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Push-Sum on Random Graphs: Almost Sure Convergence
and Convergence Rate

Pouya Rezaienia , Bahman Gharesifard , Tamás Linder , and Behrouz Touri

Abstract—In this paper, we study the problem of achieving aver-
age consensus over a random time-varying sequence of directed
graphs by extending the class of so-called push-sum algorithms to
such random scenarios. Provided that an ergodicity notion, which
we term the directed infinite flow property, holds and the auxiliary
states of agents are uniformly bounded away from zero infinitely
often, we prove the almost sure convergence of the evolutions of
this class of algorithms to the average of initial states. Moreover,
for a random sequence of graphs generated using a so-called time-
varying B-irreducible probability matrix, we establish convergence
rates for the proposed push-sum algorithm.

Index Terms—Distributed optimization, optimization algorithms,
random networks.

I. INTRODUCTION

Many distributed algorithms, executed with limited information over
a network of agents, rely on estimating the average value of the initial
state of the individual agents. These include consensus problems [2],
distributed optimization protocols [3]–[13], distributed regret mini-
mization algorithms in machine learning [14], and dynamics for fusion
of information in sensor networks [15]. There is a large body of work
devoted to the average consensus problem in directed time-varying
communication settings, starting with the pioneering work [16], where
the gossip-based push-sum algorithm is first introduced. The key differ-
entiating factor of the push-sum algorithm from consensus dynamics is
that it takes advantage of a paralleled scalar-valued agreement dynam-
ics, initiated uniformly across the agents, that tracks the imbalances of
the network and adjusts for them when estimating the consensus value.
It is worth pointing out that the traditional average consensus protocols
do not necessarily achieve the exact average when the communication
network is directed and time varying [16].

In addition to the earlier work [16], several recent papers have studied
the problem of average consensus, see for example [17], where other
classes of algorithms based on weight adaptation are considered, ensur-
ing convergence to the average on fixed directed graphs. The study of
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convergence properties of push-sum (referred to as weighted gossip, as
a generalization of pairwise gossip [18]) algorithms on time-varying de-
terministic sequences of directed graphs, to the best of our knowledge,
was initiated in [19] and extended in [13], where push-sum protocols
are intricately utilized to prove the convergence of a class of distributed
optimization protocols on a sequence of time-varying directed graphs.
The key assumption in [13] is the B-strongly-connectedness of the
sequence, which means that in any window of size B the union of
the underlying directed graphs over time is strongly connected. As we
demonstrate, a by-product of our work in deterministic settings is the
generalization of the sequences on which the convergence of the push-
sum algorithms is valid given the infinite flow property; in this sense,
this extension mimics the properties required for the convergence of
consensus dynamics, along the lines of [20] and [21].

In large-scale networks links may fail at any time at random, and
therefore, modeling these networks as random graphs is necessary to
improve the robustness and accuracy of the model. This paper is con-
cerned with the problem of average consensus for scenarios where
communication between nodes is directed, time varying and possibly
random. The convergence properties of consensus dynamics on ran-
dom sequences of directed graphs are by this time well established, see
for example [20], [22], [23]. Average consensus on random graphs has
also been studied in [19], under the assumption that the corresponding
random sequence of stochastic matrices is stationary and ergodic with
positive diagonals and irreducible expectation. One of our main objec-
tives in this paper is to extend these results to more general sequences
of random stochastic matrices, in particular, beyond stationary. More
importantly, we establish convergence rates for the push-sum algorithm
on random sequences of directed graphs.

The remainder of this paper is organized as follows. Section II con-
tains mathematical preliminaries. In Section III, we give a formal de-
scription of our consensus problem. In Section IV, we describe the
push-sum algorithm. Section V studies the ergodicity of row-stochastic
matrices, and Section VI contains our main convergence results. In
Section VII, we derive convergence rates for the push-sum algorithm
for a class of random column-stochastic matrices. Finally, we gather
our conclusions and ideas for future directions in Section VIII.

II. MATHEMATICAL PRELIMINARIES

We start with introducing some notational conventions. Let R and
Z denote the set of real and integer numbers, respectively, and let R≥0

and Z≥0 denote the set of nonnegative real numbers and integers, re-
spectively. For a set A, we write S ⊂ A if S is a proper subset of A,
and we call the empty set and A trivial subsets of A. The complement
of S is denoted by S̄. Let |S| denote the cardinality of a finite set S.
We view all vectors in Rn as column vectors, where n ∈ Z≥0 . We
denote by ‖ · ‖, ‖ · ‖1 , and ‖ · ‖∞, the standard Euclidean norm, the
1-norm, and the infinity norm on Rn , respectively. The ith unit vector
in Rn , whose ith component is 1 and all other components are 0, is
denoted by ei . The notation A′ and v′ will refer to the transpose of
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the matrix A and the vector v, respectively. We will use the short-hand
notation 1n = (1, . . . , 1)′ and 0n = (0, . . . , 0)′ ∈ Rn . A vector v is
stochastic if its elements are nonnegative real numbers that sum to 1.
We use Rn×n

≥0 to denote the set of n × n nonnegative real-valued matri-
ces. A matrix A ∈ Rn×n

≥0 is row stochastic (column stochastic) if each
of its rows (columns) sums to 1. For a given A ∈ Rn×n

≥0 and any non-
trivial S ⊂ [n] = {1, , . . . , n}, we let AS S̄ =

∑
i∈S,j∈S̄ Aij . Finally,

a positive matrix is a real matrix with positive entries.

