. For distortion measures which
are “locally quadratic” a rigorous derivation of the asymptotic
distortion and entropy-coded rate of multidimensional compan-
ders is given along with conditions for the optimal choice of
the compressor function. This optimum compressor, when it
exists, depends on the distortion measure but not on the source
distribution. The rate-distortion performance of the companding
scheme is studied using a recently obtained asymptotic expression
for the rate-distortion function which parallels the Shannon lower
bound for difference distortion measures. It is proved that the
high-resolution performance of the scheme is arbitrarily close
to the rate-distortion limit for large quantizer dimensions if
the compressor function and the lattice quantizer used in the
companding scheme are optimal, extending an analogous state-
ment for entropy-coded lattice quantization and MSE distortion.
The companding approach is applied to obtain a high-resolution
quantizing scheme for noisy sources.

Index Terms—Asymptotic quantization theory, entropy coding,
lattice quantizers, multidimensional companding, non-difference
distortion measures, rate-distortion function.

I. INTRODUCTION

T HE high-resolution (asymptotic, low-distortion) behavior
of vector quantizers is relatively well understood for

so-called difference distortion measures where the distortion
is measured by a function of the difference between the
source and the reproduction vectors. In particular, for the
mean-squared error, and more generally for “nice” functions
of a norm-based distance measure, the asymptotic distortion
of optimal quantizers, as well as the asymptotic distortion
of sequences of quantizers with a given “point density,”
have been identified as a function of the codebook size, or
as a function of the entropy of the output [1]–[6]. These
results give insight to the structure of asymptotically optimal
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quantizers. On the practical side, the expressions for quantizer
performance provide useful guidance for quantizer design at
even small to moderate rates.

Source coding is less understood when the distortion is not
measured by a difference distortion measure. Non-difference
distortion measures occur naturally in source-coding problems.
Prominent examples include the log spectral distortion and the
Itakura–Saito distortion which are used in linear predictive
speech coding [7], certain perceptual distortion measures in
image coding [8], and most distortion measures that arise
in noisy (or remote) source coding if the original distortion
measure is other than the squared error. The design of vector
quantizers for certain classes of non-difference distortion mea-
sures is possible using the generalized Lloyd–Max algorithm
[9], and the same approach can be extended to modified
distortion measures in noisy source coding [10].

Due to the difficulty in analyzing such systems, there exist
only a few known results for high-resolution quantization with
non-difference distortion measures. By assuming the existence
of a limiting quantizer point density, a lower bound was
calculated in [11] for the high-resolution performance of fixed
rate optimal vector quantizers for locally quadratic distortion
measures. The log spectral distortion and the Itakura–Saito
distortion are examples of such measures. A more formal
treatment of the same lower bound is given in [8], and a
new lower bound on the variable rate (i.e., entropy-coded)
performance is developed using optimal point densities. It
is also pointed out in [8] that some important “perceptual
distortion measures” in image coding are locally quadratic. In
[12], an asymptotically tight expression for the rate distortion
function is derived for locally quadratic distortion measures.
As will be shown in this paper, the expression given in [12]
plays the same important role in high-resolution quantization
for these distortion measures as does the Shannon lower bound
in quantizing for squared-error loss.

To develop the basics of a high-resolution quantization
theory for locally quadratic distortion measures, we investigate
variable-rate (entropy-coded) companding vector quantization.
Multidimensional companding is a type of structured vector
quantization of low complexity where a-dimensional source
vector is “compressed” by an invertible mapping(called
the compressor function). Then is quantized by a
uniform (or more generally, a lattice) quantizer, and the inverse
mapping is applied to obtain the reproduction. Thus
the scheme is
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where is a uniform or lattice quantizer. In this paper, the
output of the quantizer is entropy-coded and the rate of the
system is given by the Shannon entropy of .

In a classical paper [2], entropy-coded scalar quantization
with mean-squareddistortion was considered. It was found
that for smooth sources, uniform scalar quantizers have asymp-
totically the minimum possible entropy of all scalar quantizers
with a given distortion , and this minimum entropy is given
for small by

(1)

where and denote discrete and differential entropies,
respectively, the logarithm is base, and means that the
difference between the corresponding quantities goes to zero
as . Thus the optimal compressor characteristic for
entropy-coded scalar quantization isuniform. More generally,
the entropy of a lattice quantizer that encodes a smooth
-dimensional vector source with squared distortion is

given for small by [3]

(2)

where denotes the normalized second moment of the
basic cell of the lattice (see also [13] and [14]). The above
implies (by means of the Shannon lower bound [15]) that the
asymptotic rate redundancy of an entropy-coded lattice quan-
tizer above the rate-distortion function is
bits per dimension [2], [4]. In this paper, we will show that
analogous results hold for locally quadratic non-difference
distortion measures. For example, the optimal compressor
function is again independent of the source distribution. How-
ever, the compressor now depends on the distortion measure
through the so-called sensitivity matrix.

