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Abstract—The joint source–channel coding (JSCC) problem for
soft-decision-demodulated time-correlated fading channels is in-
vestigated without the use of channel coding and interleaving. For
the purpose of system design, the recently introduced nonbinary
noise discrete channel with queue-based (QB) noise (NBNDC-QB)
is adopted. This analytically tractable Markovian model has been
shown to represent effectively correlated fading channels that
are hard to handle analytically. Optimal sequence maximum
a posteriori (MAP) detection of a discrete Markov source sent
over the NBNDC-QB is first studied. When the Markov source is
binary and symmetric, a necessary and sufficient condition under
which the MAP decoder is reduced to a simple instantaneous
symbol-by-symbol decoder is established. Two robust lossy source
coding schemes with a low encoding delay are next proposed for
the NBNDC-QB. The first scheme consists of a scalar quantizer
(SQ), a proper index assignment, and a sequence MAP decoder
designed to harness the redundancy left in the indexes of the
quantizer and the soft-decision output and the noise correlation
of the channel. The second scheme is a classical noise-resilient
vector quantizer known as the channel-optimized vector quantizer
(COVQ). It is demonstrated that both systems can successfully
exploit the memory and soft-decision information of the channel.
Signal-to-distortion-ratio (SDR) gains of more than 1.7 dB are
obtained over hard-decision demodulation by using only two bits
for soft decision. Furthermore, gains as high as 4.4 dB can be
achieved for a strongly correlated channel, in comparison with
systems designed for the ideally interleaved (memoryless) channel.
Finally, it is numerically observed that, for low coding rates, the
NBNDC-QB model can accurately approximate discrete fading
channels (DFCs) in terms of SDR performance.

Index Terms—Channel modeling, channel-optimized vector
quantization (COVQ), correlated fading channels, joint source–
channel coding (JSCC), maximum a posteriori (MAP) decod-
ing, Markov channels, scalar quantization (SQ), soft-decision
demodulation.
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I. INTRODUCTION

I T IS well known that the separate treatment of source
and channel coding, which is justified by Shannon’s

source–channel coding separation theorem [3], is not optimal in
the presence of complexity and delay constraints. For example,
in a recent information theoretic study [4], it has been shown
that the error exponent for joint source–channel coding (JSCC)
can be twice as large as the exponent for separate source and
channel coding. Hence, for an identical overall probability of
error, JSCC would need half the (encoding and decoding) delay
of separate coding; this translates into a 2-dB power saving for a
wide class of source–channel pairs [4]. Such substantial poten-
tial benefits provide an incentive for adopting and integrating
JSCC in today’s resource-strapped wireless communication
systems. Some other advantages of JSCC over separate source
and channel coding were quantitatively characterized in [5].
For lossy coding, a variety of different JSCC schemes has
been proposed (such as [6]–[14] and many others).1 It is also
known that, if a channel is well behaved (ergodic) and has
memory, then its capacity is strictly greater than the capacity
of its memoryless counterpart (a channel with an identical
1-D transition distribution) realized via ideal (infinite depth)
block interleaving [17], [18]. Consequently, a communication
system can be designed to take advantage of the memory of
a channel and perform better than a system that discards such
memory via interleaving. Furthermore, effective use of the soft-
decision information of a channel can improve capacity and
system performance over hard-decision-decoded schemes (e.g.,
see [19]–[22]).

In this paper, we investigate the JSCC problem for soft-
decision-demodulated time-correlated fading channels. Our ob-
jective is the design of effective schemes having low encoding
delay and complexity that aptly exploit the source statistics and
both the soft-decision information and statistical memory of a
channel without the use of channel error-correcting codes and
channel interleaving. Such schemes have pertinent applications
in wireless communications, including mobile radio and sensor
networks, where the mobile or sensor has stringent processing
and encoding delay constraints, whereas the fusion center or
the base station has sufficient decoding resources. For this pur-
pose, we use the recently introduced nonbinary noise discrete
channel with queue-based (QB) noise (NBNDC-QB), which is
a binary input 2q-ary output channel (where q ≥ 1 is an integer)

1In this paper, we focus on lossy source codes that are resilient against
channel noise. There are other JSCC approaches; see for example [4], [15],
[16] and the references therein.
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with 2q-ary stationary ergodic M th-order Markov noise in
[23]–[25]. This model features closed-form expressions for its
transition probabilities, noise entropy rate, and autocorrelation
function, making it amenable for tractable analytical perfor-
mance analysis and code design. It is also shown in [24] and
[25] that the NBNDC-QB can accurately represent (in terms
of channel capacity and noise autocorrelation function) the
correlated Rayleigh discrete fading channel (DFC) used with
antipodal signaling and q-bit soft-decision (nonbinary) output
quantization.

We first study the optimal sequence maximum a posteriori
(MAP) detection problem when a discrete Markov source sent
over the NBNDC-QB. We translate the MAP detection problem
into simple Viterbi decoding with an appropriately modified
decoding metric. If the Markov source is binary and symmetric,
we prove a necessary and sufficient condition under which the
sequence MAP detector reduces to an instantaneous symbol-
by-symbol mapping (having no decoding delay). We also show
and verify this condition numerically.

To exploit the memory and soft decision information of
NBNDC-QB, we next design two JSCC schemes with low en-
coding delay and complexity: a scheme that uses a basic scalar
quantizer (SQ) and sequence MAP decoding (the SQ-MAP
scheme) and a scheme that consists of a channel-optimized
vector quantizer (COVQ). Both schemes are source-centric
JSCC systems in the sense that they do not use explicit algebraic
channel coding and are thus less complex than the conven-
tional separate source–channel coding systems. Furthermore,
both schemes avoid the use of channel interleaving, which can
introduce considerable additional delay when the underlying
physical channel experiences slow fading. Instead, our schemes
are tailored to exploit judiciously the statistical time-correlation
structure of the channel to better combat channel impairments.
Both systems are designed and evaluated for the NBNDC-QB
and then tested (with a mismatched encoder/decoder) over the
equivalent correlated Rayleigh DFC used with soft-decision
demodulation to simulate the performance of the systems in a
wireless setup.

