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Abstract— This paper studies a Shannon-theoretic version of
the generalized distribution preserving quantization problem
where a stationary and memoryless source is encoded subject
to a distortion constraint and the additional requirement that
the reproduction also be stationary and memoryless with a given
distribution. The encoder and decoder are stochastic and assumed
to have access to independent common randomness. Recent work
has characterized the minimum achievable coding rate at a given
distortion level when unlimited common randomness is available.
Here, we consider the general case where the available common
randomness may be rate limited. Our main result completely
characterizes the set of achievable coding and common
randomness rate pairs at any distortion level, thereby providing
the optimal tradeoff between these two rate quantities. We also
consider two variations of this problem where we investigate the
effect of relaxing the strict output distribution constraint and the
role of private randomness used by the decoder on the rate region.
Our results have strong connections with Cuff’s recent work
on distributed channel synthesis. In particular, our achievability
proof combines a coupling argument with the approach developed
by Cuff, where instead of explicitly constructing the
encoder–decoder pair, a joint distribution is constructed from
which a desired encoder–decoder pair is established. We show,
however, that for our problem, the separated solution of first
finding an optimal channel and then synthesizing this channel
results in a suboptimal rate region.

Index Terms— Lossy source coding, rate distortion,
randomization, shared randomness, channel synthesis.

I. INTRODUCTION

IN THIS paper, we aim to characterize the achievable rate
distortion region for the generalized distribution preserving

randomized source coding problem, where the rate region
measures both the coding rate and the rate of common
randomness shared between the encoder and the decoder.
To give a more precise definition of the problem, consider
the communication system in Fig. 1.

The source block Xn = (X1, . . . , Xn) consists of
n independent drawings of a random variable X which takes
values in a set X and has distribution μ. The stochastic encoder
takes the source and the common randomness, which is
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Fig. 1. Randomized source coding with limited common randomness.

available at rate Rc bits per source symbol, as its inputs
and produces an output at a rate R bits per source symbol.
Observing the output of the encoder and the common
randomness, the decoder (stochastically) generates the output
(reconstruction) which takes values from a reproduction
alphabet Y. Here X = Y is either a finite set or the real
line. The common randomness is assumed to be independent
of the source. As usual, the fidelity of the reconstruction is
characterized by the expected distortion

E

[
1

n

n∑
i=1

ρ(Xi ,Yi )

]
,

where ρ : X × Y → [0,∞) is a distortion measure. However,
unlike in the standard rate distortion problem, we require that
the output Y n = (Y1, . . . ,Yn) be a sequence of independent
and identically distributed (i.i.d.) random variables with a
given common distribution ψ .

For D ≥ 0, a rate pair (R, Rc) is said to be achievable at
distortion level D if, for any ε > 0 and all n large enough,
there exists a system as in Fig. 1 with coding rate R and
common randomness rate Rc, such that the distortion of the
system is less than D+ε and the output distribution constraint
for Y n holds. The main problem considered in this paper is
finding the set of all achievable rate pairs, denoted by R(D).

The communication system depicted in Fig. 1 is a
generalized version of a randomized quantizer (source code)
where the encoder and decoder is usually assumed to have
access to unlimited common randomization. Randomized
(dithered) uniform quantizers were originally introduced in
signal processing by Roberts [1], where he observed that
adding random noise to an image signal before uniform
quantization and subtracting the noise before reconstruction
may result in perceptually more pleasing images. Versions
of dithered uniform quantizers were analyzed by
Schuchman [2] and Gray and Stockham [3]. Under
certain conditions, dithering results in uniformly distributed
quantization noise that is independent of the input [2], [3],
which allows modeling the quantization process by an
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additive noise channel. Related entropy-coded dithered
scalar and lattice quantizers have been extensively used
in the information theoretic literature to construct robust
lossy compression schemes with universal performance
guarantees [4]–[7]. Akyol and Rose [8], [9], introduced a
class of randomized nonuniform scalar quantizers obtained
via applying companding to a dithered uniform quantizer.
Recently Li et al. [10], [11] and Klejsa et al. [12] introduced
and studied more general classes of randomized quantizers
that are distribution-preserving, i.e., the quantizer output
is restricted to have the same distribution as the source.
The distribution-preserving property of these quantizers is
reported to significantly improve the perceptual quality of
the reconstruction in audio and video coding. Note that if
in Fig. 1 we set the distribution μ of the Xi to be equal to the
distribution ψ of the Yi , we obtain a distribution-preserving
quantizer.

In our recent work [13], [14] we studied a generalized
version of distribution-preserving randomized quantization
where the output is constrained to have a given distribution
which may be different from the source distribution. The main
focus there was to develop an abstract and completely general
representation of finite-dimensional randomized quantization
and to study the existence and structural properties of optimal
generalized distribution preserving quantizers. Moreover,
[14] also considered the asymptotic performance in the limit
of infinite block length. In particular, a rate distortion theorem
was obtained for stationary and memoryless sources under
the assumption that the output must also be a stationary
and memoryless process and common randomness (in the
form of a random variable uniformly distributed on the unit
interval [0, 1]) is shared by the encoder and the decoder. This
situation corresponds to formally setting Rc = ∞ in Fig. 1.
In particular, [14, Th. 7] showed for both finite and continuous
source and reproduction alphabets that the set of achievable
coding rates for unlimited common randomness Rc = ∞,
denoted by R(D,∞), is

R(D,∞) = {R ∈ R : R ≥ I (X; Y ), PX,Y ∈ G(D)},
where G(D) is the set of probability distributions PX,Y of
X × Y-valued random variables (X,Y ) defined as

G(D) := {PX,Y : PX = μ, PY = ψ,E[ρ(X,Y )] ≤ D}.
Thus the minimum coding rate at distortion D is the
so-called “minimum mutual information with constrained
output ψ” [15] given by

I (μ‖ψ, D) := min{I (X,Y ) : PX,Y ∈ G(D)}. (1)

If G(D) is empty, we let I (μ‖ψ, D) = ∞.
In this paper, we generalize the above rate distortion result

by studying the optimal tradeoff between the coding rate R
and common randomness rate Rc for the system in Fig. 1.
In particular, we find a single-letter characterization of
the entire achievable rate region R(D) of pairs (R, Rc).
Apart from the theoretical appeal of obtaining a computable
characterization of the rate region via information theoretic
quantities, this investigation is also motivated by the fact

that the common randomness rate Rc has a direct affect
on the complexity of the system since each possible value
of the common randomization picks a different (stochastic)
encoder and decoder pair from a finite set whose size is
proportional to 2nRc . We also consider two variations of the
problem, in which we investigate the effect of relaxing the
strict output distribution constraint and the role of private
randomness used by the decoder on the rate region. For both
of these problems, we give the complete characterizations of
the achievable rate pairs.

It is important to point out that the block diagram in Fig. 1
depicting the generalized distribution preserving quantization
problem has the same structure as the system studied by
Cuff [16], [17] to synthesize memoryless channels up to
vanishing total variation error. Although many other problems
in information theory share a similar representation, the
connection with Cuff’s work is more than formal. The
distortion and output distribution constraints in our problem
replaces the requirement in [17] that the joint distribution of
the input Xn and output Y n should arbitrarily well approximate
(in total variation) the joint distribution obtained by feeding
the input Xn to a given memoryless channel. Using the main
result [17, Th. II.1] one can obtain an inner bound, albeit a
loose one, for our problem. A good part of our proof consists
of tailoring Cuff’s arguments in [17] to our setup to obtain
a tight achievable rate region. Because of this, we will be
adopting many of the notations used in [17]. We also note
that unlike in the distributed channel synthesis problem in [17],
our results also allow for continuous source and reproduction
alphabets.

The rest of the paper is organized as follows. In Section II
we formalize the problem and present the main result giving
the rate region R(D). Section II-A discusses connections with
Cuff’s work on distributed channel synthesis. In Section III
we investigate the extreme points of the rate region at Rc = 0
and Rc = ∞. In Section IV we present computable inner
bounds for double symmetric binary source and reproduction
distributions under the Hamming distortion, and for Gaussian
source and reproduction distributions under the squared error
distortion. In Section V two variations of the original problem
are formulated and the associated achievable rate regions
are described. The proof of the main result is given
in Section VI.

A. Notation and Assumptions

In this paper, X denotes the input alphabet and Y is the
reconstruction (output) alphabet such that X = Y is a finite
set or X = Y = R. We assume a distortion measure ρ(x, y) =
d(x, y)p, where d is the metric on X. Here, p > 0 when
X is finite and p = 2 when X = R, in which case we
also assume that d(x, y) = |x − y| (so that ρ is the squared
error) and that the source distribution μ and the desired output
distribution ψ have finite second moments. We note that we
impose these restrictions on the distortion measure because
in a key step of the achievability proof we need to invoke
the triangle inequality. For the finite alphabet case, we let
ρmax := maxx,y ρ(x, y). For any positive real number R, we
define [2nR] := {1, . . . , �2nR	}, where �2nR	 is the smallest
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integer greater than or equal to 2nR . Vn will denote the
n-fold Cartesian product of a set V, the elements of which are
vn = (v1, . . . , vn), vi ∈ V, i = 1, . . . , n. A similar convention
also applies to a sequence of random variables which will
be denoted by upper case letters. For any triple (X,Y,U)
of random variables or vectors, the notation X − U − Y
means that they form a Markov chain in this order. For any
random vector Un , the random measure pU n denotes the
empirical distribution of Un . The notation V ∼ ν means
that random variable V has distribution ν. For any probability
distribution ν on V, νn denotes the n-fold product distribution
ν × · · · × ν︸ ︷︷ ︸

n-times

on Vn .