We have two main reasons for considering a companding
realization of vector quantizers. First, in [12] it has been
observed that for a large class of non-difference distortion
measures the asymptotically optimal forward test channel
which realizes Shannon’s rate-distortion function has a certain
structure very similar to that of multidimensional companding
quantizers. It has also been conjectured that such a companding
scheme, together with entropy coding, performs arbitrarily
close to the rate-distortion limit. Second, our aim is to develop
a rigorous theory. In high-resolution quantization theory it is
rather common to obtain results via informal reasoning (see,
e.g., [16], [2]–[4], [11], [8]) and most of the rigorously derived
results deal with fixed rate quantization [5], [6], [17], [18], [19]
(due primarily to the difficulty of handling the problem of
“quantizer point density” in the variable-rate case, e.g., [20]).
On the other hand, for the purpose of directly relating the
quantizer’s performance to the rate-distortion function it is
more suitable to consider the variable rate performance. For
this reason we choose to introduce structure in the coding
scheme by using a companding realization which allows
us to deal with the point density problem for variable-rate
quantizers.

As will be seen in the paper, in some cases it is not possible
to realize a (heuristically derived) desired optimal point density
using a compander. However, the companding approach can

serve as a basis for the development of a rigorous theory of
quantizers with a given point density.

In this paper, we consider entropy-coded multidimensional
companding quantizers with non-difference distortion mea-
sures satisfying rather general regularity conditions. The main
requirement is a smoothness condition which implies that the
distortion between can be approximated as

for close to , where
is an input-dependent positive-definite matrix and where the
superscript stands for transpose. In Section III, Theorem
1, we give a rigorous derivation of the asymptotic entropy-
coded rate as a function of the distortion for sources with
densities. A general sufficient condition for the optimal choice
of the compressor function is derived in Theorem 2, and
examples are shown for the existence of optimal compressors,
which are determined by the distortion measure and do not
depend on the source distribution. In Section IV, the rate-
distortion performance is considered. Using a result from
[12] we prove in Theorem 4 that if the compressor function
satisfies the sufficient condition for optimality, and if the lattice
quantizer used in the companding scheme is optimal, then
the high-resolution performance of the scheme is arbitrarily
close to the rate-distortion limit for large quantizer dimensions.
When specialized to mean-squared error, this result gives back
the well-known fact that for large rate and large quantizer
dimension, lattice quantizers combined with entropy coding
are asymptotically optimal.

The above results can be applied to obtain a simple encoding
scheme for quantizing sources corrupted by noise. In this
problem, the original distortion measure in the “source space”
is transformed into a modified distortion measure in the “mea-
surement space.” We show in Theorem 5 that if the modified
distortion measure satisfies certain regularity conditions, then
an estimation-companding quantization scheme gives asymp-
totically optimal performance. This is the asymptotic analog
of the well-known separation principle in the “Wolf–Ziv type”
encoding [21] of noisy sources with MSE original distortion
measure.

II. PRELIMINARIES

A -dimensionalvector quantizer is a mapping defined by

if

where form a measurable partition of , and the
collection of codepoints , is called the
codebook. We do not eliminate the possibility that ,
i.e., the codebook of can contain countably infinite number
of codepoints. The distortion betweenand is measured
by , where is a Borel
measurable function. The expected distortion in quantizing a
-dimensional random vector is

and we assume the expectation is finite. Therate of will be
measured by the Shannon entropy of in bits per k-block



550 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 2, MARCH 1999

where the logarithm is base two. The per-dimension rate of the
system can reach within of the normalized entropy
by use of entropy coding techniques.