A. Graph Theory

A (weighted) directed graph G = (V, E , A) consists of a node set
V = {v1 , v2 , . . . , vn }, an edge set E ⊆ V × V , and a weighted adja-
cency matrix A ∈ Rn×n

≥0 , with Aji > 0 if and only if (vi , vj ) ∈ E , in
which case we say that vi is connected to vj . Similarly, given a ma-
trix A ∈ Rn×n

≥0 , one can associate to A a directed graph G = (V, E),
where (vi , vj ) ∈ E if and only if Aji > 0, and hence, A is the cor-
responding adjacency matrix for G. The in-neighbors and the out-
neighbors of vi are the set of nodes N in

i = {j ∈ [n] : Aij > 0} and
N out

i = {j ∈ [n] : Aji > 0}, respectively. The out-degree of vi is
dout

i = |N out
i |. A path is a sequence of nodes connected by edges. A

directed graph is strongly connected if there is a path between any pair
of nodes. A directed graph is complete if every pair of distinct vertices
is connected by an edge. If the directed graph G = (V, E , A) is strongly
connected, we say that A is irreducible.

B. Sequences of Random Stochastic Matrices

Let S +
n be the set of n × n column-stochastic matrices that have

positive diagonal entries, and let FS +
n

denote the Borel σ-algebra

on S +
n . Given a probability space (Ω,B, μ), a measurable function

W : (Ω,B, μ) → (S +
n ,FS +

n
) is called a random column-stochastic

matrix, and a sequence {W (t)} of such measurable functions on
(Ω,B, μ) is called a random column-stochastic matrix sequence;
throughout, we assume that t ∈ Z≥0 . Note that for any ω ∈ Ω, one
can associate a sequence of directed graphs {G(t)(ω)} to {W (t)(ω)},
where (vi , vj ) ∈ E(t)(ω) if and only if Wji (t)(ω) > 0. This in turn
defines a sequence of random directed graphs on V = {v1 , . . . , vn },
which we denote by {G(t)}.

III. PROBLEM STATEMENT

Consider a network of nodes V = {v1 , v2 , . . . , vn }, where node
vi ∈ V has an initial state (or opinion) xi (0) ∈ R; the assumption that
this initial state is a scalar is without loss of generality, and our treat-
ment can easily be extended to the vector case. The objective of each
node is to achieve average consensus; that is to compute the average
x̄ = 1

n

∑n
i=1 xi (0) with the constraint that only limited exchange of

information between nodes is permitted. The communication layer be-
tween nodes at each time t ≥ 0 is specified by a sequence of random
directed graphs {G(t)}, where G(t) = (V, E(t), W (t)). Specifically,
at each time t, node vi updates its value based on the values of its
in-neighbors vj ∈ N in

i (t). One standing assumption throughout this
paper is that each node knows its out-degree at every time t; this as-
sumption is indeed necessary, as shown in [24]. Our main objective is
to show that the class of so-called push-sum algorithms can be used
to achieve average consensus at every node, under the assumption that
the communication network is random. This key point distinguishes
our work from the existing results in the literature [16], [13], [17].
Another key objective that we pursue in this paper is to obtain rates of
convergence for such algorithms. We start our treatment with reviewing
the push-sum algorithm.

IV. RANDOM PUSH-SUM

Consider a network of nodes V = {v1 , v2 , . . . , vn }, where node
vi ∈ V has an initial state xi (0) ∈ R. The push-sum algorithm, pro-
posed originally in [16], is defined as follows. Each node vi maintains
and updates, at each time t ≥ 0, two state variables xi (t) and yi (t).
The first state variable is initialized to xi (0) and the second one is
initialized to yi (0) = 1, for all i ∈ [n]. At time t ≥ 0, node vi sends
xi (t)
dout

i
(t) and y i (t)

dout
i

(t) to its out-neighbors in the random directed graph

G(t) = (V, E(t), W (t)), which we assume to contain self-loops at each
node for all t ≥ 0. At time (t + 1), node vi updates its state variables
according to

xi (t + 1) =
∑

j∈N in
i

(t)

xj (t)
dout

j (t)

yi (t + 1) =
∑

j∈N in
i

(t)

yj (t)
dout

j (t)
. (1)

It is useful to define another auxiliary variable zi (t + 1) = xi (t+1)
y i (t+1) ; as

we will show later, zi (t + 1) is the estimate by node vi of the average
x̄. One can rewrite this algorithm in a vector form; let the column-
stochastic matrix W (t) be a function of E(t) with entries

Wij (t) =

{
1

dout
j

(t) , if j ∈ N in
i (t)

0, otherwise.
(2)

Using these weighted adjacency matrices, for every t ≥ 0, we can
rewrite the dynamics (1) as

x(t + 1) = W (t)x(t)

y(t + 1) = W (t)y(t) (3)

where x(t), y(t) ∈ Rn with entries xi (t) and yi (t), respectively, with
i ∈ {1, . . . , n}.

V. ERGODICITY

In this section, we establish some important auxiliary results regard-
ing the convergence of products of matrices, which satisfy the so-called
directed infinite flow property (c.f., Definition 3). We study the prod-
ucts of a class of matrices in a deterministic setting, which we then use
to study the push-sum algorithm in the following section. We start by
some definitions.