II. PROBLEM STATEMENT AND MAIN RESULT

Let {Xn}n≥1 be a stationary and memoryless source
(sequence of i.i.d. random variables) with common
distribution μ on source alphabet X, and let K be a
random variable uniformly distributed over [2nRc ] which is
independent of Xn . Here K represents the common random-
ness that is shared between the encoder and the decoder.

For a positive integer n and nonnegative numbers R and Rc,
a (n, R, Rc) randomized source code is defined by an
encoder E = E J |Xn,K and the decoder FY n |J,K , where E is
a regular conditional probability (see [18]) on [2nR] given
Xn × [2nRc ] and F is a regular conditional probability on
Yn given [2nR] × [2nRc ]. Hence, letting J and Y n be the
output of the encoder and the decoder, respectively, the joint
distribution of (K , Xn , J,Y n) is given, in a somewhat informal
notation, by

(K , Xn , J,Y n) ∼ FY n |J,K E J |Xn,K PK PXn . (2)

The distortion of the code is E[ρn(Xn,Y n)], where
ρn(xn, yn) := 1

n

∑n
i=1 ρ(xi , yi ).

Definition 1: For any nonnegative real number D and
desired output distribution ψ , the pair (R, Rc) is said to be
ψ-achievable if, for any ε > 0 and all sufficiently large n,
there exists a randomized (n, R, Rc) source code such that

E[ρn(X
n,Y n)] ≤ D + ε

Y n ∼ ψn .
In the rest of this paper ψ will be kept fixed, so we drop

referring to ψ and simply write that (R, Rc) is achievable. For
D ≥ 0 we let R(D) denote the set of all achievable (R, Rc)
pairs. The following theorem, which is the main result in this
paper, characterizes the closure of this region in terms of an
auxiliary random variable U on alphabet U.

Theorem 1: For any D ≥ 0 the closure clR(D) of R(D) is
given by

clR(D) = L(D)

:=
⎧⎨
⎩
(R, Rc) ∈ R

2 : ∃PX,Y,U ∈ M(D)
s.t. R ≥ I (X; U),

R + Rc ≥ I (Y ; U)

⎫⎬
⎭, (3)

where, for X = Y finite,

M(D) :=
⎧⎨
⎩

PX,Y,U : PX = μ, PY = ψ,
E[ρ(X,Y )] ≤ D, X − U − Y,
|U| ≤ |X| + |Y| + 1

⎫⎬
⎭. (4)

When X = Y = R, the cardinality bound for U in (4) is
replaced by U = R.

A. Connections With Distributed Channel Synthesis

As mentioned before, Cuff’s work on distributed channel
synthesis [17] is intrinsically related to our problem. The main
objective of [17] is to simulate a memoryless channel by a
system as in Fig. 1. To be more precise, let Q(y|x) denote a
given discrete memoryless channel with input alphabet X and
output alphabet Y to be simulated (synthesized) for input X
having distribution μ. Let π = μQ be the joint distribution
of the resulting input-output pair (X,Y ).

Definition 2 [17]: The pair (R, Rc) is said to be achievable
for synthesizing a memoryless channel Q with input distrib-
ution μ if there exists a sequence of (n, R, Rc) randomized
source codes such that

lim
n→∞ ‖PXn ,Y n − πn‖T V = 0, (5)

where Xn ∼ μn is the memoryless source, Y n is the output of
the decoder, πn is the n-fold product of π = μQ = PX Q, and
‖ · ‖T V is the total variation distance for probability measures:
‖γ − ν‖T V := 1

2

∑
v |γ (v)− ν(v)|.

Theorem 2 [17, Th. II.1]: The closure C of the set of all
achievable (R, Rc) pairs is given by

C = S :=
⎧⎨
⎩
(R, Rc) ∈ R

2 : ∃PX,Y,U ∈ D
s.t. R ≥ I (X; U),

R + Rc ≥ I (X,Y ; U)

⎫⎬
⎭, (6)

where

D := {PX,Y,U : PX,Y = π, X − U − Y, |U| ≤ |X‖Y| + 1}.
Moreover, the total variation error goes to zero exponentially
fast with respect to n in the interior of C.

This result can be used to obtain an achievable rate region
(inner bound) for our problem as follows: Let π = PX,Y be
such that PX = μ, PY = ψ , and E[ρ(X,Y ] ≤ D. Applying
Theorem 2 with this input distribution and the channel induced
by PX,Y , consider an achievable rate pair (R, Rc) in (6). Using
basic results from optimal transport theory [19] one can show
that (5) and the fact that E[ρ(X,Y )] ≤ D imply the existence
of a sequence of channels, to be used at the decoder side, that
when fed with Y n , produces output Ŷ n which has the exact
distribution ψn and which additionally satisfies

lim sup
n→∞

E[ρn(X
n, Ŷ n)] ≤ D.

Augmenting the channel synthesis code with these channels at
the decoder side thus produces a sequence of valid codes for
our problem, implying that the rate pair (R, Rc) is achievable
by our Definition 1.

Using the above argument, one can easily show that
Cuff’s result directly implies (without resorting to Theorem 1)
the following inner bound for R(D). The proof is given
in Appendix B.

Corollary 1: For any D ≥ 0,

clR(D) ⊃ S(D) (7)

:=
⎧⎨
⎩
(R, Rc) ∈ R

2 : ∃PX,Y,U ∈ H(D)
s.t. R ≥ I (X; U),

R + Rc ≥ I (X,Y ; U)

⎫⎬
⎭, (8)
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where

H(D) :=
⎧⎨
⎩

PX,Y,U : PX = μ, PY = ψ,
E[ρ(X,Y )] ≤ D, X − U − Y,
|U| ≤ |X‖Y| + 1

⎫⎬
⎭. (9)

In general, this inner bound is loose. For example, for
Rc = 0, only the constraint R ≥ I (X,Y ; U) is active in (8)
since I (X,Y ; U) ≥ I (X; U) always holds. Hence, letting
S(D, 0) denote the set of Rs such that (R, 0) ∈ S(D),
we obtain

S(D, 0) = {R ∈ R : ∃PX,Y,U ∈ H(D) s.t. R ≥ I (X,Y ; U)}.
The minimum of S(D, 0) can be written as

min{R ∈ S(D, 0)}
= min{C(X; Y ) : PX,Y ∈ G(D)} =: C0(μ‖ψ, D),

where C(X; Y ) is Wyner’s common information [20] defined
for a given joint distribution PX,Y by

C(X; Y ) := inf
U :X−U−Y

I (X,Y ; U), (10)

where the infimum is taken over all joint distributions PX,Y,U

such that U has a finite alphabet and X − U − Y . However,
the resulting rate C0(μ‖ψ, D) is not optimal as Example 1
in Section III-B will show.

The suboptimality of C0(μ‖ψ, D) implies that a ‘separated’
solution which first finds an ‘optimal’ channel and then
synthesizes this channel is not optimal for the constrained rate
distortion problem we consider.

III. SPECIAL CASES

The extreme points at Rc = ∞ and Rc = 0 of the rate region
L(D) in our Theorem 1 are of particular interest. Let L(D, Rc)
be the set of coding rates R such that (R, Rc) ∈ L(D).

A. Unlimited Common Randomness

If Rc = ∞, then the effective constraint in (3) is
R ≥ I (X; U). This was the situation originally studied in [14]
where it was assumed that the common randomness is of
the form of a real-valued random variable that is uniformly
distributed on the interval [0, 1]. Since I (X; U) ≥ I (X; Y ) by
the data processing inequality and the condition X −U −Y , we
can set U = Y to obtain min{R ∈ L(D,∞)} = I (μ‖ψ, D),
recovering (1) and thus [14, Th. 7]. Furthermore, for the finite
alphabet case whenever Rc ≥ H (Y |X), we have from (3) that
R+Rc ≥ I (X; U)+H (Y |X) ≥ I (X; Y )+H (Y |X) = H (Y ) ≥
I (Y ; U), so the effective constraint is again R ≥ I (X; U).
Considering (X,Y ) such that PX,Y achieves the minimum
in (1) and letting U = Y , we have

min{R ∈ L(D, Rc)} = I (μ‖ψ, D) (11)

or equivalently

L(D, Rc) = L(D,∞). (12)

Hence, H (Y |X) is a sufficient common randomness rate above
which the minimum communication rate does not decrease.
In fact, letting

R min
c = min{Rc : L(D, Rc) = L(D,∞)}

we can determine R min
c in terms of the so-called necessary

conditional entropy [17], defined for a joint distribution
PX,Y as

H (Y †X) := min
f :X− f (Y )−Y

H ( f (Y )|X)
where minimum is taken over all functions f : Y → Y such
that X − f (Y )− Y . Using the discussion in [21, Sec. VII-C]
one can verify that R min

c is the minimum of H (Y †X) over
all joint distributions of (X,Y ) achieving the minimum in (1).
Indeed, for any joint distribution PX,Y achieving the minimum
in (1), any function f with the property

f (y) = f (ỹ) ⇔ PX |Y ( · |y) = PX |Y ( · |ỹ) (13)

minimizes H ( f (Y )|X) and satisfies X − f (Y ) − Y ; that is,
H (Y †X) = H ( f (Y )|X).