The basic building block in a multidimensional companding
quantizer is a lattice quantizer, the-dimensional generaliza-
tion of a uniform scalar quantizer. Let be a -dimensional
nonsingular lattice, i.e., is the set of all points of the form

, where are linearly independent vectors
of (the basis vectors of the lattice) and ranges
over all -tuples of integers. For let denote the
scaled lattice . The lattice quantizer
is then defined so that its codepoints are the points ofand
its quantization regions are the corresponding Voronoi regions
of , i.e.,

if for all

where denotes the Euclidean norm, and ties are broken
arbitrarily. The quantization regions of are translated and
scaled copies of , the basic Voronoi cellof , which is
defined by

for all

An important performance figure of is the (dimensionless)
normalized second moment of its basic cell, namely,

where denotes the volume (-dimensional Lebesgue
measure) of any measurable . For a given , we call a
lattice optimal if its normalized second moment is minimum
over all -dimensional lattices [22]. It was proved in [23] that
the basic cell of an optimal lattice iswhite in the sense that if

is a random vector uniformly distributed
over , then the covariance matrix of is

where denotes the identity matrix. In other words, the
are uncorrelated and have equal second moments. We will

assume that the lattice used in the companding scheme has
a white basic cell .

The concept of a companding realization of a nonuniform
quantizer originates from Bennett [16]. The idea is to apply a
nonlinear transformation (called the compressor) to the input,
followed by a uniform (more generally, a lattice) quantizer,
and then the inverse of the transformation to obtain the
reproduction. Let be a one-to-one continuously
differentiable mapping whose derivative matrix is non-
singular for all . Then has an inverse which is
continuously differentiable on its domain and whose derivative

is nonsingular. and are called thecompressorand
expanderfunctions, respectively.

The companding vector quantizer realized by the
compressor function is defined in terms of the scaled lattice
quantizer as

Our goal is to analyze the entropy-coded rate of as
a function of its distortion for absolutely continuous source
distributions and non-difference distortion measures. In gen-
eral, an analytical evaluation of the rate is not possible for
any given , so we alternatively take a high-resolution
approach and determine the asymptotic behavior of the rate as
the distortion (or, equivalently, ) tends to zero.

III. M ULTIDIMENSIONAL COMPANDING

A. Asymptotic Performance

Let , ,
and assume that the distortion measure satisfies the
following three conditions.

a) For all fixed , is three times continuously
differentiable in the variable, and the third-order partial
derivatives

(3)

are uniformly bounded.
b) For all , with equality if and only

if .
c) Let be the matrix whose th

element is given by

(4)

Then is positive-definite for all and its elements
are continuous functions.

is symmetric by a). Condition b) implies that the
gradient of with respect to is zero at . Thus
for any fixed , a second-order Taylor expansion of
in gives

(5)

Since if , a) and b) already imply through
(5) that is nonnegative-definite. was named the
sensitivity matrixof in [11] where the fact that certain useful
distortion measures can be represented in the form of (5) was
first pointed out.

Remarks: i) The conditions given above are not the weakest
under which we can prove our results. For example, it suffices
to assume that the elements of are continuous on an
open set of probability. Also, if is assumed to be three
times continuously differentiable as a function on , then
the third-order partial derivatives in (3) need not be uniformly
bounded. ii) Consider aninput weighted quadraticdistortion
measure given by

where is a nonsingular matrix depending on the
input [24]. Since ,
and since is positive-definite, it is easy
to see that satisfies condition a)–c) if the elements
of are continuous functions of . iii) Very similar
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conditions are used in [8] to compute lower bounds on the
asymptotic distortion of a sequence of fixed-rate quantizers
with a given point density. Some important measures of
image quality [25], [26] satisfy these regularity conditions,
for example.

To study the rate of as a function of its distortion, one
needs to eliminate the scaling factor. One reasonable way
to do this is to choose for each an such that

(6)

If has a density, it is not hard to see that is a
continuous function of which converges to zero as

. Thus in this case for all small enough there
exists an satisfying (6). For such values of we define

The next theorem determines the asymptotic behavior of the
rate of as for any source whose density has a
bounded support.

Theorem 1: Assume that the source has a density which
is zero outside a bounded subset of and suppose the
distortion function satisfies conditions a)–c). If has
a finite differential entropy , then the rate and
the distortion of the multidimensional companding quantizer

satisfy

where is the compressor function, is the normalized
second moment of the basic cell of the white lattice
quantizer, denotes the trace of the matrix

(7)

is the sensitivity matrix of , and is the
inverse transpose of the derivative of .

The above theorem is a consequence of the following two
results which determine the asymptotics of the distortion and
the rate of as . Both results are proved in
Section V.

Proposition 1: Assume that the source has a density
which is zero outside a bounded subset of and suppose

satisfies conditions a)–c). Then

Proposition 2: Assume that the source has a density and
finite differential entropy . If
and there exists an such that is finite, then

Theorem 1 is proved by noticing that by Proposition 1

as . Combining this with Proposition 2 and the fact that
as proves the statement. Note that since

the source density has a bounded support, is finite
for all and, therefore, the conditions of Proposition 2
are satisfied.