Definition 1 (Ergodicity [25], [20]): Let {A(t)} be a sequence of
row-stochastic matrices, and for t ≥ s ≥ 0, let A(t : s) denote the
product

A(t : s) = A(t)A(t − 1) · · ·A(s) (4)

where A(s : s) = A(s). The sequence {A(t)} is said to be
weakly ergodic, if for all i, j, l ∈ [n] and any s ≥ 0, limt→∞
(Ail (t : s) − Ajl (t : s)) = 0. The sequence is said to be strongly er-
godic if limt→∞ A(t : s) = 1n v′(s) for any s ≥ 0, where v(s) ∈ Rn

is a stochastic vector.
It can be shown that weak ergodicity and strong ergodicity are equiv-

alent [25, Th. 1]. We will simply call such a sequence of row-stochastic
matrices ergodic.

We first establish a sufficient condition for ergodicity of a sequence
of row-stochastic matrices, Proposition 2, which we subsequently use
in our convergence result for the push-sum algorithm. For this reason,
we consider the following dynamical system:

x(t + 1) = A(t)x(t), for all t ≥ 0. (5)
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Let us start by two key definitions.
Definition 2 (Strong Aperiodicity [20]): We say that a sequence of

matrices {A(t)} is strongly aperiodic if there exists γ > 0 such that
Aii (t) ≥ γ, for all t ≥ 0 and i ∈ [n].

Motivated by the infinite flow property [20, Definition 3.2.], we
provide the following definition.

Definition 3 (Directed infinite flow property): We say that a se-
quence of matrices {A(t)} has the directed infinite flow property (DIFP)
if for any nontrivial S ⊂ [n],

∑∞
t=0 AS S̄ (t) = ∞.

Consider now a sequence of matrices {A(t)} that is strongly aperi-
odic and has the DIFP. Let k0 = 0, and for any q ≥ 1, define

kq = arg min
t ′> kq −1

⎛

⎝min
S⊂[n ]

t ′−1∑

t= k q −1

AS S̄ (t) > 0

⎞

⎠ . (6)

Note that kq is the minimal time instance after kq−1 , such that there
is nonzero information flow between any nontrivial subset of V and
its complement; consequently, the directed graph associated with the
product A(kq − 1 : kq−1 ) is strongly connected.

Proposition 1: If a sequence of matrices {A(t)} has the DIFP, kq

is finite for all q ≥ 0.
Proof: Suppose that kq is not finite for some q ≥ 0. Then, using (6),

there exists a nontrivial subset S ⊂ [n] such that
∑∞

t= k q −1
AS S̄ (t) = 0.

This implies that
∑∞

t=0 AS S̄ (t) < ∞, which contradicts the assump-
tion that {A(t)} has the DIFP. �

To establish convergence results for the products of row-stochastic
matrices satisfying Definition 3, we argue that in each time window
where the underlying directed graph becomes strongly connected for
n times, i.e., after kqn − k(q−1)n time steps for some q, significant
mixing will occur. To formalize this statement, let �0 = 0 and

�q = kqn − k(q−1)n (7)

for q ≥ 1. For t > s ≥ 0, we also define

Qt ,s = {q : s ≤ k(q−1)n , kqn ≤ t}.

We are now ready to state our first result.
Proposition 2: Consider the dynamics (5), where the sequence

{A(t)} is such that A′(t) satisfies (2). Suppose, additionally, that
{A(t)} is strongly aperiodic and has the DIFP. Then, the following
conditions exist:

i) there is a vector φ(s) ∈ Rn such that, for all i, j ∈ [n] and t ≥ s

∣
∣
∣
∣[A(t : s)]ij − φj (s)

∣
∣
∣
∣≤ Λt ,s

where Λt ,s =
∏

q∈Qt , s
λq and λq =

(
1 − 1

n � q

)
∈ (0, 1);

ii) if, for the sequence {�q } associated with {A(t)}, we have

∞∑

q=1

1
n�q

= ∞ (8)

then the sequence {A(t)} is ergodic.
Proof: We start by proving the first statement. By definition of kq ,

we know that for all q ≥ 0, A(kq+1 − 1 : kq ) is irreducible. Since each
A(t) is strongly aperiodic, by Lemma A.1, the matrix

A(kn (q+1) − 1 : kn q ) = A(kn (q+1) − 1 : kn (q+1)−1 )

× · · · × A(kn q+2 − 1 : kn q+1 ) × A(kn q+1 − 1 : kn q )

which is the product of n irreducible matrices, is positive for all q ≥ 0.
Hence, by [6, Lemma 1], for all i, j ∈ [n], we have

[
A(kn (q+1) − 1 : kn q )

]
ij

≥ 1
nkn ( q + 1 ) −kn q

=
1

nlq + 1
.