In general, for an arbitrary output distribution ψ , it may
not be true that H (Y †X) = H (Y |X) for a joint distribution
achieving the minimum in (1). Therefore, the Markov chain
X −Y −Y does not necessarily achieve Rmin

c . However, in the
special case where the rate-distortion function

R(D) = min
ψ

I (μ‖ψ, D),

is achieved by a unique output distribution ψ , we have the
following proposition.

Proposition 1: Assume the rate-distortion function R(D)
is achieved by the unique output distribution ψ . Then
H (Y †X) = H (Y |X) and the Markov chain X − Y − Y
(i.e., U = Y ) achieves Rmin

c , where (X,Y ) achieve the
rate-distortion function. In this case, R + Rc ≥ H (Y ) when
R = R(D).

Proof: The proof is by contradiction. Suppose that
H (Y †X) < H (Y |X). This implies the existence of a
function f with the property (13) and H ( f (Y )|X) < H (Y |X).
In particular, there exist ȳ, ỹ ∈ Y such that ȳ �= ỹ,
PY (ȳ), PY (ỹ) > 0, and PX |Y ( · |ȳ) = PX |Y ( · |ỹ). Without
loss of generality we can assume E[ρ(X,Y )|Y = ȳ] ≤
E[ρ(X,Y )|Y = ỹ]. Define a new pair (X̃ , Ỹ ) with the joint
distribution given by PX̃ |Ỹ = PX |Y and PỸ (y) = PY (y) if
y ∈ Y \ {ȳ, ỹ} and PỸ (ȳ) = PY (ȳ)+ PY (ỹ) (so, PỸ (ỹ) = 0).
Hence, E[ρ(X̃ , Ỹ )] ≤ E[ρ(X,Y )]. Since PX |Y ( · |ȳ) =
PX |Y ( · |ỹ), we have H (X̃ |Ỹ ) = H (X |Y ) and PX̃ = PX = μ.
Therefore, I (X̃ ; Ỹ ) = I (X; Y ), and (X̃ , Ỹ ) also achieves
the rate distortion function. But, PỸ �= PY = ψ , which is a
contradiction. �
B. No Common Randomness

Setting Rc = 0 means that no common randomness is
available.1 In this case (3) gives R ≥ max

(
I (X; U), I (Y ; U)

)
.

Hence the minimum communication rate at distortion D is
given by

min{R ∈ L(D, 0)} = I0(μ‖ψ, D),

where

I0(μ‖ψ, D)

:= min
{
max

(
I (X; U), I (Y ; U)

) : PX,Y,U ∈ M(D)
}
. (14)

1Ram Zamir’s question regarding the minimum coding rate in this special
case has inspired our investigation of the general rate region R(D).
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Note that the minimum achievable coding rate I0(μ‖ψ, D)
is symmetric with respect to μ and ψ , i.e., I0(μ‖ψ, D) =
I0(ψ‖μ, D). This is clear from the definition (14), but can
also be deduced from the operational meaning of I0(μ‖ψ, D)
since in the absence of the common randomness K , the
encoder-decoder structure is fully reversible. In general
such symmetry no longer holds for min{R ∈ R(D, Rc)}
when Rc > 0.

The following lemma states that I0(μ‖ψ, D) is convex in D.
The proof simply follows from a time-sharing argument and
the operational meaning of I0(μ‖ψ, D) implied by Theorem 1.
It is given in Appendix A.

Lemma 1: I0(μ‖ψ, D) is a convex function of D.
An upper bound for I0(μ‖ψ, D) can be given

in terms of Wyner’s common information. Since
max

(
I (X; U), I (Y ; U)

) ≤ I (X,Y ; U), we have
I0(μ‖ψ, D) ≤ min{I (X,Y ; U) : PX,Y,U ∈ M(D)}.
The latter expression can also be written as

min{C(X; Y ) : PX,Y ∈ G(D)} =: C0(μ‖ψ, D). (15)

However, the resulting upper bound I0(μ‖ψ, D) ≤
C0(μ‖ψ, D) is not tight in general as the next example shows.

Example 1: Let X = Y = {0, 1}, and let μ = ψ =
Bernoulli(1/2), i.e., μ(0) = μ(1) = 1

2 . Assume the distortion
measure ρ is the Hamming distance ρ(x, y) = 1{x �=y} (which
satisfies the assumptions in Section I-A). If X ∼ μ and Y ∼ ψ ,
then the channel PY |X from X to Y must be Binary Symmetric
Channel (BSC) with some crossover probability a0, i.e.,

PY |X ( · |0) = 1 − PY |X ( · |1) = Bernoulli(a0).

Wyner in [20, Sec. 3] showed that when a0 ∈ [0, 1/2],
C(X; Y ) = 1 + h(a0)− 2h(a1),

where a1 = 1
2 (1−√

1 − 2a0), and h(λ) = −λ log(λ)−(1−λ)
log(1 − λ). Define C(a0) := 1 + h(a0) − 2h(a1) which
is decreasing and strictly concave in [0, 1/2]. Notice that
E[ρ(X,Y )] = a0 when PY |X = BSC(a0). Hence, for any
D ∈ [0, 1/2], we have

C0(μ‖ψ, D)

= min{C(X; Y ) : PX,Y ∈ G(D)}
= min{C(X; Y ) : PX = μ, PY |X = BSC(a0), a0 ≤ D}
= min

a0≤D
C(a0) = C(D)

implying that C0(μ‖ψ, D) is strictly concave for D ∈[0, 1/2].
It is straightforward to prove that C0(μ‖ψ, 0)= I0(μ‖ψ, 0)=1
and C0(μ‖ψ, 1/2) = I0(μ‖ψ, 1/2) = 0. Therefore,
by Lemma 1 we have

I0(μ‖ψ, D) < C0(μ‖ψ, D), D ∈ (0, 1/2).

IV. EXAMPLES

In general determining the entire rate region L(D) in
Theorem 1 seems to be difficult even for simple cases. In this
section we obtain possibly suboptimal achievable rate regions
(inner bounds) for two setups by restricting the channels
PU |X and PY |U so that the resulting optimization problem
becomes manageable.

A. Doubly Symmetric Binary Source

In this section we obtain an inner bound for the setup in
Example 1 (i.e., when X = Y = {0, 1}, μ = ψ =
Bernoulli(1/2), and ρ the Hamming distance) by restricting
the auxiliary random variable U to be Bernoulli(1/2). Since
PX = PU = PY = Bernoulli(1/2), for any PX,Y,U ∈
M(D), the channels PU |X and PY |U must be BSC(a1) and
BSC(a2), respectively, for some a1, a2 ∈ [0, 1]. Hence,
since E[ρ(X,Y )] = a when PX |Y = BSC(a), the resulting
achievable rate region is

Ls(D) =
⎧⎨
⎩
(R, Rc) ∈ R

2 : (a1, a2) ∈ 	(D)
s.t. R ≥ 1 − h(a1),

R + Rc ≥ 1 − h(a2).

⎫⎬
⎭,

where

	(D) := {(a1, a2) ∈ [0, 1]2 : a1 + a2 − 2a1a2 ≤ D}.
Let us define ϕ(a1, a2) = a1 + a2 − 2a1a2. Note that since
ϕ( 1

2 + r, 1
2 + m) = 1

2 − 2rm and h( 1
2 − r) = h( 1

2 + r) for

any r,m ∈ [−1
2 ,

1
2 ]; we may assume without loss of generality

that a1, a2 ∈ [0, 1
2 ] in the definition of 	(D). Furthermore,

since ϕ(a1, a2) > D when D < a1 <
1
2 or D < a2 <

1
2 , we

can refine the definition of Ls(D) for 0 ≤ D < 1
2 as

Ls(D) =
⎧⎨
⎩
(R, Rc) ∈ R

2 : (a1, a2) ∈ 	r (D)
s.t. R ≥ 1 − h(a1),

R + Rc ≥ 1 − h(a2).

⎫⎬
⎭,

where

	r (D) := {(a1, a2) ∈ [0, D]2 : a1 + a2 − 2a1a2 ≤ D}.
Notice that for any fixed a1, (a1, a2) ∈ 	r (D) if and only
if a2 ≤ D−a1

1−2a1
, where the expression on the righthand side of

the inequality is a concave function of a1. Hence, 	r (D) is a
convex region. In the remainder of this section we characterize
the boundary

⋃
Rc

min{R : (R, Rc) ∈ Ls(D)}×{Rc} of Ls(D).
If Rc = ∞, then (R,∞) ∈ Ls(D) ⇔ R ≥ 1 − h(a1) where

a1 ∈ [0, D]. Hence, the minimum R is equal to 1 − h(D) for
Rc = ∞. Moreover, if R = 1 − h(D) or equivalently a1 = D,
then (R, Rc) ∈ Ls(D) ⇔ Rc + 1 − h(D) ≥ 1 − h(a2) =
1 − h(0) = 1 since (D, a2) ∈ 	r (D) only if a2 = 0. Hence,
if and only if Rc ≥ h(D), then

min{R : (R, Rc) ∈ Ls(D)} = 1 − h(D).