This paper builds upon and significantly extends [11] and
[26], where only binary (input, noise, and output) channels with
Markovian additive noise were considered. We note that the
channel considered in [11] and [26] is a special case of the
NBNDC-QB model used here and can be obtained by setting
the NBNDC-QB parameter q = 1, which translates into using
hard-decision demodulation in the underlying fading channel.
Note that, in contrast to this paper, in [11] and [26], corre-
lated fading channels were not examined, and realistic channel
modeling and validation (under mismatched coding) were not
studied.

The organization of this paper is as follows. We introduce
two channel models, i.e., the NBNDC-QB and the Rayleigh
DFC, in Section II. In Section III, we study the MAP sequence
detection of Markov sources over the NBNDC-QB and obtain
the required relationships to implement the MAP decoder via
the Viterbi algorithm. We further study the specific case of
binary Markov sources sent over the NBNDC-QB with memory
order M = 1 and prove a necessary and sufficient condition
under which the sequence MAP detector reduces to an instan-

taneous symbol-by-symbol mapping. A sufficient condition is
also provided for the case of M ≥ 1. In Section IV, we present
and evaluate the two JSCC schemes for the NBNDC-QB (the
SQ-MAP and COVQ schemes). In SQ-MAP, we apply the
MAP decoding system to a SQ analog-valued Markov source
and assess system performance in terms of signal-to-distortion
ratio (SDR). This extends [11] where only binary output chan-
nels with Markov noise were considered. A COVQ system is
then proposed for the NBNDC-QB. Similar to the SQ-MAP,
we numerically show that the COVQ can successfully exploit
the memory and soft-decision information of the channel and
achieve considerably better SDR performance than systems
with hard output quantization and systems that disregard the
memory of the channel via the use of interleaving. In Section V,
we numerically validate the NBNDC-QB model for both the
SQ-MAP and COVQ systems as an effective approximation of
the Rayleigh DFC. We conclude this paper in Section VI.

II. NONBINARY NOISE DISCRETE CHANNEL WITH

QUEUE-BASED NOISE AND DISCRETE FADING

CHANNEL MODELS

Here, we review the two channel models studied in [23] and
[25]: the NBNDC-QB and the Rayleigh DFC. We also observe
that the DFC is a special instance of the NBNDC.

A. NBNDC-QB

The NBNDC [23], [25] is a binary-input and 2q-ary-output
channel model, where q ≥ 1. The input data bits Xj ∈ {0, 1}
are affected by noise Zj via the following relation:

Yj = (2q − 1)Xj + (−1)XjZj , j = 1, 2, . . . (1)

where Yj and Zj take values in Y = {0, 1, . . . , 2q − 1}, with
{Yj} denoting the channel output process, and where noise
process {Zj} is assumed to be independent of {Xj}. According
to (1), Zj can also be written in terms of input and output
symbols as follows:

Zj =
Yj − (2q − 1)Xj

(−1)Xj
, j = 1, 2, . . . . (2)

The noise process {Zj} can be in general any stochastic
process. Following [23] and [25], we choose {Zj} to be a
nonbinary generalization of the QB noise [18]. We refer to the
ensuing channel model by NBNDC-QB. The model, which is
based on a ball sampling mechanism involving an urn and a
queue of M cells, is intuitively described as follows. At time
instance j > M , with probability 1 − ε, noise symbol Zj is
independent of past noise symbols and is picked according
to Pr{Zj = i} = ρi, i = 0, 1, . . . , 2q − 1. With probability ε,
Zj is chosen to be one of M preceding noise symbols. (The
probability that Zj takes a particular value depends on a bias
parameter2 α and increases in proportion to the number of
times that value occurred in the M past noise symbols). The
detailed description of the noise model is given in [18] and
[25]. The resulting QB noise {Zj} is a stationary and ergodic

2When M = 1, the queue has only one cell; in this case, the cell bias
parameter is set to α = 1 [18], [25].
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(irreducible) M th-order Markov process described by only
2q + 2 independent parameters: memory order M , marginal
probability distribution (ρ0, ρ1, . . . , ρ2q−1), and correlation pa-
rameters 0 ≤ ε < 1 and α ≥ 0.

The state process {Sj} of the QB noise, which is de-

fined by Sj
Δ
= (Zj , Zj−1, . . . , Zj−M+1) for j ≥ M , is a

homogeneous first-order Markov process taking values in
{0, 1, . . . , 2q − 1}M . It is shown in [23] and [25] that, for j ≥
M + 1, the noise state transition probabilities Q(sj |sj−1)

Δ
=

Pr{Sj = sj |Sj−1 = sj−1}, with sj = (zj , zj−1, . . . , zj−M+1)
and sj−1 = (z′j , z

′
j−1, . . . , z

′
j−M+1), are given by

Q(sj |sj−1) =

(
M−1∑
�=1

δzj ,zj−�
+ αδzj ,zj−M

)
ε

M − 1 + α

+ (1 − ε)ρzj (3)

if zk−1 = z′k for k = j, . . . , j −M + 2 and Q(sj |sj−1) = 0 if
otherwise, where δi,i′ = 1 if i = i′ and δi,i′ = 0 if i �= i′, and∑0

l=1
Δ
= 0.

Since the noise process is independent of the input, we have

Pr {Y m = ym|Xm = xm} = Pr {Zm = zm} (4)

where ym=(y1, y2, . . . , ym), xm=(x1, x2, . . . , xm), and zm=
(z1, z2 . . . , zm), noting that xi and yi determine zi through (2).

The m-fold channel transition probability Pr{Zm = zm} Δ
=

P
(m)
NBNDC−QB(z

m) is given in [25, eqs. (20) and (21)] (with
n corresponding to m herein); in particular, for m = 1,
P

(1)
NBNDC−QB(z1) = ρz1 for all z1 ∈ Y . The channel noise cor-

relation coefficient is given by [25]

Cor =
E[ZkZk+1]E[Zk]

2

Var(Zk)
=

ε

M−1+α

1 − (M − 2 + α) ε

M−1+α

.