Now, since A(t : s) = A(t : s)In and for all j ∈ [n], maxi∈[n ] [In ]ij −
mini∈[n ] [In ]ij = 1, using [26, Lemma 3], we obtain

max
i∈[n ]

[A(t : s)]ij − min
i∈[n ]

[A(t : s)]ij ≤ Λt ,s . (9)

Note that if we let φj (s) = mini∈[n ] Aij (t : s) for all j ∈ [n], we have
∣
∣
∣
∣[A(t : s)]ij − φj (s)

∣
∣
∣
∣≤ max

i∈[n ]
[A(t : s)]ij − min

i∈[n ]
[A(t : s)]ij . (10)

Using (9) and (10), we obtain the desired result.
We next prove part (ii); since λq ∈ (0, 1) for all q ≥ 1, we have that

ln (λq ) ≤ −1
n � q

, where we have used the fact that ln(ζ) ≤ ζ − 1 for all
ζ > 0. Summing over all q ≥ 1 implies

∞∑

q=1

ln (λq ) ≤ −
∞∑

q=1

1
n�q

. (11)

On the other hand, we have

lim
t→∞

Λt ,0 = lim
t→∞

∏

q∈Qt , 0

λq = lim
t→∞

exp

⎛

⎝
∑

q∈Qt , 0

ln (λq )

⎞

⎠ .

The definition of the sets Qt ,s implies that we can write the right-hand
side as exp

(∑∞
q=1 ln (λq )

)
, which gives

lim
t→∞

Λt ,0 = exp

( ∞∑

q=1

ln (λq )

)

= 0

where the last equality follows from (11) and the assumption∑∞
q=0

1
n � q

= ∞. Using the fact that limt→∞ Λt ,0 = 0, we have that
limt→∞ Λt ,s = 0, for any s > 0. Hence, by Proposition 2, part (i), we
conclude that {A(t)} is ergodic. �

Following similar steps as in Proposition 2, we obtain the following
result for sequences of column-stochastic matrices of the form (2).

Proposition 3: Consider the dynamics (5) and assume that se-
quence of matrices {A(t)} is strongly aperiodic and has the DIFP,
where the A(t) are weighted adjacency matrices in the form of (2).
Then, the following conditions exist:

i) there is a vector φ(t) ∈ Rn such that, for all i, j ∈ [n] and t ≥ s
∣
∣
∣
∣[A(t : s)]ij − φi (t)

∣
∣
∣
∣≤ Λt ,s ;

ii) if the sequence {�q } associated with {A(t)} satisfies (8), then for
all j ∈ [n], limt→∞ |[A(t : s)]ij − φi (t)| = 0.

It is worth pointing out that in Proposition 2, since the A(t) are row
stochastic, x(t) approaches a vector with identical entries. However, in
Proposition 3 the x(t) does not necessarily approach a fixed vector.

VI. CONVERGENCE OF PUSH-SUM

With all the pieces in place, we are now ready to study the be-
havior of the push-sum algorithm in a random setting (Th. 1 and
Proposition 4).

Theorem 1: Consider the push-sum algorithm (3) and suppose that
the sequence {W (t)} has the DIFP, almost surely. Then, we have

|zi (t + 1) − x̄| ≤ 2‖x(0)‖1

yi (t + 1)
Λt ,0 (12)
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almost surely, where Λt ,0 =
∏

q∈Qt , 0
λq and λq =

(
1 − 1

n � q

)
.

Proof: Define

D(t : s) � W (t : s) − φ(t)1′
n

where φ(t) is a (random) vector from part (i) of Proposition 3. In
addition, under the push-sum algorithm we have that

x(t + 1) = W (t : 0)x(0)

y(t + 1) = W (t : 0)y(0)

for all t ≥ 0. Following similar steps as in [13, proof of Lemma 1], we
obtain

|zi (t + 1) − x̄| ≤ 2‖x(0)‖1

yi (t + 1)

(

max
j

|[D(t : 0)]ij |
)

.

Using the upper bound in part (i) of Proposition 3, we obtain the desired
result. �

Proposition 4: Consider the push-sum algorithm (3) and suppose
that the sequence of random column-stochastic matrices {W (t)} has
the DIFP, almost surely. Moreover, suppose that the sequence {�q }
associated with {W (t)} satisfies (8), almost surely. If there exists
δ > 0, such that for any t ≥ 0, there is t′ ≥ t such that yi (t′) ≥ δ for
all i ∈ [n], then

lim
t→∞

|zi (t + 1) − x̄| = 0, almost surely.

Remark 1: In the following section, we exhibit a class of random
matrix sequences {W (t)} that satisfy the conditions of Proposition 4
and, thus, admit average consensus almost surely.

Proof: Proof of this proposition is similar to the proof of [19,
Th. 4.1], where the sequence {W (t)} is assumed to be stationary;
however, since we do not assume stationarity, we provide a proof. By
Proposition 3 part (ii), for any ε > 0 there is a time tε such that for all
t ≥ tε and i ∈ [n]

n∑

j=1

∣
∣
∣
∣[W (t : 0)]ij − 1

n

n∑

k=1

[W (t : 0)]ik

∣
∣
∣
∣ < δε.

By assumption, there exists t′ε ≥ tε such that y(t′ε ) ≥ δ, which
implies that f (t′ε ) < ε, where f (t) is defined as in Lemma A.2.
Since by Lemma A.2, f (t) is nonincreasing, f (t) < ε for all t ≥
t′ε , meaning that f (t) converges to zero as t → ∞ and, hence,
limt→∞ |zi (t + 1) − x̄| = 0, almost surely. �

It is worth pointing out that for B-strongly-connected graphs [13],
kq ≤ Bq, lq ≤ nB, and δ = 1

n n B .