Note that since 1−h(D) is the rate-distortion function for the
Bernoulli(1/2) source and ψ = Bernoulli(1/2) is the unique
output distribution achieving this rate-distortion function,
Proposition 1 implies that the inner bound we obtain in this
section is tight for Rc ≥ h(D) = H (ψ)−(1−h(D)) = Rmin

c .
Recall that for an arbitrary 0 ≤ Rc < h(D), (R, Rc) ∈

Ls(D) ⇔ R ≥ max{1−h(a1), 1−h(a2)−Rc} where (a1, a2) ∈
	r (D). We now prove that the minimum R is attained when
1 − h(a1) = 1 − h(a2) − Rc and a1 + a2 − 2a1a2 = D. The
second equality is clear since the binary entropy function h is
increasing in [0, D]. To prove the first claim by contradiction,
let us assume (without loss of generality) that the minimum
is achieved when 1 − h(a1) > 1 − h(a2) − Rc

(
so min{R :

(R, Rc) ∈ Ls(D)} = 1−h(a1)
)
. Note that (a1, a2) ∈ 	r (D) if
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Fig. 2. Ls(D) for binary symmetric source at different distortion levels D.

and only if a2 ≤ D−a1
1−2a1

, where D−a1
1−2a1

is a positive, decreasing,

and concave function of a1 in (0, D). This and the fact that
h is increasing and continuous imply that there exist ε1, ε2 > 0
such that (a1 + ε1, a2 − ε2) ∈ 	r (D) and 1 − h(a1 + ε1) ≥
1 − h(a2 − ε2) − Rc. But min{R : (R, Rc) ∈ Ls(D)} =
1 − h(a1) > 1 − h(a1 + ε1), which is a contradiction.

Hence, for all D ∈ (0, 1
2 ) the minimum coding rate when

0 ≤ Rc < h(D) is given by

min{R : (R, Rc) ∈ Ls(D)}
= min{1 − h(a1) : (a1, a2) ∈ �(D, Rc)}

where

�(D, Rc)

:=
{
(a1, a2) ∈ 	r (D) : 1 − h(a1) = 1 − h(a2)− Rc

and a1 + a2 − 2a1a2 = D

}
.

Figure 2 shows the rate region Ls(D) for D = 0.25,
D = 0.15, and D = 0.05. At the boundary of Ls(D), the
coding rate R ranges from 1 − h(a∗) = 0.39, 0.59, 0.82 bits(
a∗ = 1

2 (1 − √
1 − 2D)

)
to h(D) = 0.19, 0.4, 0.72 bits,

respectively, while the common randomness rate Rc ranges
from 0 to 1−h(D) = 0.81, 0.6, 0.28 for D = 0.25, D = 0.15,
and D = 0.05, respectively.

B. Gaussian Source

Let N(m, σ ) denote a Gaussian random variable with
mean m and variance σ 2 (similar notation will be used for
the vector case). In this section, we obtain an inner bound for
the case X = Y = R, μ = N(0, σX ), ψ = N(0, σY ), and
ρ is the squared error distortion (i.e., ρ(x, y) = |x − y|2)
by restricting (X,U,Y ) to be Gaussian

(
or, equivalently,

restricting (X,U) and (U,Y ) to be Gaussian since X −U −Y
)
.

Remark 1: Recall that for Rc = ∞, the minimum cod-
ing rate is given by (1). However if X ∼ N(0, σX ) and
Y ∼ N(0, σY ), then for any PX,Y ∈ G(D), one has the lower
bound

I (X; Y ) = h(X)+ h(Y )− h(X,Y )

≥ 1

2
log(2πeσ 2

X )+
1

2
log(2πeσ 2

Y )−log(2πe det(C)
1
2 ),

where C is the covariance matrix of (X,Y ). The equality
is achieved when (X,Y ) is jointly Gaussian [22, Th. 8.6.5].

Hence, we can restrict (X,Y ) to be Gaussian in the definition
of I (μ‖ψ, D), i.e.,

I (μ‖ψ, D) := min{I (X,Y ) : PX,Y ∈ Gg(D)},
where

Gg(D) := {PX,Y ∈ G(D) : PX,Y = N(0,C) for some C}.
This implies that the inner bound we obtain in this section is
tight for Rc = ∞ (

i.e., Ls(D,∞) = L(D,∞)
)
. L(D,∞) for

the case μ = ψ = N(0, σ ) was derived in [11, Proposition 2].
Note that without loss of generality we can take U to have

zero mean and unit variance. Indeed, let Ũ = (U − δU )/σU .
Then Ũ ∼ N(0, 1), X − Ũ − Y , and (X, Ũ ,Y ) is Gaussian
with I (X; U) = I (X; Ũ) and I (Y ; U) = I (Y ; Ũ). Hence, in
the remainder of this section, we assume U ∼ N(0, 1).

Let us write U = a X + V and Y = bU + W , where
a, b ∈ R, and V ∼ N(0, σV ), W ∼ N(0, σW ), and (X, V ,W )
are independent. With this representation, the constraints in
the definition of the achievable rate region become

1 = a2σ 2
X + σ 2

V ,

σ 2
Y = b2 + σ 2

W ,

(1 − ab)2σ 2
X + b2σ 2

V + σ 2
W ≤ D,

Then, if we substitute σ 2
V = 1 − a2σ 2

X ≥ 0 and
σ 2

W = σ 2
Y − b2 ≥ 0 into the last equation, we can write the

distortion constraint as

σ 2
X + σ 2

Y − 2abσ 2
X ≤ D.

Since

I (X; U) = H (X)+ H (U)− H (X,U)

= 1

2
log(2π e σ 2

X )+
1

2
log(2π e)−log(2π e det(CX )

1
2 )

= 1

2
log

( 1

(1 − a2σ 2
X )

)

and

I (Y ; U) = H (Y )+ H (U)− H (Y,U)

= 1

2
log(2π e σ 2

Y )+
1

2
log(2π e)−log(2π e det(CY )

1
2 )

= 1

2
log

( σ 2
Y

(σ 2
Y − b2)

)
,

where CX is the covariance matrix of (X,U) and CY is
the covariance matrix of (Y,U), the resulting achievable rate
region can be written as

Ls(D) =

⎧⎪⎪⎨
⎪⎪⎩

(R, Rc) ∈ R
2 : (a, b) ∈ �(D)

s.t. R ≥ 1
2 log

( 1
(1−a2σ 2

X )

)
,

R + Rc ≥ 1
2 log

( σ 2
Y

(σ 2
Y −b2)

)
.

⎫⎪⎪⎬
⎪⎪⎭
,

where

�(D)

:= {(a, b) ∈ [0, σ−1
X ] × [0, σY ] : σ 2

X + σ 2
Y − 2abσ 2

X ≤ D}.
Note that the region �(D) is convex. Let us define

I1(a) = log
( 1
(1−a2σ 2

X )

)
and I2(b) = log

( σ 2
Y

(σ 2
Y −b2)

)
; then
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Fig. 3. Ls(D) for Gaussian source for D = 0.8.

I1 and I2 are increasing functions. As in Section IV-A, we
characterize the boundary

⋃
Rc

min{R : (R, Rc) ∈ Ls(D)} ×
{Rc} of Ls(D).

If Rc = ∞, then (R,∞) ∈ Ls(D) ⇔ R ≥ I1(a) where
(a, b) ∈ [0, σ−1

X ] × [0, σY ] and σ 2
X + σ 2

Y − 2abσ 2
X ≤ D.

Using the monotonicity of I1 and the distortion constraint,
it is straightforward to show that

min{R : (R,∞) ∈ Ls(D)} = I1
(σ 2

X + σ 2
Y − D

2σ 2
XσY

)
.

By Remark 1, this is the minimum coding rate
(i.e., rate-distortion function) for Rc = ∞.

When 0 ≤ Rc < ∞ is arbitrary, we can use the same
technique as in Section IV-A to prove that the minimum of R
is attained when I1(a) = I2(b)−Rc and σ 2

X +σ 2
Y −2abσ 2

X = D
(I1 and I2 are increasing continuous functions and �(D) is a
convex region with nonempty interior in the upper-right corner
of the rectangle [0, σ−1

X ] × [0, σY ]). As a consequence, we
can describe the minimum coding rate when 0 ≤ Rc < ∞ as
follows:

min{R : (R, Rc) ∈ Ls(D)} = min{I1(a) : (a, b) ∈ �(D, Rc)}
where

�(D, Rc) :=
{
(a, b) ∈ �(D) : I1(a) = I2(b)− Rc and

σ 2
X + σ 2

Y − 2abσ 2
X = D

}
.

Figure 3 shows the rate region Ls(D) for σX = σY = 1 and
D = 0.8. At the boundary of Ls(D), the coding rate R ranges

from I1(
√

2−D
2 ) = 0.65 bits to I1(

2−D
2 ) = 0.32 bits while the

common randomness rate Rc ranges from 0 to infinity.

V. TWO VARIATIONS

In this section we consider two variations of the rate-
distortion problem defined in Section II. Throughout this
section we assume that the source alphabet X and the repro-
duction alphabet Y are finite.

A. Rate Region With Empirical Distribution Constraint

First, we investigate the effect on the achievable rate region
of relaxing the strict output distribution constraint on Y n

and requiring only that the empirical output distribution pY n

converges to the distribution ψ .
Definition 3: For any positive real number D and desired

output distribution ψ , the pair (R, Rc) is said to be empirically
achievable if there exists a sequence of (n, R, Rc) randomized
source codes such that

lim sup
n→∞

E[ρn(X
n,Y n)] ≤ D,

‖pY n − ψ‖T V → 0 in probability as n → ∞.