B. Rayleigh DFC

The Rayleigh DFC that we consider consists of a binary
phase-shift keying (BPSK) modulator, a time-correlated flat
Rayleigh fading channel with additive white Gaussian noise
(AWGN), and a q-bit soft-quantized coherent demodulator.
The input and output alphabets are X = {0, 1} and Y =
{0, 1, . . . , 2q − 1}, respectively. Denoting the DFC binary input
process by {Xk}, the received channel symbols are given by
Rk =

√
EsAkSk +Nk, k = 1, 2, . . ., where Es is the energy

of signal sent over the channel, Sk = 2Xk − 1 is the {−1, 1}-
valued BPSK modulated signal, and {Nk} is a sequence of
independent identically distributed (i.i.d.) Gaussian random
variables of variance N0/2. Here, {Ak} is the Rayleigh fading
process of the channel (which is independent from {Nk} and
the input process) with Ak = |Gk|, where {Gk} is a time-
correlated complex wide-sense stationary Gaussian process
with Clarke’s autocorrelation function given as a Bessel func-
tion of the normalized maximum Doppler frequency fDT [25],
[28]. The SNR of the DFC is given by SNR = Es/N0.

In the DFC model, a soft-decision demodulator consisting of
a q-bit uniform quantizer takes the output Rk to produce the

discrete channel output: Yk = j if Rk ∈ (T ′
j−1, T

′
j ], where the

T ′
j are uniformly spaced thresholds with step size Δ, given by

T ′
−1 = −∞, T ′

j = (j + 1 − 2q−1)Δ for j = 0, 1, . . . , 2q − 2,

and T ′
2q−1 = ∞. Letting δ

Δ
= Δ/

√
Es and Tj

Δ
= T ′

j/
√
Es, the

m-fold transition probability for the DFC can be calculated via
[23], [25]

P
(m)
DFC (ym|xm)

Δ
= Pr {Y m = ym|Xm = xm}

=EA1...Am

[
m∏

k=1

qxk,yk
(Ak)

]
(5)

where

qi,j(ak)
Δ
= Pr{Yk = j|Xk = i, Ak = ak}

=QG

(√
2SNR (Tj−1 − (2i− 1)ak

)
−QG

(√
2SNR (Tj − (2i− 1)ak

)
with QG(·) denoting the Gaussian Q-function, and EX [·] de-
noting expectation with respect to the random variable X . For
m = 1, there is a closed-form expression for P

(1)
DFC(y|x) =

P
(1)
DFC(j), given by

P
(1)
DFC(j) = n(−Tj−1)− n(−Tj) (6)

where j = y − (2q − 1)x/(−1)x ∈ Y , and

n(Tj) = 1 −QG

(
Tj

√
2SNR

)

−

[
1 −QG

(
Tj

√
2√

1
SNR+1

)]
e
−

T2
j

( 1
SNR

+1)

√
1

SNR + 1
.

For m � 3, P (m)
DFC(y

m|xm) can be calculated in closed form.
For m > 3, (5) can only be determined numerically. Finally,
we point out that the DFC is actually an NBNDC, as given by
(1). whose noise process has an n-fold distribution given by (5)
[23], [25].

C. Fitting the NBNDC-QB Model to the Raleigh DFC Model

We fit the NBNDC-QB model to a given Rayleigh DFC (with
fixed SNR and fDT and q) via the following steps [24], [25]:

• Match the noise 1-D probability distributions by setting
ρj = P

(1)
DFC(j) for j ∈ Y , where P

(1)
DFC(j) is given by (6),

in terms of δ, q, and SNR. The values of ρj are given in
Table I.

• Match the noise correlation coefficients (so that the QB
parameter α is given in terms of M and ε). The DFC noise
correlation coefficient is calculated using P

(m)
DFC(y

m|xm)
in (5) for m = 2 [25].

• Estimate the remaining QB parameters (M, ε) by mini-
mizing the Kullback–Leibler divergence rate between the
two (2q-ary) noise processes.
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TABLE I
ρ AND δ VALUES FOR THE NBNDC-QB FOR SOFT-DECISION

RESOLUTIONS q = 1, 2, 3

It is important to note that, in general, the two channel
models cannot be matched to have an identical statistical be-
havior. However, for the memoryless case (with Cor = 0), the
NBNDC-QB is statistically identical to the ideally interleaved
DFC. The values of the fitting NBNDC-QB parameters, which
are obtained as outlined earlier, are given in [24, Table II] for
different DFCs.

III. MAP DETECTION OF MARKOV SOURCES OVER

THE NONBINARY NOISE DISCRETE CHANNEL

WITH QUEUE-BASED NOISE

A. MAP Decoder Design

Consider a stationary and ergodic discrete source {Xi} with
finite alphabet {0, 1}n. Here, {Xi} can represent the output of
a source encoder, such as the output of a rate-n SQ (as will
be seen in Section IV). Its redundancy (which is due to the
statistical memory of the source and the nonuniformity of its
marginal distribution [11], [26]) encapsulates the dispensable
amount of information of the source that can be eliminated
via optimal variable-length lossless or fixed-rate nearly lossless
data compression.

Suppose that a sequence of N source symbols
xN = (x1,x2, . . . ,xN ) ∈ {0, 1}nN is sent over the NBNDC-
QB in nN channel uses. The channel contaminates this
source sequence via a sequence of 2q-ary noise symbols
znN = (z1, z2, . . . , znN ) ∈ {0, 1, . . . , 2q − 1}nN and outputs
sequence yN = (y1,y2, . . . ,yN ) ∈ {0, 1, . . . , 2q − 1}nN .
Since the transmission over the channel is done bit by
bit (and not n-tuple by n-tuple), we represent the noise
sequence using a bit-by-bit notation, so that the noise symbols
(zni+1, zni+2, . . . , zn(i+1)), i = 0, 1, . . . , N − 1, correspond
to the input n-tuple xi+1 and output n-tuple yi+1. The channel
output yN is fed to a sequence MAP decoder, which estimates
xN by x̂N as

x̂N = argmax
xN

Pr
{
XN = xN |YN = yN

}
. (7)

To simplify the derivation of the MAP decoding metric, we
first assume that the source {Xi} is i.i.d. A minor modification
of the decoding metric is needed to accommodate (Markov)
sources with memory.