Remarks: i) Note that no smoothness conditions are im-
posed on the source density in Theorem 1 except the re-
quirement that the differential entropy be finite. The only
restrictive condition is the assumption that the source density
has bounded support (see Proposition 1). In principle, the
distortion formula can be proved for source densities with
unbounded support, but in that case extra conditions on
the compressor function are needed. These conditions are
associated with the tail of the source density, leading to a sub-
stantially more complicated proof. ii) Proposition 1 can be used
to obtain the high-rate distortion of the companding quantizer
as a function of the number of codepoints (which is finite since
the source is bounded). When specialized to mean-squared
error , we obtain Bucklew’s heuristically derived
formula [27] for fixed-rate multidimensional companding.

B. Optimal Compressor Functions

The question of the optimal choice of the compressoris
considered next. Let us define

and

where is defined in (7). Then the statement of Theorem
1 becomes

(8)

It is clear that if minimizes the right-hand side of (8), i.e., if

for all allowable , then asymptotically outperforms
all other companding quantizers . Thus to find a best
compressor one has to minimize the functional

(9)

over all one-to-one and continuously differentiablesuch that
is nonsingular for all .

A lower bound on (9) is obtained next. Since
is positive-definite and is nonsingular,

is also positive-definite. Thus by the
arithmetic-geometric mean inequality we have
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with equality if and only if the eigenvalues
of are all equal. Therefore,

(10)

(11)

where (11) follows from Jensen’s inequality. The above is
equivalent to

(12)

Let us examine the conditions for achieving the above
lower bound. We have equality in (12) iff both (10) and (11)
are equalities. Equality holds in (10) iff the eigenvalues of

are equal a.e. (where denotes the probability
measure induced by on ). Since is positive-definite,
this implies that a.e. for
some and some orthogonal matrix (i.e.,

). This in turn implies that a.e.
. The condition of equality in (11) is that the determinant

of be constant a.e. . Thus equality holds in (12) if and
only if a.e. , where is a constant. This is
equivalent to a.e. . Since
is positive-definite, it has a unique positive-definite square
root (i.e., is symmetric and positive-definite
and ). Therefore, another equivalent
condition is that be an orthogonal matrix.
We have thus proved the following sufficient condition for the
optimality of a compressor function in terms of a condition
involving the sensitivity matrix of .

Theorem 2: Assume the conditions of Theorem 1 hold.
Then for any compressor we have

(13)

with equality if and only if satisfies

a.e. (14)

where is a scalar constant. Thus if satisfies (14), then
it is an optimal compressor function in the sense that

for all other compressors .

Remarks: It is interesting to observe that at high rates and
for an optimal compressor satisfying
the squared errorat the output of the lattice quantizer is ap-
proximately equal to the overall distortion of the companding
scheme. This can be proved by making precise the following

informal derivation. Assuming that the cells of are small
enough, the overall error in coding satisfies

and, therefore, by (5) the overall distortion can be approxi-
mated by

i.e., by the corresponding squared error of the lattice quantizer,
where we used

It follows that

which, together with Proposition 2, enables one to guess the
optimal rate-distortion characteristics given in (13). By analyz-
ing the proof of Proposition 1 it also becomes clear that the
sufficient condition of optimality in the above theorem means
the following. The optimal compressor function shapes the
lattice quantizer so that for small the weighted quantization
error vector , where is
the square root of , is approximately white and its
conditional power does not depend
on the codepoint .

Note that the optimality condition of Theorem 2 does not
depend on the source density. This observation nicely parallels
the fact that for mean-squared error, and independently of the
source, the asymptotically optimal entropy-coded quantizer is
an infinite-level uniform quantizer [2]. It is also analogous
to a widely cited conjecture made by Gersho [3] that the
asymptotically optimal entropy-coded quantizer has a so-
called tessellating structure, i.e., its quantization regions are
congruent polytopes which tessellate the whole space. For
technical reasons (e.g., lack of the whiteness property), we
limit our investigation to lattice quantizers, which are a special
but important case of tessellating quantizers.