VII. B-IRREDUCIBLE SEQUENCES

In this section, we characterize a class of random column-stochastic
matrices that admits average consensus and we provide a rate of con-
vergence of the push-sum algorithm for this class. This class of random
matrices, includes many interesting sequences including the stationary
case considered in [19].

In the following discussion, we assume that the push-sum dynamics
is generated by a column-stochastic matrix sequence {W (t)} where

Wij (t) =
Rij (t)∑n

i=1 Rij (t)
(13)

for all i, j ∈ [n], where Rij (t) is 1 with probability Pij (t), and is 0
with probability 1 − Pij (t) such that {Rij (t) : i, j ∈ [n], t ≥ 0} are
independent random variables. In other words, there is a random edge
between node vj and vi at time t with probability Pij (t). Note that

{W (t)} is a sequence of independent random column-stochastic ma-
trices.

Furthermore, for the probability matrix sequence {P (t)}t≥0 , we
assume that the following holds.

Assumption 1: {P (t)}t≥0 is a sequence of n × n matrices with
Pij (t) ∈ [0, 1]. Additionally, we assume that Pii (t) = 1, for all vi ∈
V . Also, for some constant ε > 0, we assume that Pij (t) ≥ ε for all
i, j ∈ [n] and all t ≥ 0 such that Pij (t) �= 0. Finally, we assume that
the sequence {P (t)}t≥0 is B-irreducible, i.e., for some integer B > 0

(t+1)B −1∑

t ′= tB

P (t)

is irreducible for all t ≥ 0.
Assumption 1 is similar to B-strongly-connectedness of graphs [13],

except that the edges between different nodes exist with a Bernoulli-
like probability, chosen from the edges in an underlying B-strongly-
connected (B-irreducible) sequence of graphs (probability matrices).
Also, similar to B-strongly-connectedness in deterministic settings,
this assumption is likely not necessary in general. The class of ran-
dom matrices allowed by Assumption 1 includes many interesting
sequences, for example, the stationary case considered in [19]. This
assumption plays a key role in some of our upcoming proofs.

We next state the main result of this section.
Theorem 2: Consider the push-sum algorithm (3) and let {W (t)}

be a sequence of random column-stochastic matrices defined by (13),
where {P (t)} satisfies Assumption 1. Let p = ε2(n−1) . Then, for any
t ≥ B + 2n B

p
, where n ≥ 2

E [ln (|zi (t + 1) − x̄|)] ≤ c0 − c1 t

where

c0 = ln (2‖x(0)‖1 ) + ln(n)
(

nB

p
+ B

)

+ ln(15)

c1 = − p

2nB
ln
(

1 − 1

n
4 n B

p

)

.

Note that the abovementioned result is similar to the so-called “dif-
fusion speed” as defined in [16], which is an upper bound on the time
after which zi (t) is at an ε > 0 distance to x̄ with probability arbitrary
close to one, for all i.

Before giving the proof, let us illustrate the convergence of the push-
sum algorithm on a sequence of random graphs by an example.

Example 1: Consider a network of nodes V = {v1 , . . . , v5}, each
with a corresponding state initialized uniformly at random to a real
number in [0,1]. For any t > 0, W (t) is generated according to (13),
with P (t) = P , where

P = 0.01(J5 − I5 ) + I5 .

Here, J5 and I5 are a 5 × 5 matrix of all ones and the iden-
tity matrix, respectively. The nodes update their values using the
push-sum protocol (3). Since P is irreducible, as we will prove in
Corollary 1, {W (t)} admits average consensus almost surely. The val-
ues of E [|zi (t + 1) − x̄|] are displayed in Fig. 1 for 1 ≤ t ≤ T = 500
and all vi ∈ V . Note that in this example B = 1.

The proof of Theorem 2 relies on the following results.
Lemma 1: Let {W (t)} be a sequence of random column-stochastic

matrices defined by (13), where {P (t)} satisfies Assumption 1. Let
{kq } and {�q } be the sequences defined, respectively, in (6) and (7)
along each sample path. Then, the following conditions exist:

i) the sequence {W (t)} has the DIFP almost surely;
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Fig. 1. Values of E [|zi (t + 1) − x̄|] in Example 1 are displayed for
all agents (nodes) vi ∈ V and 0 ≤ t ≤ 500. The states of the agents are
randomly initialized and updated according to the push-sum protocol (3).

ii) for the sequence {�q }, we have

∞∑

q=0

1
n�q

= ∞, almost surely.

Proof: We start by proving (i). For any t ≥ 0, let us define the
sequence of events

At =

⎧
⎨

⎩

(t+1)B −1∑

t ′= tB

W (t′) is irreducible

⎫
⎬

⎭
. (14)

Note that for all t ≥ 0, the events {At}t≥0 are independent and that
At implies

∑(t+1)B −1
t ′= tB WS S̄ (t′) > 0, for any nontrivial S ⊂ [n]. Since

mini ,j∈[n ]:Pi j (t)> 0 Pij (t) > ε > 0, for all t ≥ 0, we have

P (At ) ≥ ε2(n−1) .

This follows from [27, Corollary 5.3.6] and the fact that {P (t)} is
B-irreducible and, hence, there is at least a subset of size 2(n − 1) of
the edges (vj , vi ) that form a strongly connected graph and Pij (t′) ≥ ε
for some t′ ∈ [tB, (t + 1)B − 1].