For i, j, k ∈ {1, 2, . . . , nN − 1}, where i+ j ≤ nN and i−
k ≥ 1, define

Q
(
zi+j
i+1|zii−k

)
Δ
= Pr

{
Zi+j
i+1 = zi+j

i+1|Zi
i−k = zii−k

}
.

Since the NBNDC-QB channel noise is Markov of memory
order M , for nN � M (which typically holds as N is assumed
to be large in practice), it can be shown (see [2], [34]) that (7)
is equivalent to

x̂N = argmax
xN

{
log

[
P

(n)
NBNDC−QB(z

n
1 )P (x1)

]

+

N−1∑
i=1

log
[
Q
(
z
(i+1)n
in+1 |zinin−(M−1)

)
P (xi+1)

]}
(8)

where P (xi)
Δ
= Pr{Xi = xi} is the probability distribution of

random vector Xi of size n, and from (3), we have

Q
(
zj+n
j+1 | zjj−(M−1)

)
=

j+n∏
i=j+1

[(
i−1∑

�=i−(M−1)

δzi,z� + αδzi,zi−M

)

× ε

M − 1 + α
+(1 − ε)ρzi

]
(9)

with zi
Δ
=0 if i<1, zji =(zi, zi+1, . . . , zj), P

(n)
NBNDC−QB(z

n
1 )=

Pr{Zn
1 = zn1 } given in [25, eqs. (20) and (21)], and zi being

related to its corresponding symbols xi and yi via (2). In light
of (8) and (9), the MAP detection can be implemented using a
modified version of the Viterbi algorithm [2], [34].

For the case of sources with memory, we assume that the
source forms a discrete first-order Markov chain with state
transition probability matrix P (xi+1|xi); in this case, the path
metric can be directly obtained from (8) by replacing P (xi+1)
to P (xi+1|xi).

B. Case Study: Map Detection of Binary Markov Sources

It is useful to know when the MAP detector can be replaced
with an instantaneous (symbol-by-symbol) decoding rule with-
out loss of optimality in terms of minimal sequence probability
of error. The answer to this question is partly given in [26,
Th. 1], which gives necessary and sufficient conditions for the
MAP decoder to be useless for a binary Markov channel and a
binary Markov source. In this case, a MAP decoder is called
useless if it decodes what it sees (i.e., X̂N = Y N ) and thus
does not improve the channel’s sequence error rate (this is
also known as say-what-you-see or singlet decoding [26], [31]).
Note that skipping the decoder and accepting the output se-
quence without further processing can only be achieved for
q = 1 since, in that case, the output sequence is also binary.

We examine this problem for q ≥ 2, where the received
sequence is not binary, and we provide a nontrivial extension
of [26, Th. 1]. Specifically, we apply mapping θ to convert
each 2q-ary received symbol Yk into binary symbol Ỹk. We
find optimal mapping θ∗ in the sense of minimizing the symbol
error probability. For a symmetric binary Markov source and an
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NBNDC-QB with M = 1 and q ≥ 2, our main result here es-
tablishes a necessary and sufficient condition for this mapping
θ∗ to be an optimal sequence detection rule.

Consider binary source n = 1 and the NBNDC-QB channel
with M = 1. In this case, the channel noise {Zn} is a first-order
Markov process with (cf. Section II)

Q(zi)
Δ
= Pr{Zn = zi} = ρzi

Q(zi|zj) Δ
= Pr{Zn = zi|zn−1 = zj}
=

[
εδzi,zj + (1 − ε)ρzi

]
, zi, zj ∈ Y. (10)

Consider mapping θ : Y → {0, 1}. To replace the MAP de-
tector with mapping θ, we simply set x̂n = ỹn = θ(yn), n =
1, 2, . . . , N . The following lemma is proven in Appendix A.

Lemma 1: For the NBNDC-QB with parameters satisfying
the condition

ρ0 ≥ ρ1 ≥ ρ2 ≥ · · · ≥ ρ2q−1 (11)

among all mappings θ : Y → {0, 1}, the following mapping θ∗

yields the lowest symbol probability of error:

θ∗(yn) = ỹn =

{
0, if yn < k∗

1, otherwise
(12)

where k∗ ∈ {0, 1, . . . , 2q} is the smallest value satisfying

ρk∗

ρ2q−k∗−1
≤ P (1)

P (0)
(13)

where ρ−1
Δ
= ∞, ρ2q

Δ
= 0, and P (x)

Δ
= Pr{X = x}.

As in Section III-A, sequence {Xi} (which is the same as
{Xi} since n = 1) is assumed to be a first-order stationary
Markov chain. Define

pxnxn−1

Δ
=P (xn|xn−1)

Δ
= Pr{Xn = xn|Xn−1 = xn−1}

pxn

Δ
=P (xn)

Δ
= Pr{Xn = xn}. (14)

For the special case of a symmetric binary Markov source, i.e.,
P (0) = P (1), it can be seen from (13) that k∗ = 2q−1 since, in
this case, we have

1)
ρk∗

ρ2q−k∗−1
=

ρ2q−1

ρ2q−1−1

≤ 1

2)
ρk∗−1

ρ2q−k∗
=

ρ2q−1−1

ρ2q−1

≥ 1.

Define the auxiliary binary noise symbol z̃n, which is related
to its corresponding noise symbol zn via

z̃n =

{
0, if zn < 2q−1

1, otherwise.
(15)

The sequence of auxiliary binary noise symbols form auxiliary
noise process {Z̃n}. Since noise process {Zn} is independent
of input process {Xn} and the auxiliary binary noise variable
Z̃n is only a function of Zn, the auxiliary noise process {Z̃n}
is also independent of input process {Xn}.