The condition is a system of partial
differential equations which might not have a solution for
a general . Thus as in the case of fixed-rate multidi-
mensional companding for the squared error [3], [27], [28],
in general there may not exist a compressor function
satisfying the above condition. The following example shows
that the condition of Theorem 2 can be satisfied by an
consisting of scalar compressors ifis a single-letter distortion
measure.
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Example 1 (Single Letter Distortion Measures):Assume
that can be written as

(15)

where and the scalar
distortion measures
satisfy conditions a)–c). Namely, for each we require that

be uniformly bounded, with equality
iff , and

be positive and continuous for all. Since if
, becomes the diagonal matrix

Define by setting

where we used the convention that if
Then is one-to-one and continuously differentiable since
each is positive and continuous by assumption. Ob-
viously, is diagonal and so the
optimality condition of Theorem 2 is satisfied. Note that
the th component of is a scalar compressor which is
optimal for . There is an interesting analogy withfixed-
rate multidimensional companding for squared error. For this
problem it has recently been reported [29] that if the source is
stationary and memoryless, then the optimal compressor func-
tion compresses each vector component independently, using
the scalar compressor optimal for the marginal distribution of
the source.

The above discussion of single-letter distortion measures
can be extended to the case when is given as the sum
of -dimensional distortion measures wheredivides .

Consider now the more general case when is not
a single-letter distortion measure, but there exists an orthog-
onal transformation such that becomes a single-letter
distortion measure in the transformed space. That is,

where is a fixed orthogonal matrix and is in the form of
(15). Then it is easy to see that the optimal compressoris
given by , where is optimal for .

Example 2 (Scalar Compressors):Let us consider now the
problem of optimizing the asymptotic performance for a
general with sensitivity matrix
under the constraint that compresses the vector coordinates
independently. An obvious advantage of such a companding
scheme is a dramatic decrease in complexity. Another inter-
esting application of independent companders can be given in
lossy multiterminal source coding [30].

The goal is to minimize subject to
the constraint that the compressor be of the form

where the are scalar compressors which are
invertible and possess nonzero and continuous derivatives,

. Then

so that we obtain

(16)

where

(17)

In the Appendix we show that minimize (16) if
and only if

a.e. (18)

for some nonzero constant. Now suppose that the density
of is continuous and positive on the closed-dimensional
hypercube and vanishes outside this hypercube.
Then since is continuous and positive (recall that
is positive-definite), it is easy to see that the conditional ex-
pectation defining has a strictly positive and continuous
version on . With these , define

(19)

Then each is a valid scalar compressor function on
and satisfy (18). Therefore, is
an optimal solution. (The definition of outside is
immaterial.) Furthermore, for this optimal we have

(20)

The excess rate resulting from using an optimal scalar com-
pressor instead of a globally optimal compressor can be
calculated from (13) and (20). Suppose is a globally
optimal compressor given in Theorem 2 (so thatachieves
equality in (12)) and let be an optimal componentwise scalar
compressor given in (19). Then

(21)
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The expectation on the right-hand side is of course nonnega-
tive, and equals zero if and only if, on a set containingwith
probability one, is diagonal and each depends
only on .

C. Source and Distortion Measure Mismatch

Consider first the situation where the source statistics are
imperfectly known. In [8] this problem was treated for fixed-
rate coding of memoryless sources. It was found that if the
quantizer’s point density is optimized for a model probability
density instead of the true source density, the resulting
excess distortion in decibels is proportional to the relative
entropy of and , namely,

for large quantizer dimensions and small distortions.
We obtain a similar result for the rate redundancy due to

source mismatch. In fact, the derivation is straightforward
in our case, since the asymptotically optimal compressor
(when it exists) and the lattice quantizer are independent of
the source density and therefore knowledge of the source
statistics is only needed for designing the lossless variable-
length code. Suppose we model the true source density
by such that is finite. Let the random vector

have density . Thus the variable-rate lossless code is
designed to be optimal for the known model distribution of
the quantizer output instead of the true output
distribution of , where (see the
definition of in (6)). For any pair of random vectors
and such that either both have discrete distributions or both
have densities, let denote the relative entropy [31]
between the corresponding probability distributions ofand

. It is known [31] that the rate increase due to designing
an optimal variable-length code for and then
using it for is within 1 bit of the relative entropy

. The Voronoi partitions of
induced by the family of scaled lattices generate
the Borel -field in . Since as , we have

(see [32, Corollary 5.2.4]). Since is invertible

and we conclude that the asymptotic rate redundancy due to
source mismatch is within 1 bit (or bit per dimension)
of the relative entropy between the true
and the model source densities.