Since the events At are independent, by the second Borel–Cantelli
lemma [28, Th. 2.3.6],

∑(t+1)B −1
t ′= tB WS S̄ (t′) > 0 infinitely often, al-

most surely. Moreover, since every positive entry of W (t) is bounded
below by 1

n
, for any nontrivial S ⊂ [n],

∑∞
t=0 WS S̄ (t) = ∞, almost

surely, implying that {W (t)} has the DIFP, almost surely. This also
implies that kq and �q are finite for all q, almost surely. This completes
the proof of (i).

To prove (ii), let us define, for all t ≥ 0

Ct =
(t+1)n−1⋂

t ′= tn

At ′ (15)

where At is defined in (14). Since the At are independent,
P (Ct ) =

∏(t+1)n−1
t ′= tn P (At ′) ≥ ε2n (n−1) for all t ≥ 0. This implies that∑∞

t=0 P (Ct ) = ∞. Again, since the Ct are independent, by the Borel–
Cantelli lemma, Ct occurs infinitely often, almost surely. This implies
that �q ≤ nB infinitely often, almost surely. Hence,

∑∞
q=1

1
n � q

= ∞,
almost surely. �

Lemma 2: In the push-sum algorithm (3), let {W (t)} be a sequence
of random column-stochastic matrices corresponding to the sequence
{P (t)} satisfying Assumption 1. Then, for all t ≥ 0 there exists t′ ≥ t
such that for all i ∈ [n], yi (t′) ≥ 1

n n B .

Proof: Consider the event Ct defined in (15). At any time Ct

occurs, by Lemma A.1, the product W (tnB + nB − 1 : tnB) is
positive; moreover, by [6, Lemma 1], Wij (tnB + nB − 1 : tnB) ≥

1
n n B for all i, j ∈ [n]. Since W (t) is column-stochastic, we have
Wij (tnB + nB − 1 : 0) ≥ 1

n n B . By Lemma 1, Ct occurs infinitely
often, almost surely; therefore, for all t ≥ 0 there exists t′ ≥ t such
that for all i ∈ [n], yi (t′) ≥ 1

n n B . �
To summarize, Lemmas 1 and 2 show that the existence of a time win-

dow (with length B) where the underlying aggregate graph is strongly
connected with a large enough positive probability ( > ε2(n−1) ) allows
us to attain the DIFP and (8). In addition, Assumption 1 guarantees the
existence of δ in Proposition 4, as shown in Lemma 2. The preceding
two lemmas and Proposition 4 imply the following.

Corollary 1: Let {W (t)} be a sequence of random column-
stochastic matrices corresponding to the sequence {P (t)} satisfying
Assumption 1. Then, {W (t)} admits average consensus, almost surely.

The following two lemmas allow us to obtain the desired conver-
gence rate stated in Theorem 2.

Lemma 3: Let {W (t)} be a sequence of random column-
stochastic matrices corresponding to the sequence {P (t)} satisfying
Assumption 1. Let {�q } be the sequence defined in (7) along each
sample path. For all t ≥ B + 2n B

p
, we have

E [Λt ,0 ] ≤ exp
(

−β2
t

(
t

B
− 2

))

+ 2
(

1 − 1

n
4 n B

p

) p t
2 n B

where Λt ,0 =
∏

q∈Qt , 0
(1 − 1

n l q
), βt = p

2 − 2pB
t

, and p = ε2(n−1) .
Proof: Let χB (t) be the indicator of the event At , i.e.,

χB (t) =

{
1, if

∑(t+1)B −1
t ′= tB W (t′) is irreducible

0, otherwise.

By the preceding argument, we have P (χB (t) = 1) ≥ p > 0. Note
that the χB (t) are independent. We let HB (T ) =

∑T
t=0 χB (t) for all

T ≥ 0, and define

qt � max{q : kq ≤ t}.

By definition of HB (·) and qt , we have that

qt ≥ HB

(⌊
t

B

⌋

− 1
)

. (16)

Now, we have that

E [Λt ,0 ] = E

[

Λt ,0

∣
∣
∣
∣qt ≤ pt

2B

]

P

(

qt ≤ pt

2B

)

+ E

[

Λt ,0

∣
∣
∣
∣qt >

pt

2B

]

P

(

qt >
pt

2B

)

.

Since all terms on the right-hand side are less than or equal to 1, we
have

E [Λt ,0 ] ≤ P

(

qt ≤ pt

2B

)

+ E

[

Λt ,0

∣
∣
∣
∣qt >

pt

2B

]

.

Using (16), we have

E [Λt ,0 ] ≤ P

(

HB

(⌊
t

B

⌋

− 1
)

≤ pt

2B

)

+ E

[

Λt ,0

∣
∣
∣
∣qt >

pt

2B

]

.