The following lemma is proven in Appendix B.

Lemma 2: If {Zn} is a first-order Markov chain, then the
auxiliary noise process {Z̃n} forms a first-order Markov chain.

Note that the definition of the NBNDC in (1), the definition
of the mapping θ∗ given in (12), and the fact that, for symmetric
binary Markov sources, k∗ = 2q−1, imply that ỹn = xn if and
only if zn < 2q−1 (in which case z̃n = 0). As a result, the
auxiliary binary noise symbol can also be defined in terms of
input xn and ỹn as follows:

z̃n
Δ
=

{
0, if ỹn = xn

1, if ỹn = xc
n

(16)

where xc
n is the binary complement of xn and ỹn = θ∗(yn).

The following theorem gives a necessary and sufficient con-
dition for the mapping θ∗ to be an optimal sequence detection
rule for q ≥ 2. The proof is given in Appendix C.

Theorem 1: Consider a symmetric binary Markov source
with p00 = p11 ∈ [1/2, 1] and the NBNDC-QB with correlation
parameter ε ≥ 0, memory order M = 1, q ≥ 2, and satisfying
(11). Let xN be a source sequence of length N ≥ 3 and yN be
a channel output sequence, and let ỹN = θ∗(yN ) be obtained
by applying the mapping θ∗ component-wise to yN . If x1 = ỹ1
and xN = ỹN , then x̂N = ỹN is an optimal sequence MAP
detection rule if and only if

ρ2q−1−1

ρ2q−1

×
[

1 − p00
p00

]2
≥ 1 (17)

where p00 is defined via (14).
For binary symmetric first-order Markov sources with p00 =

p11 ∈ [0, 1/2), using the same approach, a similar theorem can
be proven under the following condition:

ρ2q−1−1

ρ2q−1

×
[

p00
1 − p00

]2
≥ 1.

Note that the conditions x1 = ỹ1 and xN = ỹN in the the-
orem are not stringent since they can be simply satisfied by
sending a preassigned value for x1 and xN , where the receiver
is also aware of the preassigned values. On the practical side,
simulation results for long sequences confirm the result of the
theorem without the need to check these conditions.

It is interesting to note that, for q ≥ 2, the optimality con-
dition (17) is independent of the channel noise correlation ε,
whereas for q = 1, the condition depends on the noise correla-
tion. In particular, [26, Corollary 3] shows that, for q = 1, the
condition analogous to (17) is

(ε+ (1 − ε)ρ0)
2

(1 − ε)2ρ0ρ1
×
[

1 − p00
p00

]2
≥ 1.

Theorem 1 is shown in Table II for a binary symmetric
Markov source with p00 = 0.6 and 0.7, where C is the term
on the left-hand side of (17). In the table, the NBNDC-QB’s
1-D noise distribution is calculated by matching it to that of the
underlying DFC; i.e., by setting ρj = P

(1)
DFC(j) as given in (6)

in terms of SNR, q, and δ, where the values of δ are chosen
so that the capacity of the DFC is maximized (see Table I).
From Table II, we clearly observe that, when C < 1, the MAP
decoder is performing better than the mapping θ∗. For the cases
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TABLE II
SYMBOL ERROR RATE (%) FOR MAP DECODING AND INSTANTANEOUS

MAPPING θ FOR SYMMETRIC BINARY MARKOV SOURCES WITH p00 = 0.6
AND 0.7. THE CHANNEL MODEL IS THE NBNDC-QB, WITH M = 1,

Cor = 0.0, AND q = 2, 3. THE VALUES C ARE CALCULATED FROM (17).
THE δ VALUES FOR SNRS (15, 10, 5, 2) ARE (0.12, 0.20, 0.40, 0.50) FOR

q = 2 and (0.06, 0.11, 0.18, 0.25) FOR q = 3, RESPECTIVELY

with C ≥ 1, the MAP decoder and the instantaneous mapping
θ∗ have the same performance; although in the simulations, the
boundary conditions x1 = ỹ1 and xN = ỹN from the theorem
have not been checked. Additional results illustrating the inde-
pendence of the results of the noise correlation can be found
in [34].

Remark: For M ≥ 1 and under the same setting as in The-
orem 1, with the boundary assumptions that x1 = ỹ1, x2 =
ỹ2, . . . , xM = ỹM and xN = ỹN , where N > M + 1, one can
prove that the sufficiency of condition (17) for the optimality of
the symbol-by-symbol decoding map θ∗ can be generalized to

M−2+α
M−1+αε+ (1 − ε)ρ2q−1−1

M−2+α
M−1+αε+ (1 − ε)ρ2q−1

×
[

1 − p00
p00

]2
≥ 1. (18)

IV. ROBUST LOSSY SOURCE CODING OVER THE

NONBINARY NOISE DISCRETE CHANNEL WITH

QUEUE-BASED NOISE

The NBNDC captures a large class of channel models. For
example, setting q = 1 and letting the noise be i.i.d. reduces the
NBNDC to the familiar memoryless binary symmetric channel.
As noted in Section II, the Rayleigh DFC with Clarke’s fading
model is also an NBNDC with a stationary and ergodic noise
process [23], [25]. Furthermore, the model has the ability to
delineate properly both the statistical memory structure and the
soft-decision information of many real-valued output channels
with memory used with antipodal signaling and soft-output
quantization (including colored additive Gaussian channels).
Here, we design two JSCC schemes, i.e., SQ-MAP and COVQ,
for the NBNDC-QB channel.