Consider now the effect of distortion mismatch. Assume
that the compressor satisfies the optimality condition

for a distortion measure whose
sensitivity matrix is . There can be many reasons
for optimizing the compressor for instead of the
true distortion measure . For example, the optimal
compressor for may have simpler structure, or the optimality
condition could be satisfied for (see Example 1 in Section
III-B) but not for . In this case, one is interested in the excess

rate resulting from designing the compander for a mismatched
distortion measure. This problem was also considered in [11]
where an asymptotic expression was heuristically derived for
the distortion redundancy due to using quantizers whose point
density is optimized for a mismatched distortion measure.

Since , we have

and

Suppose first that there exists an optimal compander
, where is the sensitivity matrix

of . Then, if the distortion is measured using ,
the asymptotic rate redundancy of over is given
by Theorems 1 and 2 as

(22)

If the optimal compressor does not exist, then the right-hand
side of (22) is the rate redundancy of over the lower
bound of Theorem 2. Note that (22) reduces to (21) of Example
2 if is the compressor with optimal scalar components. In
that case, is the globally optimal compressor for a distortion
measure whose sensitivity matrix is

where

IV. RATE-DISTORTION PERFORMANCE

A. Asymptotic Optimality

The rate-distortion function of the random vector is
defined by

(23)

where denotes the mutual information between the
the -dimensional random vectors and , and the infimum
is taken over all joint distributions of the pair such
that . By definition if no such

exists. The rate-distortion function characterizes the lowest
rate achievable by any source-coding scheme in coding a
memoryless vector source with marginalat distortion level

. In particular, is a lower bound on the rate of any
vector quantizer for whose distortion is less than or equal
to . In what follows we describe a result given in [12] that
makes it possible to relate the asymptotic performance of the
compander to the optimal performance given by .

We consider a more general class of distortion measures for
reasons that will later be apparent. The principal difference is
that now we do not require that for a giventhe distortion
takes its minimum at , but rather that the unique
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minimum occurs at , where is a smooth function
of . To be more concrete, we require that satisfy the
following.

a ) For all fixed , is three times continuously
differentiable in the variable , and the third-order
partial derivatives

are uniformly bounded.

b ) There is a function such that for all
, with equality if and only

if . Assume is continuously differentiable
and has a continuously differentiable inverse .

c ) for all .

d ) Let be a matrix with entries , where

Assume that for all , the functions are
continuously differentiable.

Let us define . Conditions a), b ), and
a second-order Taylor expansion imply that as

(24)

where (the sensitivity matrix) is symmetric and
nonnegative-definite, analogous to (5). Furthermore, define

and assume that is finite (otherwise, all quantizers have
infinite distortion). Note that by definition if

.
The next theorem is a slightly specialized form of [12,

Theorem 1]. It describes the asymptotic behavior of
as from above.

Theorem 3: Suppose conditions a)–d ) hold and as-
sume that and

are finite. Then the low-distortion
asymptotic behavior of is given by

if from above.
Observe that if satisfies conditions a)–c) of the

previous sections, then it also satisfies a) and b), with
and . In this case, and if c) and

d ) also hold, we obtain

(25)

Assume now that there exists a compressorwhich is optimal
in the sense of Theorem 2. Then we also have

(26)

Combining (25) and (26) gives the following result.

Theorem 4: Suppose has a density which vanishes out-
side a bounded set, is finite, and assume satisfies
the conditions a)–d ) above with and
. If is positive-definite for all , and the compressor

is optimal, then the low-distortion asymptotic behavior of
the multidimensional companding quantizer relative to
is given by

(27)

Thus for low distortions, the per-dimension rate of is
about bits above the rate-distortion function.

Proof: We only have to check the validity of (25) and
(26). The conditions given are clearly strong enough to imply
(25) by Theorem 1. On the other hand, since the elements
of are continuous, it follows that and

are continuous functions, and since
is positive-definite, they are also bounded on the compact
support of the density of . Similarly, is bounded
on the support of by condition b). Thus the conditions of
Theorem 3 are satisfied and (26) holds.

Remark: This statement has a well-known analog for mean-
squared error and entropy-coded lattice (or tessellating) quan-
tizers [2], [4]. In fact, the same upper bound applies there, but
the result is conceptually much simpler since the well-known
Shannon lower bound for the squared error can be used in
place of Theorem 3.

Let be the minimum value of for any -
dimensional lattice. Based on a result of Poltyrev it was
proved in [23, Lemma 1] that as , at
a rate . Thus for optimal lattices
and compressors

which indicates that for high dimensions and low distortions,
an entropy-constrained companding lattice vector quantizer
with an optimal compressor function can arbitrarily approach
the rate-distortion performance limit.