For any D ≥ 0 we let Re(D) denote the set of all empiri-
cally achievable rate pairs (R, Rc), and define Re(D, Rc) as
the set of coding rates R such that (R, Rc) ∈ Re(D).

This setup is motivated by the work of
Cuff et al. [21, Sec. II] on empirical coordination. The
main objective of [21, Sec. II] is to empirically simulate a
memoryless channel by a system as in Fig. 1. To be more
precise, let Q(y|x) denote a given discrete memoryless
channel with input alphabet X and output alphabet Y to be
simulated (synthesized) for input X having distribution μ. Let
π = μQ be the joint distribution of the resulting input-output
pair (X,Y ).

Definition 4: The pair (R, Rc) is said to be achievable
for empirically synthesizing a memoryless channel Q with
input distribution μ if there exists a sequence of (n, R, Rc)
randomized source codes such that

lim
n→∞ ‖pXn,Y n − π‖T V = 0 in probability. (16)

Let Ce denote the the set of all achievable (R, Rc) pairs
and let Ce(Rc) denote the set of all rates R such that
(R, Rc) ∈ Ce. The following theorem, which is a combination
of [21, Th. 2 and 3], characterizes the entire set Ce.

Theorem 3: The set Ce of all achievable (R, Rc) is given by

Ce =
{
(R, Rc) ∈ R

2 : ∃PX,Y ∈ G
s.t.R ≥ I (X; Y )

}
,

where

G := {PX,Y : PX,Y = π}.
Hence, Ce(Rc) = Ce(0) for any Rc.
Using the above theorem and the arguments in [21, Sec. VII],
one can show that the set of empirically achievable rate
pairs (R, Rc) at the distortion level D can be described as:

Theorem 4: For any D ≥ 0 we have

Re(D, 0) = L(D,∞),

Re(D, Rc) = Re(D, 0) for all Rc. (17)

In other words, Re(D) = L(D,∞)× [0,∞).
The proof of Theorem 4 is given in Appendix C. Note

that (17) states that unlike in the original problem defined
in Section II, here common randomness cannot decrease the
necessary coding rate.

B. Deterministic-Decoder Rate Region

In this section we investigate the effect on the rate region
of private randomness used by the decoder. Namely, we
determine the achievable rate region for a randomized source
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code having no (private) randomness at the decoder, i.e., when
the decoder F is a deterministic function of random variables
J and K . We call such a code a randomized source code
with deterministic decoder. In this setup, since the encoder
can reconstruct the output Y n of the decoder by reading off
J and K , the common randomness K may be interpreted
as feedback from the output of the decoder to the encoder
[23, page 5].

Definition 5: For any positive real number D and desired
output distribution ψ , the pair (R, Rc) is said to be
achievable with a deterministic decoder if there exists a
sequence of (n, R, Rc) randomized source codes with a
deterministic decoder such that

lim sup
n→∞

E[ρn(X
n,Y n)] ≤ D,

lim
n→∞ ‖PY n − ψn‖T V = 0. (18)

Note that here we relax the strict i.i.d. output distribution
constraint, because without private randomness at the decoder,
some output distributions cannot be exactly achieved for finite
rates (R, Rc). Indeed, this is the case when the probabilities of
the output distribution are irrational and the input distribution
has rational probabilities.

For any D ≥ 0 we let Rdd (D) denote the set of all
achievable (R, Rc) pairs with deterministic decoder.
The following theorem, proved in Appendix D, characterizes
the closure of this set.

Theorem 5: For any D ≥ 0,

clRdd(D) =
⎧⎨
⎩
(R, Rc) ∈ R

2 : ∃PX,Y ∈ G(D)
s.t. R ≥ I (X; Y ),

R + Rc ≥ H (Y )

⎫⎬
⎭. (19)

Remark 2:
(a) Note that the rate region in Theorem 5 can equivalently

be given by

clRdd(D)

=
⎧⎨
⎩
(R, Rc) ∈ R

2 : ∃PX,Y,U ∈ M(D)
s.t. R ≥ I (X; U),

R + Rc ≥ H (Y )

⎫⎬
⎭. (20)

Therefore, L(D) ⊃ clRdd(D).
(b) It is important to note that if we allow the decoder to

use private randomness while preserving the output dis-
tribution constraint (18), one can prove that the resulting
achievable rate region is L(D). In this case, the only part
to prove is the converse, since the achievability is obvious.
However, the converse can be proven by using a similar
technique as in [17, Sec. VI]. Hence, if we allow the
decoder to use private randomness, replacing the strict
output distribution constraint in the Definition 1 with (18)
does not change the achievable rate region.

(c) Since L(D) ⊃ clRdd(D), where the inclusion is strict in
general, private randomness can indeed replace a part of
the common randomness to decrease the necessary coding
rate when the common randomness rate is less than Rmin

c .

VI. PROOF OF THEOREM 1

Our proof relies on techniques developed by Cuff in [17].
In particular, in the achievability part, we apply the ‘likelihood
encoder’ of [17] and [21] which is an elegant alternative to
the standard random coding argument. The converse part of
the proof is an appropriately modified version of the converse
argument in [17]; however, in our setup this technique also
works in the continuous alphabet case, while in [17] the finite
alphabet assumption seem quite difficult to relax.

A. Achievability for Discrete Alphabets

Assume that (R, Rc) is in the interior of L(D). Then there
exists PX,Y,U ∈ M(D) such that R > I (X; U) and R + Rc >
I (Y ; U). The method used in this part of the proof comes
from [17, Sec. V] where instead of explicitly constructing the
encoder-decoder pair, a joint distribution was constructed from
which the desired encoder-decoder behavior is established.

In this section, distributions which depend on realizations
of some random variable (e.g., random codebook) will be
denoted as bold upper case letters, but without referring to
the corresponding realization for notational simplicity.

For each n, generate a random ‘codebook’ Cn := {
Un( j, k)

}
of un sequences independently drawn from Pn

U and indexed by
( j, k) ∈ [2nR] × [2nRc ]. For each realization {un( j, k)} of Cn ,
define a distribution �Xn ,Y n,J,K such that (J, K ) is uniformly
distributed on [2nR]×[2nRc] and (Xn,Y n) is the output of the
stationary and memoryless channel Pn

X,Y |U when we feed it
with un(J, K ), i.e.,

�Xn,Y n,J,K (x
n, yn, j, k) := 1

2n(R+Rc)
Pn

X,Y |U (x
n, yn|un( j, k)).

(21)

Here, {�Xn,Y n,J,K }n≥1 are the distributions from which we
derive a sequence of encoder-decoder pairs which for all
n large enough almost meet the requirements in Definition 1.

Lemma 2 (Soft Covering Lemma [17, Lemma IV.1]): Let
PV ,W = PV PW |V be the joint distribution of some random
vector (V ,W ) on V × W, where PV is the marginal on V and
PW |V is the conditional probability on W given V. For each n,
generate the set Bn = {

V n(i)
}

of vn sequences independently
drawn from Pn

V and indexed by i ∈ [2nR]. Let us define a
random measure on Wn as

PW n(wn) := 1

|Bn|
|Bn |∑
i=1

PW n |V n (wn |V n(i)),

where PW n |V n = ∏n
i=1 PW |V . If R ≥ I (V ; W ), then we have

EBn

[‖PW n − Pn
W ‖T V

] ≤ 3

2
exp{−κn},

for some κ > 0.
Since R + Rc > I (Y ; U), by the soft covering lemma

ECn

[‖�Y n − Pn
Y ‖T V

] ≤ 3
2 exp {−cn}, (22)

where c > 0 and ECn denotes expectation with respect to
the distribution of Cn . Note that for any fixed k, the collection
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Cn(k) := {Un( j, k)} j is a random codebook of size 2nR . Since
R > I (X; U), the soft covering lemma again gives

ECn (k)
[‖�Xn |K=k − Pn

X ‖T V
] ≤ 3

2
exp {−dn}, (23)

where d > 0 (same for all k) and ECn (k) denotes expectation
with respect to the distribution of Cn(k). Then, by the definition
of total variation, we have

ECn

[‖�Xn,K − 1

2nRc
Pn

X‖T V
]

:= ECn

[
1

2

∑
xn,k

∣∣�Xn,K (x
n, k)− 1

2nRc
Pn

X (x
n)
∣∣]

= 1

2nRc
ECn

[
1

2

∑
xn,k

∣∣�Xn |K (xn|k)− Pn
X (x

n)
∣∣]

= 1

2nRc

∑
k

ECn (k)
[‖�Xn |K=k − Pn

X‖T V
]

≤ 3

2
exp {−dn}. (24)

Furthermore, the expected value (taken with respect to the
distribution of Cn) of the distortion induced by �Xn ,Y n is upper
bounded by D as a result of the symmetry in the construction
of Cn , i.e.,

ECn

[∑
xn,yn

ρn(x
n, yn)�Xn,Y n (xn, yn)

]

= ECn

[∑
j,k

∑
xn,yn

ρn(x
n, yn)�Xn ,Y n,J,K (x

n, yn, j, k)

]

=
∑

xn,yn

ρn(x
n, yn)

∑
j,k

ECn

[
�Xn,Y n ,J,K (x

n, yn, j, k)

]

=
∑

xn,yn

ρn(x
n, yn)Pn

X,Y (x
n, yn) ≤ D, (25)

where the last equality follows from the symmetry and the
independence in the codebook construction, and the last
inequality follows from the definition of M(D).