A. SQ-MAP System

1) System Description: Consider the system depicted in
Fig. 1. Source {Vi}∞i=1 is assumed to be a real-valued sta-
tionary and ergodic process. The SQ encoder is mapping γ
from the real domain R of source symbols to the index set
{0, 1, . . . , 2n − 1}, such that γ(v) = i if v ∈ Ri, where {Ri :
i = 0, 1, . . . , 2n − 1} is a partition of R. Hence, the SQ rate

Fig. 1. Block diagram of a JSCC system using SQ-MAP.

is R = n. The partitions are chosen according to Lloyd–Max
formulation [35], with the initial codebook selection obtained
via the splitting algorithm [27]. The index assignment mod-
ule is a one-to-one mapping b : {0, 1, . . . , 2n − 1} → {0, 1}n
with b(i) = x, which maps each index i to binary vector x ∈
{0, 1}n. Since b is one to one, we can denote the quantization
regions by Rx instead of Ri, where b(i) = x. Different index
assignment methods such as the natural binary code, the folded
binary code (FBC) [11], simulated annealing, and some heuris-
tic assignment methods were tested. The FBC was selected
because of its simplicity and good performance.

The n-tuple codeword x is then sent bit by bit over the
NBNDC-QB channel. The channel output y ∈ {0, 1, . . . , 2q −
1}n is fed to the MAP decoder described earlier, where the
source redundancy and channel memory are harnessed for error
correction. Finally, the SQ decoder β maps the decoder output
x̂ into the output levels of the quantizer codebook, i.e., β(x̂) =
cx̂, cx̂ ∈ R, and x̂ ∈ {0, 1}n.

Using a MAP decoder enables the system to take advantage
of interblock memory to minimize the sequence error proba-
bility (and, as a result, decrease the distortion).3 It can be seen
that, in this system, most of the complexity load is undertaken
by the receiver.

2) Numerical Results: We next present numerical results on
the performance of the described communication system for the
NBNDC-QB model. The NBNDC-QB noise 1-D distribution
ρj is expressed in terms of the SNR of the underlying Rayleigh

DFC (discussed in Section II-B) by setting ρj = P
(1)
DFC(j),

where P
(1)
DFC(j) is given in (6) for j = 0, 1, . . . , 2q − 1, and δ

is chosen as in [23], to maximize the DFC capacity as given in
Table I.

Several source distributions are tested, including memory-
less (i.i.d.) Gaussian and Laplacian sources and correlated
Gauss–Markov sources. All sources have zero mean and unit
variance. The correlated source is modeled via a first-order
Markov process, defined by Vi = φVi−1 + Ui, where φ ∈
(−1, 1) is the correlation parameter and {Ui} is a Gaussian
i.i.d. process. Note that when {Vi} is i.i.d., the resulting 2n-
ary process {xi} is also i.i.d. However, if {Vi} is Markovian,
{xi} is not necessarily Markovian, but we model it as a
Markov process (the distribution P (xi), and state transition
matrix [P (xi |xi−1)] is calculated from a training set of source
symbols used for designing the SQ.

3Note that the MAP decoder does not directly minimize the end-to-end mean
square distortion.
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TABLE III
SQ-MAP TRAINING SDR RESULTS (IN DECIBELS) FOR MEMORYLESS

NBNDC-QB AND HIGHLY CORRELATED NBNDC-QB WITH PARAMETERS

M = α = 1. G: MEMORYLESS GAUSSIAN SOURCE. L: MEMORYLESS

LAPLACIAN SOURCE. GM: GAUSS–MARKOV SOURCE WITH φ = 0.9

For each simulation, the SQ training and statistics collection
is done over a set of 106 source symbols. For testing, N = 105

independently generated source symbols are transmitted, and
the SDR per source symbol is calculated under the mean-
square-error distortion measure. We run each simulation ten
times and take average for ensuring consistent results. Table III
depicts simulation results (in decibels) for different sources
over the NBNDC-QB model with several values of the param-
eters, i.e., SNR, SQ codeword length n, noise correlation Cor,
and soft-decision resolution q.

Memoryless sources: Table III indicates that the system
exploiting high noise correlation performs significantly better
than the system that fully interleaves (Cor = 0) the channel.
For example, more than 4.2 dB of SDR gain is obtained for
memoryless Laplacian sources at q = 3, n = 3, SNR = 2. In
addition, for n = 1, since the quantized codewords form a
symmetric i.i.d. source (p00 = p11 = 0.5), the results illustrate
[26, Corollary 3] (when q = 1) and Theorem 1 of Section III
(when q ≥ 2). Table IV shows the results of an SQ system,
using the instantaneous mapping instead of MAP detection, for
various source distributions. A comparison of Tables III and
IV for n = 1 and for Gaussian and Laplacian sources reveals
that the instantaneous symbol-by-symbol decoder and the MAP
decoder are performing for these cases. Considerable gains (up
to 2.25 and 3 dB) are also obtained by increasing the quantizer
resolution to q = 2 and q = 3, respectively (for n = 3, SNR =
5, and Cor = 0.9 for Laplacian sources).

Gauss–Markov sources: From Table III, we remark that
up to 3.4-dB SDR gains (at q = 3, n = 3, and SNR = 2) can

TABLE IV
SQ WITH INSTANTANEOUS MAPPING: TRAINING SDR RESULTS (IN

DECIBELS) FOR n = 1 AND THE MEMORYLESS NBNDC-QB AND THE

HIGHLY CORRELATED NBNDC-QB WITH PARAMETERS M = 1, α = 1. G:
MEMORYLESS GAUSSIAN SOURCE. L: MEMORYLESS LAPLACIAN SOURCE.

GM: GAUSS–MARKOV SOURCE WITH φ = 0.9

be realized for Gauss–Markov sources by exploiting the noise
correlation instead of interleaving the channel. In general, a
better performance is observed when the channel is highly
correlated.