B. Noisy Source Quantization

Let be a -dimensional random vector, called theclean
sourceand let be a -dimensional random vector obtained
by passing through a noisy channel. The encoder has access
only to the noisy source , but the quantized signal
has to approximate the clean source so that the distortion is
measured by
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where is a given distortion measure, called theoriginal
distortion measure. This problem can be reformulated by
introducing the modified distortion measuregiven by the
conditional expectation

Then

and the noisy source problem is reduced to an ordinary quan-
tization problem relative to the modified distortion measure

(which, however, depends on the joint distribution of
and ). In general, the modified distortion measureis not

a difference distortion measure and is not minimized
in at . Moreover, in all
nontrivial cases. If has a unique minimum

, then can be viewed as the optimal estimator
(in the distortion sense) of given .

By a classical result [15] the ordinary rate-distortion func-
tion of relative to the modified distortion measure

is equal to the operational rate-distortion function for the
noisy source quantization problem relative to the original
distortion measure . Let us assume that satisfies
the regularity conditions a)–d ) and consider the companding
quantizer scheme where the input to the compressor is .
This companding scheme can be visualized as

entropy
coding

(28)

If is positive-definite for all we have the following
result for companding quantization of noisy sources.

Theorem 5: Suppose the density of vanishes outside
a bounded set and is finite. Assume the modified
distortion measure satisfies conditions a)–d ) and that
is positive-definite for all . If there exists a compressor
such that , then the low-distortion
asymptotic behavior of the noisy source companding quantizer
is given by

Proof: Let . Then, by condition b), has a
density which is zero outside a bounded set. Define the new
distortion measure by

Then with equality if and only if and it
is easy to check that satisfies all of the conditions of
Theorem 4. Note that for all we have

(29)

where . Also, the second-derivative ma-
trix associated with is given by .
Therefore, by (29) the companding scheme is optimal with

respect to the distortion measure, and (29) and Theorem 4
imply

(30)

where is the rate-distortion function of relative to .
Since and is invertible, (29) also implies that
for all

Substitution into (30) competes the proof.

Note that the optimal compander exists if the original
distortion measure is additive, i.e., ,
where the are appropriate scalar distortion measures, and
if each is conditionally independent of

given . In this case, will be in the same
form with , and the
existence of an optimal compander follows by the Example
after Theorem 2.

A discussion on when the modified distortion function
satisfies the regularity conditions is given in [12]. An example
of a family of original non-difference distortion measures is
given which, if , where and are independent
and Gaussian, induce modified distortion measures that satisfy
our conditions. In general, the smoothness and integrability
conditions are satisfied for “nice” original distortion measures
and for “nice” noisy channels such as an additive noise channel
where the noise density is sufficiently restricted. In fact, the
condition that the sensitivity matrix of be positive-definite
for (almost) all is less restrictive than the same condition
for the original distortion measure. This follows because
(assuming we can exchange the order of differentiation and
integration) we have , where

is the sensitivity matrix of . Then, for any , we have
. Thus for to be

positive-definite it suffices that be positive-definite on
a set of nonzero probability.

As pointed out in [12], the primary restriction is that
should be invertible. In this respect we note that an alternative
condition is that the sensitivity matrix depends ononly
through the optimal estimator , i.e., for
some positive-definite . Then the asymptotic expansion of

depends on only through and Theorem 5 holds.
In [10, Theorem 2] it is proved that the modified distortion
measure obtained from noisy source quantization with the
Itakura–Saito distortion satisfies this condition. In this case

represents the parameters of the autoregressive model of
optimally estimated from .
The asymptotic expression of Theorem 3 for the rate-

distortion function also holds when is only “piecewise-
invertible,” i.e., there are a finite number of open sets

such that is one-to-one on each and the
complement of the union of these sets has zero Lebesgue
measure. The companding scheme of (28) can also be
extended to this case. Let iff , and let

(for ) be valid compressor functions. The
companding quantizer is then defined as follows. If ,
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the compressor function is used to obtain the quantizer
, where the lattice scaling is adjusted so that

(32)

subject to the constraint that , where
. Since the value of is needed for

decoding (i.e., for choosing the expander), the overall rate
of the scheme is

Let denote the rate-distortion function of the condi-
tional distribution of given . It is not hard to
see that the compressors are optimal if for some ,

for all . Then Theorem 5 shows
that for close to , we have

Thus as

(32)

From Theorem 3 (applied to each separately) we
obtain

By Jensen’s inequality, is asymptotically minimized
if for all . Thus the asymptotically
optimal choice in (31) is . Since

it follows from (32) that the asymptotic rate of the scheme
is given by

In general, if is not invertible, the companding scheme
may not be asymptotically optimal in the rate-distortion sense.
For example, if consists of the first sam-
ples of an independent and identically distributed (i.i.d.) source
and is a single-letter distortion measure, then

is the same positive constant for all and thus the
companding scheme isnot asymptoticallyoptimal, contrary to
the case of an invertible .