Now, since �Y n,J |Xn,K = � J |Xn,K �Y n |J,K , we define a
randomized (n, R, Rc) source code such that it has the
encoder-decoder pair (� J |Xn,K ,�Y n |J,K ). Hence, (n, R, Rc)
depends on the realization of Cn . Let PXn,Y n,J,K denote the
distribution induced by (n, R, Rc), i.e.,

PXn,Y n,J,K (x
n, yn, j, k)

:= 1

2nRc
Pn

X (x
n)�Y n,J |Xn,K (y

n, j |xn, k).

If two distributions are passed through the same channel,
then the total variation between the joint distributions is the
same as the total variation between the input distributions
[17, Lemma V.2]. Hence, by (24)

ECn

[
‖�Xn,Y n,K ,J − PXn,Y n,K ,J ‖T V

]
≤ 3

2
exp {−dn}. (26)

Then, (25) and (26) give

ECn

[∑
xn,yn

ρn(x
n, yn)PXn,Y n (xn, yn)

]
≤ D + α exp {−dn},

(27)

where α = ρmax
3
2 . By virtue of the properties of total variation

distance, (22) and (26) also imply

ECn

[‖PY n − Pn
Y ‖T V

]
≤ ECn

[‖PY n − �Y n ‖T V
] + ECn

[‖�Y n − Pn
Y ‖T V

]
≤ 3

2
exp {−dn} + 3

2
exp {−cn}

= αn exp {−dn}, (28)

where (without any loss of generality) we assumed d < c and
where αn := 3

2

(
1+exp {−(c − d)n}) ≤ 2 if n is large enough.

Define the following functions of the random codebook Cn:

D(Cn) :=
∑

xn,yn

ρn(x
n, yn)PXn,Y n (xn, yn),

G(Cn) := ‖PY n − Pn
Y ‖.

Thus, the expectations of D(Cn) and G(Cn) satisfy
(27) and (28), respectively. For any δ ∈ (0, d), Markov’s
inequality gives

Pr
{

G(Cn) ≤ exp {−δn}
}

≥ 1 − αn exp {−dn}
exp {−δn} , (29)

Pr
{

D(Cn) ≤ D + δ

}
≥ 1 − D + α exp {−dn}

D + δ
. (30)

Since

lim
n→∞

(
2 − αn exp {−dn}

exp {−δn} − D + β exp {−dn}
D + δ

)

= 2 − D

D + δ
> 1,

there exists a positive N(δ) such that for n ≥ N(δ), we have

Pr
{(

D(Cn) ≤ D + δ

)⋂(
G(Cn) ≤ exp {−δn}

)}
> 0.

This means that for each n ≥ N(δ), there is a realization of
Cn which gives∑

xn,yn

ρn(x
n, yn)PXn,Y n (xn, yn) ≤ D + δ (31)

‖PY n − Pn
Y ‖ ≤ exp {−δn}. (32)

Hence, the sequence of (n, R, Rc) randomized source codes
corresponding to these realizations almost satisfies the
achievability constraints. Next we can slightly modify this
coding scheme so that the code exactly satisfies the i.i.d. output
distribution constraint Y n = ψn = Pn

Y while having distortion
upper bounded by D + δ.

Before presenting this modification, we pause to define the
notion of optimal coupling and the optimal transportation cost
as they will play an important role in the sequel. Let π , λ
be probability measures over finite or continuous alphabets W
and V, respectively. The optimal transportation cost T̂ (π, λ)
between π and λ (see [19]) with respect to a cost function
c : V × W → [0,∞) is defined by

T̂ (π, λ) = inf
{
E[c(V ,W )] : V ∼ π,W ∼ λ

}
, (33)

where the infimum is taken over all joint distribution of pairs
of random variables (V ,W ) satisfying the given marginal
distribution constraints. The distribution achieving T̂ (π, λ) is
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Fig. 4. Randomized source code used in the achievability proof for discrete
alphabets.

called an optimal coupling of π and λ. Somewhat informally,
we also call the corresponding conditional probability on W
given V an optimal coupling. Optimal couplings exist when
V = W are finite or when V = W = R, ρ(x, y) = (x − y)2,
and both π and λ both have finite second moments [19].

Consider the (n, R, Rc) randomized source code depicted in
Fig. 4 which is obtained by augmenting the original (n, R, Rc)
code with the optimal coupling TŶ n |Y n between PY n and ψn

with transportation cost T̂ (PY n , ψn) when the cost function is
ρn(yn, ỹn) = 1

n

∑n
i=1 ρ(yi , ỹi ) := 1

n

∑n
i=1 d(yi , ỹi )

p , where
d is a metric on Y = X. Note that

dn(y
n, ỹn) :=

( n∑
i=1

d(yi , ỹi )
p
) 1

q

,

where q = max{1, p}, defines a metric on Yn . We have

T̂ (PY n , ψn)

:= inf

{
E
[
ρn(Y

n, Ỹ n)
] : Y n ∼ PY n , Ỹ n ∼ ψn

}

= 1

n
inf

{
E

[ n∑
i=1

d(Yi , Ỹi )
p
]

: Y n ∼ PY n , Ỹ n ∼ ψn
}

= 1

n

(
inf

{
E

[ n∑
i=1

d(Yi , Ỹi )
p
] 1

q : Y n ∼ PY n , Ỹ n ∼ ψn
})q

= 1

n

(
Wq(PY n , ψn)

)q
,

where Wq denotes the Wasserstein distance of order q
[19, Definition 6.1]. Using [19, Th. 6.15], we obtain for
arbitrary fixed yn

0 ∈ Yn and r such that 1
q + 1

r = 1,

Wq (PY n , ψn)

≤ 2
1
r

(∑
yn

dn(y
n
0 , yn)q

∣∣PY n (yn)− ψn(yn)
∣∣)

1
q

= 2
1
r

(∑
yn

n∑
i=1

ρ(y0,i , yi )
∣∣PY n (yn)− ψn(yn)

∣∣)
1
q

≤ 2
1
r
(
nρmax‖PY n − ψn‖T V

) 1
q

≤ 2
1
r
(
nρmax exp {−δn}) 1

q , by (32).

Hence, we have

T̂n(PY n , ψn) ≤ 2
q
r ρmax exp {−δn}. (34)

Recall that ρ(x, y) = d(x, y)p for some p > 0. If p ≥ 1, then
‖V n‖p := (

E
[ ∑n

i=1 |Vi |p
])1/p is a norm on R

n-valued ran-
dom vectors whose components have finite pth moments, and
if 1 < p < 0, we still have ‖Un + V n‖p ≤ ‖Un‖p + ‖V n‖p .
Thus we can upper bound the distortion E[ρn(Xn, Ŷ n)] of the

Fig. 5. Randomized source code used in the achievability proof for
continuous alphabets.

code in Fig. 4 as follows:
(

E

[
1

n

n∑
i=1

ρ(Xi , Ŷi )

])1/q

=
(

E

[
1

n

n∑
i=1

d(Xi , Ŷi )
p
])1/q

≤
(

E

[
1

n

n∑
i=1

d(Xi ,Yi )
p
])1/q

+
(

E

[
1

n

n∑
i=1

d(Yi , Ŷi )
p
])1/q

=
(
E[ρn(X

n,Y n)]
)1/q + T̂n(PY n , ψn)1/q ,

Hence, by (31) and (34) we obtain

lim sup
n→∞

E[ρn(X
n, Ŷ n)] ≤ D + δ,

which completes the proof.

B. Achievability for Continuous Alphabets

In this section, we let X = Y = R, ρ(x, y) = (x − y)2, and
assume that μ and ψ have finite second moments. We make
use of the discrete case to prove the achievability for the
continuous case.

Assume that (R, Rc) is in the interior of L(D). Then
there exists PX,Y,U ∈ M(D) such that R > I (X; U) and
R + Rc > I (Y ; U). Let qk denote the uniform quantizer on
the interval [−k, k] having 2k levels, the collection of which is
denoted by Lk . Extend qk to the entire real line by using the
nearest neighborhood encoding rule. Define X (k) := qk(X)
and Y (k) := qk(Y ). Let μk and ψk denote the distributions of
X (k) and Y (k), respectively. It is clear that

E[(X − X (k))2] → 0, and E[(Y − Y (k))2] → 0 as k → ∞.

(35)

Moreover, by [19, Th. 6.9] it follows that T̂ (μk, μ) → 0
and T̂ (ψk , ψ) → 0 as k → ∞ since μk → μ, ψk → ψ
weakly [24], and E[X (k)2] → E[X2], E[Y (k)2] → E[Y 2].
For each k define Dk := E[(X (k)− Y (k))2]. Then by (35)

lim
k→∞ Dk = E[(X − Y )2] ≤ D.

