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Abstract—We design a channel optimized vector quantizer
(COVQ) for symbol-by-symbol maximum a posteriori (MAP)
hard-decision demodulated channels. The main objective is to ex-
ploit the non-uniformity of the indices representing the quantized
source via the MAP decoder and iteratively optimize the overall
discrete channel (at the symbol level) jointly with the quantizer.
We consider memoryless Gaussian and Gauss-Markov sources
transmitted over a binary phase-shift keying modulated Rayleigh
fading channel. Our scheme has less encoding computational
and storage complexity (particularly for noisy channel condi-
tions) than both conventional and soft-decision COVQ systems,
which use hard-decision and soft-decision maximum likelihood
demodulation, respectively. Furthermore, it provides a notable
signal-to-distortion ratio gain over the former system, and in
some cases it matches or outperforms the latter one.

Index Terms—Joint source-channel coding, channel optimized
vector quantization, MAP decoding, encoding computational and
storage complexity, hard and soft-decision demodulation.

I. INTRODUCTION

JOINT source-channel coding (JSCC) has recently attracted
considerable attention as it aims to surmount the lim-

itations of classical tandem source-coding systems that are
based on Shannon’s separation theorem. Channel optimized
vector quantization (COVQ) is a JSCC technique in which an
analog source is quantized by taking into consideration the
characteristics of both the source and the channel. COVQ has
been thoroughly studied under different approaches (e.g., see
[1] - [6] and [8] - [10]).

COVQ designs usually employ a discrete memoryless chan-
nel (DMC) corresponding to a memoryless continuous-valued
channel used in conjunction with hard-decision demodulation.
However, in these designs, little attention has been paid to
optimize the discrete channel by exploiting the non-uniformity
of the source encoder indices arriving at the channel input. A
notable exception is [10] where non-iterative (one step) hard-
decision maximum a posteriori (MAP) decoding is considered.

In this work, we examine how to improve the performance
of COVQ systems for hard-decision demodulated channels
while decreasing the encoding computational and storage
complexity. This is beneficial for wireless uplink communica-
tion applications (including sensor networks) where the scant
resources of the transmitter need to be efficiently utilized.
The conventional COVQ [5] and the soft-decision demodu-
lation (SDD) COVQ [1], [2] and [6] (in which the channel
soft-decision information is used) are based on maximum
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likelihood (ML) decoding and have relatively low decoding
computational complexity (although SDD COVQ can have
considerably high storage requirements at the decoder). In this
work, we relax the constraint on decoding complexity since we
are interested in scenarios where, unlike the transmitter (e.g., a
low-powered wireless sensor node), the receiver (e.g., the base
station) has more than sufficient processing power. We will fo-
cus on binary phase shift keying (BPSK) modulated Rayleigh
fading channels, although the algorithm can also be applied
to other channels [3]. We iteratively optimize the model DMC
(having identical input and output alphabets) representing the
concatenation of the modulator, channel and hard-decision de-
modulator together with its correspondingly designed COVQ
encoder/decoder pair. This is achieved by using a symbol-by-
symbol MAP hard-decision detector instead of the standard
maximum likelihood (ML) detector, motivated by the fact
that the COVQ encoder indices arriving at the modulator are
non-uniformly distributed (hence MAP decoding outperforms
ML decoding as it minimizes the discrete channel’s symbol
error rate). We propose an iterative three-phase COVQ design
algorithm which is based on first designing a conventional
COVQ, then computing the input (quantizer index) distribution
for the use in MAP decoding, and finally redesigning the
COVQ for the new channel defined in terms of the updated
transition matrix.

Numerical results indicate notable signal-to-distortion ra-
tio (SDR) and encoding complexity gains for the proposed
scheme over the conventional and SDD COVQ schemes.