At low rates, particularly at n = 1, the SDR performance for
the correlated channel is worse than that for the uncorrelated
channel. This behavior is expected for n = 1 and q = 1 from
[26, Corollary 3]. According to this corollary and the numerical
results, for the correlated channel, the source memory has a
mismatch with the channel memory. As a result, increasing
the channel noise correlation will also increase the mismatch
between the source and the channel, making the SQ-MAP
perform worse on correlated channels than on uncorrelated
channels. However, this mismatch does not occur for higher
rates (n > 2), and the SDR performance of the system sig-
nificantly improves with increasing channel noise correlation.
For n = 1, the results of Theorem 1 can also be shown by
comparing the Gauss–Markov source results for n = 1 (with
p00 = p11 = 0.86) in Tables III and IV.

In addition, using a three-bit soft-decision quantizer in the
receiver, gains up to 3.9 dB are observed (at n = 3, SNR = 2,
and Cor = 0.9 for Gauss–Markov sources) over a hard-decision
quantizer (q = 1). Additional results for other values of Cor and
M are given in [34]. It is seen that, for lower noise correlations,
(e.g., Cor = 0.5 and 0.7), the system still has a better SDR
performance, although the gain is less than for Cor = 0.9.

B. COVQ

In contrast to the SQ-MAP, the COVQ system incorpo-
rates the intrablock memory of the noise into the quantizer
design algorithm. This makes it is more robust to channel
noise than standard scalar or vector quantizers, such as the
Linde–Buzo–Gray vector quantizer [27], without adding extra
algebraic (channel coding) redundancy.

The COVQ system of rate R = n/k is depicted in Fig. 2. We
refer the reader to [1] and [34] for a detailed description of the
system and its design algorithm based on iteratively applying
optimality encoder and decoder conditions [7]–[10]. Instead,
we focus on illustrating the performance of the system over the
NBNDC-QB channel. The same source distributions were used
as for the SQ-MAP system, and the algorithm was trained using
500 000 source vectors.



3182 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 62, NO. 7, SEPTEMBER 2013

Fig. 2. Block diagram of a COVQ system.

TABLE V
COVQ TRAINING SDR RESULTS (IN DECIBELS) FOR THE MEMORYLESS

NBNDC-QB AND THE HIGHLY CORRELATED NBNDC-QB WITH

PARAMETERS α = 1.0, M = 1, ε = 0.9. MEMORYLESS

LAPLACIAN SOURCE

Table V depicts COVQ training results for the memoryless
Laplacian source over NBNDC-QB with different channel
noise correlation coefficients and coding rates. The channel
parameters δ and ρj are given in Table I. As for the SQ-MAP
system, the results show that the COVQ system performs con-
sistently better over the highly correlated channel than over the
fully interleaved one: Gains of more than 4.4 dB are achievable
(e.g., for q = 1, R = 3, k = 3, and SNR = 2 in Table V) by
exploiting the channel memory. Note that, since the COVQ
only makes use of intrablock memory, for rate R = 1 and low
dimensions k, the block length is so small that there is not
much channel memory to exploit. As a result, the performance
is constant for different channel correlations. However, it is ob-
served that, in some cases, interleaving may give better COVQ
performance over channels with lower noise correlations. Since
the capacity of the correlated channel is strictly higher than
that of the memoryless channel, this degradation may be due
to poor selection of the initial codebook for the vector quan-
tizer. In general, the results indicate improvement of COVQ
performance when the channel noise correlation is increased.
Similar observations can be made for memoryless Gaussian
and Gauss–Markov sources and different channel parameters
(such as lower correlation values Cor and higher memory orders
M ) [34].

Finally, as in the case of the SQ-MAP system, we remark
that the COVQ performs considerably better with soft-decision
quantization (q ≥ 2) as opposed to hard-decision quantization

Fig. 3. SQ-MAP simulation SDR results (in decibels) for the DFC-fitted
NBNDC-QB and the DFC. Memoryless Gaussian source: q = 2; and fDT =
0.005.

(q = 1). Table V reveals SDR gains as high as 1.7 dB (for
R = 3, k = 1, Cor = 0, and SNR = 5) by just using q = 2. For
three-bit quantization, additional (but less pronounced) gains
can be realized.

V. VALIDATING THE NONBINARY NOISE DISCRETE

CHANNEL WITH QUEUE-BASED NOISE MODEL

IN TERMS OF SIGNAL-TO-DISTORTION RATIO

To illustrate the use of the NBNDC-QB model in a practical
setup, we next assess how well it can represent the correlated
Rayleigh DFC in terms of SDR performance when used with
the SQ-MAP and COVQ systems. As noted in Section II-B, the
m-fold probability distribution of correlated Rayleigh random
variables is not known in closed form for m > 3, and as a result,
the channel transition probabilities P (m)

DFC(y
m|xm) can only be

calculated numerically. It is shown in [24] that the NBNDC-QB
model (for which the channel transition probabilities are known
is closed form) can approximate the Rayleigh DFC in terms of
channel capacity and noise autocorrelation function.

A. SQ-MAP System

To validate the NBNDC-QB model as a good representation
of the Rayleigh DFC for SQ-MAP systems, we design the MAP
detector using the path metric obtained for an NBNDC-QB
(whose parameters are obtained using the matching procedure
described in Section II-C) and run simulation using both the
NBNDC-QB and the Rayleigh DFC to compare their perfor-
mance. Hence, the system simulated over the DFC employs a
mismatched decoder.

To simulate the Rayleigh DFC, we generate the fading coef-
ficients using the modified Clarke’s method [36]. Simulation
results in terms of SDR are shown in Fig. 3 for memory-
less Gaussian sources. More results can be found in [2] and
[34]. Comparing the performance of the system for the two
channels, we observe that for lower rates (codeword lengths
n = 1 and 2 for the memoryless Gaussian source), there is good
conformity between the results for the two channel models.
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Fig. 4. COVQ simulation SDR results (in decibels) for the DFC-fitted
NBNDC-QB and the DFC. Memoryless Gaussian source: q = 2; and
fDT = 0.005.