For any k, let Mk(Dk) be the set of distributions obtained
by replacing μ, ψ , and X = Y with μk , ψk , and Xk = Yk =
Lk , respectively, in (4). Note that X (k)− U − Y (k) and

I (X (k); U) ≤ I (X; U) and I (Y (k); U) ≤ I (Y ; U) (36)

by data processing inequality which implies R > I (X (k); U)
and R + Rc > I (Y (k); U). Hence, PX (k),Y (k),U ∈ Mk(Dk).
Then, using the achievability result for discrete alphabets, for
any k, one can find a sequence of (n, R, Rc)

k randomized
source codes for common source and reproduction alphabet
Lk , source distribution μk , and desired output distribution ψk

such that the upper limit of the distortions of these codes is
upper bounded by Dk .

For each k and n, consider the randomized source codes
defined in Fig. 5. We note that the definition of the optimal
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transportation cost implies that T̂ (μn
k , μ

n) ≤ T̂ (μk, μ) and
T̂ (ψn

k , ψ
n) ≤ T̂ (ψk, ψ). Hence, using the triangle inequality

for the norm ‖V n‖2 := (∑n
i=1 E[V 2

i ])1/2
on R

n-valued
random vectors having finite second moments, for all k,
we have

lim sup
n→∞

E

[(
X̂n(k)− Ŷ n(k)

)2
]1/2

≤ lim sup
n→∞

(
T̂ (μn

k , μ
n)1/2 + E

[(
Xn(k)− Y n(k)

)2
]1/2

+T̂ (ψn
k , ψ

n)1/2
)

≤ T̂ (μk, μ)
1/2 + T̂ (ψk, ψ)

1/2

+ lim sup
n→∞

E

[(
Xn(k)− Y n(k)

)2
]1/2

≤ T̂ (μk, μ)
1/2 + T̂ (ψk, ψ)

1/2 + D1/2
k .

By choosing k large enough we can make the last term
arbitrarily close to D, which completes the proof.

C. Cardinality Bound

In this section, we show that for any discrete distribution
�X,Y,W forming a Markov chain X − W − Y , there exists
a discrete distribution �X,Y,U forming another Markov chain
X − U − Y such that

|U| ≤ |X| + |Y| + 1,

�X = �X

�Y = �Y ,

E�[ρ(X,Y )] = E�[ρ(X,Y )],
I�(X; U) = I�(X; W ),

I�(Y ; U) = I�(Y ; W ),

where IP (X; U) denotes the mutual information computed
with respect to the distribution P . Let P(X) × P(Y) denote
the product of probability simplices P(X) and P(Y) repre-
senting the set of all distributions of independent random
variables over X×Y. This set is compact and connected when
viewed as a subset of R

|X|+|Y|. Without loss of generality
X = {1, . . . , |X|} and Y = {1, . . . , |Y|}. Since H (X) is fixed
in I (X; W ) = H (X)− H (X |W ) (similarly H (Y ) is fixed in
I (Y ; W ) = H (Y ) − H (Y |W )), we define the following real
valued continuous functions on P(X)× P(Y):

g j (ν) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

νx( j), if j = 1, . . . , |X| − 1

νy( j), if j = |X|, . . . , |X| + |Y| − 2

Eν[ρ(X,Y )], if j = |X| + |Y| − 1

H (νx), if j = |X| + |Y|
H (νy), if j = |X| + |Y| + 1,

where ν = νx ⊗ νy and H (P) denotes the entropy of the dis-
tribution P . By so-called ‘support lemma’ [25, Appendix C],
there exists a random variable U ∼ �U , taking values
in U with |U| ≤ |X| + |Y| + 1, and a conditional

probability �X |U�Y |U on X × Y given U such that for
j = 1, . . . , |X| + |Y| + 1,

∑
w

g j (�X |W=w�Y |W=w)�W (w)

=
∑

u

g j (�X |U=u�Y |U=u)�U (u),

which completes the proof.

D. Converse

We use the standard approach to prove the converse in
Theorem 1, i.e., that clR(D) ⊂ L(D) for any D ≥ 0. We note
that this proof holds both for finite alphabets and continuous
alphabets.

For each Rc, define the minimum coding rate R at distortion
level D as

min{R ∈ R(D, Rc)} =: IRc (μ‖ψ, D).

Using a time-sharing argument and the operational meaning
of IRc (μ‖ψ, D), one can prove that IRc (μ‖ψ, D) is convex
in D, and therefore, continuous in D, 0 < D < ∞ (see the
proof of Lemma 1). Since IRc (μ‖ψ, D) is nonincreasing in D,
we have IRc (μ‖ψ, 0) ≥ limD→0 IRc (μ‖ψ, D). But by the
definition of R(0, Rc), we also have limD→0 IRc (μ‖ψ, D) ∈
R(0, Rc), so that IRc (μ‖ψ, 0) = limD→0 IRc (μ‖ψ, D).
Hence, IRc (μ‖ψ, D) is also continuous at D = 0. Let us
define R∗(D) = {(R, Rc) ∈ R

2 : R > IRc (μ‖ψ, D)} and
let (R, Rc) ∈ R∗(D). Since IRc (μ‖ψ, D) is continuous in
D, there exists ε > 0 such that R > IRc (μ‖ψ, D − ε).
Hence, there exists, for all sufficiently large n, a (n, R, Rc)
randomized source code such that

E[ρn(X
n,Y n)] ≤ D,

Y n ∼ ψn .

For each n, define the random variable Qn ∼ Unif{1, . . . , n}
which is independent of (Xn,Y n, J, K ), associated with the
nth randomized source code. Since J ∈ [2nR],

n R ≥ H (J ) ≥ H (J |K ) ≥ I (Xn; J |K )
(a)= I (Xn; J, K )

=
n∑

i=1

I (Xi ; J, K |Xi−1)

(b)=
n∑

i=1

I (Xi ; J, K , Xi−1)

≥
n∑

i=1

I (Xi ; J, K )

= nI (X Qn ; J, K |Qn)

(c)= nI (X Qn ; J, K , Qn),

where (a) follows from the independence of Xn and K ,
(b) follows from i.i.d. nature of the source Xn and (c) follows
from the independence of X Qn and Qn . Similarly, for the sum
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rate we have

n(R + Rc) ≥ H (J, K ) ≥ I (Y n; J, K )

=
n∑

i=1

I (Yi ; J, K |Y i−1)

(a)=
n∑

i=1

I (Yi ; J, K ,Y i−1)

≥
n∑

i=1

I (Yi ; J, K )

= nI (YQn ; J, K |Qn)
(b)= nI (YQn ; J, K , Qn),

where (a) follows from i.i.d. nature of the output Y n and
(b) follows from the independence of YQn and Qn . Notice that
X Qn ∼ μ, YQn ∼ ψ , and X Qn − (J, K , Qn )− YQn . We also
have

E[ρ(X Qn ,YQn )] = E

[
E
[
ρ(X Qn ,YQn )|Qn

]]

= 1

n

n∑
i=1

E
[
ρ(X Qn ,YQn )|Qn = i

]

= 1

n

n∑
i=1

E
[
ρ(Xi ,Yi )

]

= E
[
ρn(X

n,Y n)
] ≤ D.

Define U = (J, K , Qn) and denote by PX,Y,U the distribution
of (X Qn ,YQn ,U). Hence, PX,Y,U ∈ M(D) which implies that
(R, Rc) ∈ L(D). Hence, R∗(D) ⊂ L(D). But, since L(D) is
closed in R

2, we also have clR∗(D) = clR(D) ⊂ L(D).

VII. CONCLUSION

Generalizing the practically motivated distribution preserv-
ing quantization problem, we have derived the rate distortion
region for randomized source coding of a stationary and
memoryless source, where the output of the code is restricted
to be also stationary and memoryless with some specified
distribution. For a given distortion level, the rate region con-
sists of coding and common randomness rate pairs, where the
common randomness is independent of the source and shared
between the encoder and the decoder. Unlike in classical rate
distortion theory, here shared independent randomness can
decrease the necessary coding rate communicated between the
encoder and decoder.

APPENDIX

A. Proof of Lemma 1

Let D1 and D2 be two distinct positive real numbers and
choose α ∈ (0, 1). Fix any ε > 0. Let δ be a small
positive number which will be specified later. By the definition
of I0(μ‖ψ, D) and by Theorem 1 there exist positive real
numbers R1 and R2 such that

Ri ≤ I0(μ‖ψ, Di )+ δ, i = 1, 2,

and such that for all sufficiently large n there exist randomized
(n, R1, 0) and (n, R2, 0) source codes having output distribu-
tion ψn which satisfy

E

[
ρn

(
Xn, F (1)

(
E (1)(Xn)

))] ≤ D1 + δ, i = 1, 2,

where (E (1), F (1)) and (E (2), F (2)) are the encoder-decoder
pairs for these codes. Let {kM}M≥1 be a sequence of positive
integers such that limM→∞ kM

M = α. Let N be a positive
integer which will be specified later. For the source block XnN

define the following randomized source code:

E := (
E (1), . . . , E (1)︸ ︷︷ ︸

kN -times

, E (2), . . . , E (2)︸ ︷︷ ︸
N − kN -times

)
,

F := (
F (1), . . . , F (1)︸ ︷︷ ︸

kN -times

, F (2), . . . , F (2)︸ ︷︷ ︸
N − kN -times

)
.

Note that the output distribution for this randomized source
code is ψnN , and its rate R and distortion D satisfy the
following

R = 1

nN

(
kN n R1 + (N − kN )n R2

)

≤ kN

N
I0(μ‖ψ, D1)+ N − kN

N
I0(μ‖ψ, D2)+ δ,

and

D = E
[
ρnN (X

nN ,Y nN )
] ≤ kN

N
D1 + N − kN

N
D2 + δ.