II. COVQ SYSTEM

The general block diagram of the system is depicted in
Fig. 1. The purpose of the system is to transmit the random
vector Xn ∈ R

k of dimension k over the noisy channel and
form an estimate X̂n of Xn based on the channel output Rn,
such that the distortion E‖Xn − X̂n‖2

is minimized. Here, n
represents the time index of the vector which consists of k
single source outputs. The source {Xn} ∈ R

k is assumed to
be a stationary and ergodic process, with zero mean and unit
variance. The COVQ encoder encodes {Xn} at a rate of r bits
per sample (bps). Therefore, the COVQ encoder is a mapping
E : R

k → In � {0, 1, · · · , Ne − 1}, such that E (Xn) = In

is sent over the channel after modulation (Ne = 2kr). The
encoding is done using the partition P = {Si}Ne−1

i=0 of R
k via

the encoding rule: Xn ∈ Si ⇒ In = E (Xn) = i. Note that for
simplicity, we also identify the index In and the index set In

with their binary representations (e.g., In = {0, 1}kr). The
input index probability distribution is denoted by Pi for i =
0, 1, · · · , Ne − 1. We use BPSK modulation, although other
memoryless modulation techniques can also be considered.
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Fig. 1. Block diagram of the iterative MAP decoded COVQ system.

The concatenation of the modulator, the actual channel and
the detector (at the symbol level) forms a DMC, for which
the COVQ is designed. We refer to this discrete channel as
the “equivalent DMC.” The DMC is defined in terms of its
input alphabet In = {0, 1, · · · , Ne − 1}, transition matrix
PY |X and the output alphabet Jn = {0, 1, · · · , Nd−1}. Since
the system uses hard-decision demodulation, Jn = In and
Nd = Ne = N . (In SDD COVQs ( [1], [2] and [6]), one has
Nd = Ne

q > Ne. This is achieved by a soft-decision 2q-level
uniform scalar quantizer at the decoder).

The decoder is the composition of two functions D1 and
D2. Thus the decoder can be written as D = D2 ◦D1, where
D1 : R

kr → Jn = In = {0, 1, · · · , Ne − 1}, D2 : Jn →
C ⊂ R

k, ◦ denotes function composition and C is called the
codebook and its entries are called codevectors.

The BPSK modulated bits with unit energy to be
sent over the Rayleigh fading channel are denoted by
W 1

n , W 2
n , · · · , W kr

n and form the vector Wn ∈ {−1, +1}kr .
At the output of the channel, the received vector Rn consists
of kr components R1

n, R2
n, · · · , Rkr

n that can each be written
as Rt

n = htW
t
n + νt, for t = 1, 2, · · · , kr, where {νt} is the

independent and identically distributed (i.i.d) Gaussian noise:
νt ∼ N (0, N0

2 ), and {ht} is the i.i.d Rayleigh distributed
fading process with E

[
h2

t

]
= 1. We also assume that the

processes ht, νt and W t
n are independent of each other and

that the fading amplitude values ht are perfectly known at the
receiver (i.e., we assume perfect channel side information at
the decoder side).

III. THREE-PHASE ITERATIVE MAP DECODED (IMD)
ALGORITHM

The main contribution of this paper is a simple algorithm
that jointly optimizes D1 and the pair {D2, E }. The IMD
algorithm consists of three phases as follows.

First phase: The first phase is the ordinary COVQ design
algorithm. The problem of designing COVQ for a DMC is
well known (e.g., see [4], [5] and [6]). Starting from a suitable
initial codebook (decoder) the COVQ encoder and decoder are
iteratively and alternatingly optimized based on two necessary
conditions [5] for minimizing the squared-error distortion,
making sure that the procedure ends up with a locally optimal
solution. Thus, in the first phase, we use the COVQ design
algorithm [5] where D1 is fixed and E and D2 are optimized
in an iterative fashion.

Note that in the first step of the iteration, we assume a
uniform input index distribution resulting in ML decoding. In

this case, the DMC is a binary symmetric channel (BSC) used
kr times.

Second phase: Once Phase 1 is complete, the encoder index
distribution is fed to the MAP decoder to start the second
phase of the algorithm. We use the computed input distribution
to replace the ML detector by a symbol based MAP decoder
and redesign the COVQ. Given D2 and E from the first phase,
we find D1 such that

Jn = arg max
In∈In

P (In|Rn,h) = arg max
In

P (Rn|In,h)PIn

= arg max
In∈In

P ({ν = Rn − h 	 Wn(In)} | In,h)PIn

= arg min
In∈In

[
1

N0
‖Rn − h	 Wn‖2 − ln PIn

]
, (1)

where Wn(In) denotes the symbol corresponding to index In,
h and ν denote the fading and noise vectors (h1, h2, · · · , hkr)
and (ν1, ν2, · · · , νkr), respectively, and 	 represents element-
wise vector multiplication.