Let us consider the second term on the right-hand side. When qt > pt
2B

,
we have |Qt ,0 | ≥

⌊
p t

2n B

⌋
. Using Lemma A.4 to maximize the second
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term on the right-hand side over the choices of �q , we obtain

E

[

Λt ,0

∣
∣
∣
∣qt >

pt

2B

]

≤
⎛

⎝1 − 1

n

t

� p t
2 n B 


⎞

⎠

� p t
2 n B 


≤ 2

⎛

⎝1 − 1

n

t

� p t
2 n B 


⎞

⎠

p t
2 n B

. (17)

To further simplify the abovementioned inequality, we show that
t

� p t
2 n B 
 ≤ 4n B

p
. To show this, we note that for all t ≥ 2n B

p
+ B,

we have p t
2n B

> 1 and, hence,
⌊

p t
2n B

⌋ ≥ 1. Now, assume that ξ =⌊
p t

2n B

⌋ ≥ 1. We have 2nBξ ≤ pt ≤ 2nB(ξ + 1). Therefore,

t
⌊

p t
2n B

⌋ ≤ 2nB

p

(
ξ + 1

ξ

)

≤ 4nB

p

where the last inequality follows from the fact that ξ ≥ 1.
Using this inequality in (17), we get

E

[

Λt ,0

∣
∣
∣
∣qt >

pt

2B

]

≤ 2
(

1 − 1

n
4 n B

p

) p t
2 n B

. (18)

On the other hand, since E[χB (t)] ≥ p for all t ≥ B, we have

P

(

H

(⌊
t

B

⌋

− 1
)

≤ pt

2B

)

= P

⎛

⎝
�t/B 
−1∑

t ′=0

χB (t′) − p

(⌊
t

B

⌋

− 1
)

≤ −αt

(⌊
t

B

⌋

− 1
)
⎞

⎠

≤ P

⎛

⎝
�t/B 
−1∑

t ′=0

(χB (t′) − E[χB (t′)]) ≤ −αt

(⌊
t

B

⌋

− 1
)
⎞

⎠

where

αt =
p
(⌊

t
B

⌋ − 1
) − p t

2B⌊
t
B

⌋ − 1
. (19)

When t ≥ B + 2n B
p

, αt > 0 and, hence, by Lemma A.3, we obtain

P

(

H

(⌊
t

B

⌋

− 1
)

≤ pt

2B

)

≤ exp
(

−α2
t

(⌊
t

B

⌋

− 1
))

≤ exp
(

−α2
t

(
t

B
− 2

))

. (20)

From (19), we have

αt >
p
(

t
B

− 2
) − p t

2B
t
B

=
p

2
− 2pB

t
.

If we let βt = p
2 − 2pB

t
, using (18) and (20), we conclude that

E [Λt ,0 ] ≤ exp
(

−β2
t

(
t

B
− 2

))

+ 2
(

1 − 1

n
4 n B

p

) p t
2 n B

finishing the proof. �
Lemma 4: In the push-sum algorithm (3) let {W (t)} be a sequence

of random column-stochastic matrices corresponding to the sequence
{P (t)} satisfying Assumption 1. We have, for all i ∈ [n] and t ≥ 0

E

[

ln
(

1
yi (t)

)]

≤ ln(n)
(

B
n

p
+ B

)

.

Proof: By [6, Lemma 1], for all t < B n
p

+ B and i ∈ [n]

[W (t : 0)]ii ≥
1

nB n
p +B

almost surely. This implies that

E

[

ln
(

1
yi (t)

)]

≤ ln(n)
(

B
n

p
+ B

)

for all t < B n
p

+ B and i ∈ [n]. If t ≥ B n
p

+ B, let t = aB + b, where
a, b ∈ Z≥0 and b < B. Define

τt =

{
min{T :

∑a−1
t=a−T χB (t) = n}, if

∑a−1
t=0 χB (t) ≥ n

a, otherwise.

When τt = a, Wij (t : 0) ≥ 1
n τ t B + B , for all i, j ∈ [n]. When τt �=

a, by Lemma A.1, W (aB − 1 : (a − τt )B) is a positive matrix and
consequently by [6, Lemma 1], Wij (t : (a − τt )B) ≥ 1

n τ t B + B for all
i, j ∈ [n]; in addition, since the W (t) are column stochastic, we have
Wij (t : 0) ≥ 1

n τ t B + B . Therefore, for all t ≥ 0 we have

ln
(

1
Wij (t : 0)

)

≤ ln(n)(τtB + B) for all i, j ∈ [n].

Consider a sequence of independent Bernoulli trials Yt , where in each
trial the probability of success is p. The number of trials until n suc-
cesses occur is a negative binomial random variable Z having param-
eters n and p. Since P (τt ≤ i) ≥ P (Z ≤ i) for all i ≥ n, we have
E[τt ] ≤ E[Z ]. Since E[Z ] = n

p
, we obtain E[τt ] ≤ n

p
, and hence the

result follows. �
We are now in a position to prove Theorem 2.
Proof of Theorem 2 In (12), since both sides are positive, we have

ln (|zi (t + 1) − x̄|) ≤ ln
(

2‖x(0)‖1

yi (t + 1)
Λt ,0

)

= ln (2‖x(0)‖1 ) + ln
(

1
yi (t + 1)

)

+ ln (Λt ,0 ) .

By taking expectations and using Lemma 4, we obtain

E [ln (|zi (t + 1) − x̄|)] ≤ ln (2‖x(0)‖1 ) + ln(n)
(

nB

p
+ B

)

+ E [ln (Λt ,0 )]

≤ ln (2‖x(0)‖1 ) + ln(n)
(

nB

p
+ B

)

+ ln (E [Λt ,0 ]) (21)

where the last inequality follows from Jensen’s inequality. Now by
Lemma 3, we have

E [Λt ,0 ] ≤ exp
(

−β2
t

(
t

B
− 2

))

+ 2
(

1 − 1

n
4 n B

p

) p t
2 n B
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where βt = p
2 − 2pB

t
. Let us consider the first term on the right-hand

side; since βt ≤ 1
2 we have

exp
(

−β2
t

(
t

B
− 2

))

≤ exp
(

−β2
t

t

B
+

1
2

)

= exp
(

−p2 t

4B
+ 2p2 +

1
2
− 4p2B

t

)

≤ exp
(

−p2 t

4B
+

5
2

)

= 13
(
exp

(
−pn

2

)) p t
2 n B

.