Since limM→∞ kM
M = α, one can choose N and δ such that

R is upper bounded by α I0(μ‖ψ, D1)+(1−α)I0(μ‖ψ, D2)+ε
and D is upper bounded by αD1 + (1 − α)D2 + ε. By Defin-
ition 1, this yields

I0
(
μ‖ψ,αD1 + (1 − α)D2

)
≤ α I0(μ‖ψ, D1)+ (1 − α)I0(μ‖ψ, D2)+ ε.

Since ε is arbitrary, this completes the proof.

B. Proof of Corollary 1

Assume that (R, Rc) is in the interior of S(D). Then
there exists PX,Y,U ∈ H(D) such that R > I (X; U) and
R + Rc > I (X,Y ; U). Let π = PX,Y . By Theorem 2 there
exists a sequence of (n, R, Rc) randomized source codes such
that

lim
n→∞ ‖PXn ,Y n − πn‖ = 0, (37)

where (Xn,Y n) denotes the input-output of the nth code. Since
ρn is bounded, we have

lim sup
n→∞

∣∣E[ρn(X
n,Y n)] − D

∣∣
= lim sup

n→∞
∣∣E[ρn(X

n,Y n)] − Eπn [ρn(X
n,Y n)]∣∣

≤ lim sup
n→∞

‖PXn ,Y n − πn‖T Vρmax = 0, (38)

where Eπn denotes the expectation with respect to πn . Let
TŶ n |Y n be the optimal coupling (i.e., conditional probability)

between PY n and ψn with the transportation cost T̂ (PY n , ψn)
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Fig. 6. Sub-optimal randomized source code achieving the rate region of
Corollary 1.

with cost function ρn . By [19, Th. 6.15] and (37) one can
prove that lim supn→∞ T̂ (PY n , ψn) = 0 as in (34).

For each n, let us define the following encoder-decoder pair
(see Fig. 6)

Ẽn
J |Xn,K := En

J |Xn,K (39)

F̃n
Ŷ n |J,K := TŶ n |Y n ◦ Fn

Y n |J,K , (40)

where (En, Fn) is the encoder-decoder pair of the nth code.
Note that the randomized source code defined in (39) and (40)
has rates (R, Rc) and output distribution ψn . Furthermore,
using the triangle inequality as in Section VI-A one can prove
that

lim sup
n→∞

E[ρn(X
n, Ŷ n)] ≤ D

using (38) and the fact that lim supn→∞ T̂ (PY n , ψn) = 0. This
completes the proof.

C. Proof of Theorem 4

Since Re(D, Rc) ⊃ Re(D, 0) for all Rc, it is enough to
prove that

Re(D, 0) ⊃ L(D,∞),

Re(D, Rc) ⊂ L(D,∞).

Recall that

L(D,∞) = {R ∈ R : ∃PX,Y ∈ G(D) s.t. R ≥ I (X; Y )}.
Let us assume that R ∈ L(D,∞). Then, there exists
PX,Y =: π ∈ G(D) such that R ≥ I (X; Y ). Fix any ε > 0. By
Theorem 3 there exists a sequence of (n, R,∞) randomized
source codes such that

lim
n→∞ ‖pXn,Y n − π‖T V = 0 in probability, (41)

which implies

lim
n→∞ ‖pY n − ψ‖T V = 0 in probability.

Hence, this sequence of codes satisfies the second constraint
in Definition 3. To show that the codes satisfy the distortion
constraint, we use the same steps in [21, Sec. VII-D]. We have

ρn(X
n,Y n) = 1

n

n∑
i=1

ρ(Xi ,Yi )

= 1

n

n∑
i=1

∑
x,y

1{Xi=x,Yi=y}ρ(x, y)

=
∑
x,y

ρ(x, y)
1

n

n∑
i=1

1{Xi =x,Yi=y}

= EpXn ,Y n [ρ(X,Y )],

where 1B denotes the indicator of event B and EpXn ,Y n denotes
the expectation with respect to the empirical distribution
pXn,Y n of (Xn,Y n). For any ε1 > 0, by (41) we have

Pr
{
‖pXn,Y n − π‖T V > ε1

}
< ε1,

for all sufficiently large n. Define the event Bε1 := {‖pXn,

Y n −π‖T V ≤ ε1
}
. Then, for all sufficiently large n, we obtain

E[ρn(X
n,Y n)]

= E

[
EpXn ,Y n

[
ρ(X,Y )

]]

= E

[
EpXn ,Y n

[
ρ(X,Y )

]
1Bε1

]
+ E

[
EpXn ,Y n

[
ρ(X,Y )

]
1Bc

ε1

]

≤ E

[
EpXn ,Y n

[
ρ(X,Y )

]
1Bε1

]
+ ρmaxε1

≤ Eπ

[
ρ(X,Y )

] + 2ε1ρmax

≤ D + 2ε1ρmax.

By choosing ε1 such that 2ε1ρmax < ε, we obtain
Re(D, 0) ⊃ L(D,∞).

To prove Re(D, Rc) ⊂ L(D,∞), we use the same argu-
ments as in [21, Sec. VII-B]. Let us choose R ∈ Re(D, Rc)
with the corresponding sequence of (n, R, Rc) randomized
source codes satisfying constraints in Definition 3. For each
n, define the random variable Qn ∼ Unif{1, . . . , n} which
is independent of the input-output (Xn,Y n) of the code
(n, R, Rc). Then, we have

n R ≥ H (J )

≥ I (Xn; Y n)

=
n∑

i=1

I (Xi ; Y n|Xi−1)

=
n∑

i=1

I (Xi ; Y n, Xi−1)

≥
n∑

i=1

I (Xi ; Yi )

= nI (X Qn ; YQn |Qn)
(a)= nI (X Qn ; YQn , Qn)

≥ nI (X Qn ; YQn), (42)

where (a) follows from the independence of X Qn and Qn .
We also have

E[ρ(X Qn ,YQn )] = E

[
E
[
ρ(X Qn ,YQn )|Qn

]]

= 1

n

n∑
i=1

E
[
ρ(X Qn ,YQn )|Qn = i

]

= 1

n

n∑
i=1

E
[
ρ(Xi ,Yi )

]

= E
[
ρn(X

n,Y n)
]
. (43)

One can prove PYQn
→ ψ in total variation

(see [21, Sec. VII-B-3]). Since the set of probability
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distributions over X × Y is compact with respect to the total
variation distance, we can find a subsequence {(X Qnk

,YQnk
)}

of {(X Qn ,YQn )} such that

PX Qnk
,YQnk

→ PX̂ ,Ŷ

in total variation for some PX̂ ,Ŷ . But, since PX Qnk
= μ for

all k and PYQn
→ ψ in total variation, we must have PX̂ = μ

and PŶ = ψ . Now, taking the limit of (42) and (43) through
this subsequence, we obtain

R ≥ lim
k→∞ I (X Qnk

; YQnk
) = I (X̂ ; Ŷ )

and

E[ρ(X̂ , Ŷ )] = lim
k→∞ E[ρ(X Qnk

,YQnk
)]

= lim
k→∞ E[ρnk (X

nk ,Y nk )] ≤ D.

Hence, R ∈ L(D,∞) which completes the proof.

D. Proof of Theorem 5

1) Achievability: Assume (R, Rc) is in the interior of
cl Rdd(D). Then there exists PX,Y =: π ∈ G(D) such that
R > I (X; Y ) and R + Rc > H (Y ). By [26, Th. 1] or
[17, Sec. III-E], there exists a sequence of (n, R, Rc)
randomized source codes with deterministic decoder such that

‖PXn ,Y n − πn‖T V → 0.

Hence, ‖PY n − ψn‖T V → 0 and

lim
n→∞ E[ρn(X

n,Y n)] = lim
n→∞ Eπn [ρn(X

n,Y n)] ≤ D

completing the proof.
2) Converse: Let (R, Rc) ∈ clRdd(D). Using a similar

argument as in Appendix C, one can show that

n R ≥ nI (X Qn ; YQn ), (44)

and

E[ρ(X Qn ,YQn )] = E[ρn(X
n,Y n)], (45)

where Qn ∼ Unif{1, . . . , n} is independent of input-output
(Xn,Y n) of the corresponding randomized source code, and
PYQn

→ ψ in total variation. Also, there is a subsequence
{(X Qnk

,YQnk
)} such that PX Qnk

,YQnk
→ PX̂ ,Ŷ in total variation

for some PX̂ ,Ŷ with PX̂ = μ and PŶ = ψ . By taking the limit
of (44) and (45) through this subsequence we obtain

R ≥ I (X̂ ; Ŷ ), (46)

E[ρ(X̂ , Ŷ )] ≤ D. (47)

Hence, the first inequality in (19) is satisfied. To show
the second inequality, let an := ‖PY n − ψn‖T V .
By [22, Th. 17.3.3], we have

|H (Y n)− H (ψn)| ≤ an log

( |Y|n
an

)
,

where H (ψn) = nH (ψ). Since the decoder is a deterministic
function of J and K , we have

nH (ψ)− an
(
n log |Y| − log an

) ≤ H (Y n) ≤ n(R + Rc).

Since an → 0 as n → ∞, this yields R+Rc ≥ H (ψ) = H (Y ).
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