Based on the above MAP metric, the new transition matrix
of the equivalent DMC is empirically computed. It can be
seen that the transition matrix PJn|In

is a function of h and is
thus time-variant. Using these transition matrices would result
in separate decoder for each value of h, a clearly unfeasible
solution. Hence to curb the complexity of the system, for
design purposes, we compute and use the average of the
channel transition distribution matrices over several fading
vectors (i.e., we compute Eh(PJn|In

)).
After updating the detector, which results in a new DMC,

and finding an updated codebook (based on the new DMC
probability distribution), we design the new COVQ (the pair
{D2, E }), using the updated codebook found previously as the
initial codebook of the GLA. We calculate the distortion Dn

at the end of the second phase.
Third phase: In the third phase, we iterate Phase 2 and

terminate when the SDR is maximized.

IV. ENCODER COMPLEXITY

An important advantage of the IMD COVQ is its reduced
encoding computational and storage complexity when com-
pared with other schemes. We measure the computational
complexity by the number of multiplications required to
encode one source sample (as in [7]), while the storage
requirement is measured by the total number of scalars needed
to be stored at the encoder [7].

It is important to note that the encoding computational com-
plexity of COVQ systems changes with the channel signal-
to-noise ratio (SNR). It is well known (e.g., [5] and [3])
that in COVQ systems, the number of non-empty encoding
cells1 considerably decreases for very low SNRs and the
computational complexity is proportional to the number of
non-empty regions, which we denote by N∅̄. From the form
of the encoder function E , it can be shown [3] that the
computational complexity for each of the COVQ, IMD COVQ
and SDD COVQ systems equals N∅̄. It can also be shown that

1An empty cell (as opposed to a non-empty cell) refers to a corresponding
encoding region of an index for which for every input training vector there
is at least one other index with smaller encoding function metric. This index
is not sent at all and its corresponding region is empty.
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TABLE I
SDR AND THE NUMBER OF NON-EMPTY ENCODING CELLS (ENCODING

COMPLEXITY) FOR THE MEMORYLESS GAUSSIAN (ρ = 0.0) AND
GAUSS-MARKOV (ρ = 0.9) SOURCES AND DIFFERENT COVQ SYSTEMS.

THE ENCODER RATE IS r = 2 BPS AND THE QUANTIZATION DIMENSION IS

k = 2.

Channel SDR (dB) Number of Non-Empty Cells (N∅̄)

SNR IMD SDD COVQ IMD SDD COVQ

(dB) COVQ COVQ (q = 2) COVQ COVQ (q = 2)
ρ = 0.0 ρ = 0.9 ρ = 0.0 ρ = 0.9 ρ = 0.0 ρ = 0.9 ρ = 0.0 ρ = 0.9 ρ = 0.0 ρ = 0.9 ρ = 0.0 ρ = 0.9

8.0 4.93 6.60 5.28 7.46 5.63 7.31 16 11 13 8 16 11
6.0 4.08 5.55 4.43 6.53 4.75 6.30 16 10 13 8 16 10
4.0 3.23 4.45 3.66 5.43 3.84 5.43 16 9 11 7 14 9
3.0 2.83 3.92 3.23 4.84 3.41 4.85 16 9 11 7 14 9
2.0 2.46 3.43 2.85 4.31 3.00 4.28 16 8 11 7 14 8
1.0 2.13 2.94 2.49 3.67 2.74 3.72 16 8 11 7 14 8
0.0 1.85 2.70 2.11 3.42 2.30 3.21 16 7 11 6 14 7
-1.0 1.57 2.33 1.75 2.88 1.97 2.73 16 7 11 6 14 7
-2.0 1.32 1.93 1.49 2.54 1.68 2.31 15 6 11 5 14 6
-3.0 1.10 1.77 1.21 2.14 1.41 1.94 14 6 11 5 14 6
-4.0 0.90 1.51 1.01 1.83 1.23 1.77 14 6 11 5 14 5
-6.0 0.61 0.99 0.69 1.23 0.79 1.22 12 5 9 5 14 5

the encoding storage requirement for each of the COVQ, IMD
COVQ and SDD COVQ systems is given by (k + 1)N∅̄ [3].
Thus we use the parameter N∅̄ as a criterion to compare the
encoding computational and storage efficiency of the systems.