Since n ≥ 2, exp(− pn
2 ) ≤ exp(−p). On the other hand, (1 −

1

n
4 n B

p
) ≥ (1 − 1

2
8
p

) for all n ≥ 2 and B ≥ 1. It can be

seen that for p ∈ [0, 1], exp(−p) ≤ (1 − 1

2
8
p

), and consequently

exp(− pn
2 ) ≤ (1 − 1

n
4 n B

p
). Hence,

E [Λt ,0 ] ≤ 15
(

1 − 1

n
4 n B

p

) p t
2 n B

. (22)

The result now follows using (21) and (22). �

VIII. CONCLUSION

We have studied the convergence properties of the push-sum algo-
rithm for average consensus on sequences of random directed graphs.
We have proved that this dynamics is convergent almost surely when
some mild connectivity assumptions are met and the auxiliary states
of agents are uniformly bounded away from zero infinitely often. We
have shown that the latter assumption holds for sequences of random
matrices constructed using a sequence of time-varying B-irreducible
probability matrices. We have also obtained convergence rates for
the proposed push-sum algorithm. Future work include extending
Assumption 1 to more general random settings, finding the so-called
diffusion speed, studying the implications in scenarios with link failure
and in distributed optimization on random time-varying graphs.

APPENDIX

Lemma A.1: For n ≥ 2, let {A(i)}n−1
i=1 be a sequence of weighted

adjacency matrices associated with the strongly connected directed
graphs {G(i)}n−1

i=1 on the node setV = {v1 , v2 , . . . , vn }, where G(i) =
(V, E(i), A(i)) and A(i) ∈ S +

n for all i ∈ [n − 1]. Then, the matrix
product A(n − 1 : 1) is positive.

Proof: Let G(k : 1) = (V, E(k : 1)) indicate the directed graph as-
sociated with the product A(k : 1), where k ∈ [n − 1]. Let N out

i (k : 1)
and dout

i (k : 1) indicate the set of out-neighbors and out-degree of node
i ∈ [n] in directed graph G(k : 1), respectively. Consider an arbitrary
but fixed node i ∈ [n]. Since A(1) ∈ S +

n and G(1) is strongly con-
nected, we have

dout
i (1) ≥ 2. (23)

Now, consider the directed graph G(k : 1) and assume that dout
i (k : 1)

≤ n − 1 for some k ∈ [n − 1]; we show that dout
i (k + 1 : 1)

> dout
i (k : 1). By [6, Lemma 1], we have N out

i (k : 1) ⊆ N out
i (k + 1 :

1). Moreover, since G(k + 1) is strongly connected and dout
i (k : 1) ≤

n − 1, there is l /∈ N out
i (k : 1) such that l ∈ N out

j (k + 1) for some
j ∈ N out

i (k : 1); otherwise, there is no path between i and l inG(k + 1),
contradicting the strong connectivity of G(k + 1). Hence, by [6,
Lemma 1] l ∈ N out

i (k + 1 : 1), implying that

dout
i (k + 1 : 1) > dout

i (k : 1).

This along with (23) imply that

dout
i (k : 1) ≥ k + 1

for all k ∈ [n − 1], which implies that dout
i (n − 1 : 1) = n. Since this

statement holds for any i ∈ [n], the matrix product A(n − 1 : 1) is
positive. �

Lemma A.2 (Lemma 4.3 [19]): Consider the push-sum algorithm (3).
Define

f (t) = max
i∈[n ]

∑n
j=1 |[W (t : 0)]ij − 1

n

∑n
k=1 [W (t : 0)]ik |

yi (t)
.

Then, f (t) is nonincreasing and

‖z(t) − x̄1n ‖∞ ≤ ‖x(0)‖∞f (t).

Lemma A.3 (Hoeffding’s inequality [29]): If X1 , X2 , . . . , Xn are
independent random variables and 0 ≤ Xi ≤ 1, for all i ∈ [n], then for
any α > 0, we have

P

(
n∑

i=1

(Xi − E[Xi ]) ≤ −αn

)

≤ exp
(−2α2n

)
.

The following is an application of Jensen’s inequality.
Lemma A.4: For n > 1 and for all l1 , l2 , . . . , lq ∈ Z≥0 , q > 0, we

have

q∏

i=1

(

1 − 1
nli

)

≤
(

1 − 1

n
t
q

)q

where t = l1 + l2 + · · · + lq .
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[19] F. Bénézit, V. Blondel, P. Thiran, J. Tsitsiklis, and M. Vetterli, “Weighted
gossip: Distributed averaging using non-doubly stochastic matrices,” in
Proc. IEEE Int. Symp. Inf. Theory Proc., 2010, pp. 1753–1757.

[20] B. Touri, Product of Random Stochastic Matrices and Distributed Aver-
aging. Berlin, Germany: Springer Science & Business Media, 2012.
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