V. PROOFS

Proof of Proposition 2: The entropy of
is equal to the entropy of the lattice quantizer

output since is invertible. It was proved in
[14] using a result of Csiszár [33] that if a random vector
is lattice-quantized by the scaled lattice quantizer , and

has a density and finite differential entropy , then the
quantizer’s entropy is given asymptotically by

provided is finite for some . Thus by
setting and using the identity

valid for all one-to-one and continuously differentiable, the
proposition is proved.

Proof of Proposition 1: For any mapping and
for any set , let denote the image of under

, i.e., . If is linear, we will use
the notation . Specifically, if is a real number,
then we write . Also, for ,
denotes the set .

The distortion of is given by

where is the source density and is an enumeration
of the lattice points and their corresponding Voronoi cells such
that and is the basic cell of . Note that only finitely
many of the terms in the sum above are nonzero sinceis
zero outside a compact set .

First we show that the asymptotics of the distortion are
unchanged if is replaced by its second-order Taylor
polynomial

Indeed, since the remainder term is by (5), we
have for all

(33)

where denotes the
diameter for any . But

where denotes the norm of the matrix , defined
by

Let denote the lattice quantizer cell in which
falls. Since is a compact set ( is the support of ),
it follows by the continuity of that there exists a constant

such that if is small enough, then for all we
have . Thus

(34)
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for a constant and for all small enough. Thus by (33) we
obtain

(35)

as , so that it suffices to consider

Let be the image under of the lattice cell
in which falls. Define the piecewise-constant probability
density by

Then by change of variables

As , the cells of the scaled lattice shrink to
the point in such a way that

i) the diameter of tends to zero;
ii) there is a constant such that for the smallest hypercube

which has edges parallel to the coordinate axes
and that is centered at and contains , we
have , for all small enough.

Thus by the differentiation theorem of Lebesgue integrals (see,
e.g., [34, Theorem 7.16]), we have

for all except possibly on a set of Lebesgue measure zero.
On the other hand,

as

for all , by the continuity of . This gives

(36)

and, therefore,

almost everywhere. Then by Scheffe’s theorem (see, e.g.,
Billingsley [35])

(37)

Define the normalized local distortion by

If is the positive-definite square root of , by (34)

we obtain

if is small enough. Since the matrix norm is
bounded in by the continuity of , so is . It
follows that is bounded in . Thus (37) gives

(38)

if the limit on the right-hand side exists. Since is
constant over each , we have

(39)

where is defined by

Suppose we can prove that

(40)

for all . Since is bounded on the support of, so
is , and, therefore, (38) and (39); and the dominated
convergence theorem implies

This and (35) proves the theorem.
The remainder of the proof is devoted to proving (40). Let

us introduce the notation . We have to find
the limit as of

Define
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To prove (40) it suffices to show that for all

(41)

and that

(42)

To prove (41), let us simplify the notation by setting
, and .

Then

where and are random vectors which are uniformly
distributed over and , respectively. It is easy to
see that

where is the covariance matrix of . But the
basic cell is white, so that for some , and,
therefore,

Clearly,

so we conclude that

which proves (41).
In the last step of the proof we show (42). Let

, so that , and rewrite by
a change of variables as

where

since . By (36) we have

(43)

so that to obtain (42) we have to prove

In fact, since there exists a bounded set which contains
for all small enough, it suffices to prove that

(44)

where denotes symmetric difference of sets:
. The proof of (44) is given in the Appendix.

Thus (42) holds and the proof is complete.

APPENDIX

Proof of the Optimality of (18):For all componentwise sca-
lar compressors, we have

(45)

(46)

where we have used Jensen’s inequality in (45) and (46). We
obtain

where equality holds if and only if

for some . This condition is equivalent to (18).

Proof that in (44):
We can assume without loss of generality thatis an open set
since is a convex polytope so that replacing it by its interior
will not change the value of the integrals. Then
is also open. For any we have
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as , since

Thus

as

implying (since is open) that

(47)

if is small enough. Let

If is the indicator function of , then (47) implies
that for all . Thus

by bounded convergence. Therefore,

as

since is continuous and . Since we know
by (43) that

we obtain

Thus

implying

as was to be shown.
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