V. NUMERICAL RESULTS

In the first phase (COVQ for hard-decision ML decoded
channel), we employ the transition matrix derived from kr
uses of a BSC with crossover probability

Eh

[
PJn|In

(1|0)
]

= Eh [P (νt > ht)] = Eh

[
Q(h

√
SNR)

]
,

where SNR = E
[
W 2

t

]
/E

[
νt

2
]

= 2
N0

and Q(·) is the comple-
mentary error function Q(x) � (1/

√
2π)

∫ ∞
x

exp{−τ2/2} dτ .
For designing the COVQ, 100,000 source training vectors are
generated. After designing the conventional COVQ (Phase 1),
we generate 400,000 noise vectors, use MAP decoding and
from the resulting empirical distribution compute the new
2kr × 2kr DMC transition matrix. The matrix is calculated
for 2000 fading vectors h and the arithmetic average of all
matrices is used as the updated transition matrix. Then the
COVQ is redesigned as described in Phases 2 and 3 above.

We compare the performance and encoder complexity of the
conventional COVQ with the proposed IMD COVQ and the
4-level (q = 2) SDD COVQ [1]. Table I presents SDR and N∅̄

results for a memoryless Gaussian (with correlation coefficient
ρ = 0.0) source and highly correlated Gauss-Markov source
(ρ = 0.9) for quantization dimension k = 2 and rate r = 2
bps. Table II presents SDR and N∅̄ results for a memoryless
Gaussian source with a higher dimension of k = 3 and rate
r = 2 bps. It can be seen from the tables that there is a
considerable SDR gain for IMD COVQ over conventional
COVQ, while it sometimes matches or outperforms the SDD
COVQ (up to 1.79 dB gain over COVQ and up to 0.26
dB gain over SDD COVQ for SNR = 4 dB as shown in
Table II). This gain increases for higher correlation coefficients
and higher values of kr. Interestingly, we observe that in
general, after applying the IMD algorithm, the non-uniform
input distribution, tends to be even more non-uniform which

TABLE II
SDR AND THE NUMBER OF NON-EMPTY ENCODING CELLS (ENCODING

COMPLEXITY) FOR THE MEMORYLESS GAUSSIAN SOURCE (ρ = 0.0) AND
DIFFERENT COVQ SYSTEMS. THE ENCODER RATE IS r = 2 BPS AND THE

QUANTIZATION DIMENSION IS k = 3.

Channel SNR (dB) -4 -2 0 2 4 6
COVQ 0.94 1.40 1.93 2.60 3.36 4.22

SDR (dB) IMD COVQ 1.23 1.86 2.97 3.88 5.15 5.69
SDD COVQ (q = 2) 1.32 1.94 2.88 3.79 4.89 5.78

Number COVQ 54 52 55 60 64 64
of Non-Empty IMD COVQ 31 34 26 45 54 58

Cells (N∅̄) SDD COVQ (q = 2) 52 49 58 59 64 64

is desirable [5], thus improving the IMD COVQ system over
the conventional COVQ and SDD COVQ systems in terms
of encoding computational complexity (N∅̄) and encoding
storage requirements ((k + 1)N∅̄). In terms of the number
N∅̄ of non-empty cells, IMD COVQ outperforms both the
conventional COVQ and the SDD COVQ considerably (up
to 53% reduction over conventional COVQ and up to 55%
reduction over SDD COVQ for SNR = 0 dB as shown
in Table II). Since there are already many empty decision
regions for the conventional COVQ at very low SNRs (less
than −2 dB), the IMD algorithm does not provide much
gain (either in performance or encoder complexity) in that
region. However, for SNR ranging from −2 dB to 4 dB,
it gives maximum gain over the other schemes. For high
SNRs, MAP decoding does not yield much gain compared
with ML decoding as in this case these two decoding methods
are nearly equivalent. Finally, it is worth pointing out that
while we cannot analytically guarantee the convergence of the
proposed algorithm, we did observe a rapid convergence in our
experiments, with the final solution reached in only a few (up
to 4) steps [3].
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