This agreement in SDR performance can be heuristically ex-
plained by noting that, for low rates (n = 1 and 2), the SQ out-
put sent to the channel input is nearly i.i.d. uniform. However,
the NBNDC-QB and DFC channels were matched by minimiz-
ing the divergence rate between their noise processes. Hence,
when both channels are driven by the same capacity-achieving
input (which is i.i.d. uniform as both channels are symmetric),
they will then have a similar probability of error performance in
addition to nearly identical capacities. The same agreement in
SDR performance is also observed for memoryless Laplacian
and Gauss–Markov sources for n = 1. We finally note that, for
n ≥ 3, some disagreement in SDR performance is observed
[34] between the two systems. (In this case, the SQ output is
not i.i.d. uniform). Note that the degradation is expected since,
for higher rates, the source input distribution becomes less
uniform; therefore, the matched NBNDC-QB model becomes
less successful in imitating the error performance of the DFC.

B. COVQ System

We next train a COVQ for an NBNDC-QB whose parameters
are obtained by the procedure given in Section II-C to match a
given Rayleigh DFC. The resulting performance of the channel-
optimized quantizer is then tested over the DFC. (Here again,
there is a mismatch in the COVQ system used over the DFC
as it is designed for the modeling NBNDC-QB.) Training and
simulation results in terms of the SDR are shown in Fig. 4
for memoryless Gaussian sources: We observe that there is
a good conformity between the results for the two channel
models, i.e., in the case that the NBNDC-QB is used for training
and the DFC is used for testing. However, for higher rates,
some degradation between the simulation and training results
is observed. The same observation applies for memoryless
Laplacian and correlated Gauss–Markov sources [1], [34].

VI. CONCLUSION

Robust source coding for a new channel model called
NBNDC-QB was studied. This channel model is analytically

tractable (its transition probabilities, noise entropy rate, and
autocorrelation function are known in closed form) and can
serve as a good approximation to a discrete Rayleigh fading
channel. First, the MAP decoding of a discrete source was
considered and implemented using the Viterbi algorithm. For
binary symmetric sources, a necessary and sufficient condition
was derived for the MAP decoder to be reducible to an instan-
taneous symbol-by-symbol decoder without loss of optimality.
This condition was also numerically illustrated.

Two lossy JSCC schemes with low delay and complexity
were implemented and tested for the NBNDC-QB model. In
the first system, the MAP decoder was matched to a SQ Markov
source (SQ-MAP system). Numerical results demonstrated that
the proposed system can successfully utilize memory and soft-
decision information over the NBNDC-QB channel model. The
second JSCC scheme, which consists of a COVQ implemented
over the NBNDC-QB, was also shown to exploit successfully
the intrablock memory and soft information of the channel in
combating channel errors. Both systems outperform their fully
interleaved counterpart systems where the channel memory is
discarded using ideal (infinite) interleaving.

Finally, the channel model was compared with the correlated
Rayleigh DFC in terms of SDR performance. It was shown
numerically that, for both the SQ-MAP and COVQ systems, the
NBNDC-QB model can effectively approximate the Rayleigh
DFCs for low coding rates. Future research directions include
the integration of iterative source–channel coding/decoding
methods (e.g., see [37]–[42]) into our JSCC systems for cor-
related fading channels (used without interleaving) to further
improve performance under very noisy conditions while only
moderately increasing system delay and complexity.

APPENDIX A
PROOF OF LEMMA 1

We will show that any mapping θ can be modified via a
sequence of simple changes, each of which can only decrease
the error probability, such that, after a finite number of these
changes, the modified mapping will be equal to θ∗.

To this end, we consider mapping θ : Y → {0, 1} as a clas-
sification rule that classifies 2q different output symbols from
{0, 1, . . . , 2q − 1} into two classes Y0 and Y1. Thus, θ is
defined by

θ(y)
Δ
= ỹ =

{
0, if y ∈ Y0

1, if y ∈ Y1
(19)

where Y1 ⊂ Y and Y0 = Y \ Y1.
According to (12), for θ∗, we have Y∗

0 = {0, 1, . . . , k∗ − 1}
and Y∗

1 = {k∗, k∗ + 1, . . . , 2q − 1}. Let Pe denote the symbol

error probability under mapping θ, i.e., Pe
Δ
= Pr{θ(Y ) �= X},

where (X,Y ) has the common joint distribution of the pairs
(Xi, Yi). If θ �= θ∗, at least one of the two following cases
hold.

1) There exists an element a ∈ Y1, such that a < k∗. Re-
moving a from Y1 and then adding it to Y0 yield a
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mapping with error probability P̃e, such that

P̃e − Pe = Pr{Y = a|X = 1}Pr{X = 1}
− Pr{Y = a|X = 0}Pr{X = 0}

=Q(2q − 1 − a)P (1)−Q(a)P (0)
=P (1)ρ2q−1−a − P (0)ρa. (20)

According to (11), ρa ≥ ρk∗−1 and ρ2q−k∗ ≥ ρ2q−1−a.
Hence, by (13), we have

P (1)
P (0)

≤ ρk∗−1

ρ2q−k∗
≤ ρa

ρ2q−1−a

and therefore, P̃e − Pe ≤ 0. Thus, removing a from Y1

and adding it to Y0 do not increase the error probability.
2) There exists element b ∈ Y0, such that b ≥ k∗. Similar to

(21), it can be shown that

P̃e − Pe = −P (1)ρ2q−1−b + P (0)ρb.

According to (11), ρb ≤ ρk∗ , and ρ2q−k∗−1 ≤ ρ2q−1−b.
Hence, by (13), we have

P (1)
P (0)

≥ ρk∗

ρ2q−k∗−1
≥ ρb

ρ2q−1−b

and thus, P̃e − Pe ≤ 0. Hence, removing b from Y0 and
adding it to Y1 do not increase error probability.

It follows that, if we start from an arbitrary mapping θ, after
at most 2q − 1 applications of the given replacement steps, we
obtain θ∗. Since each step can only reduce the error probability,
among all mappings θ∗ must minimize the error probability. �

APPENDIX B
PROOF OF LEMMA 2

Let {Zn} be a Markov process with a finite state space Y ,
and let the binary process {Z̃n} be defined by Z̃n = f(Zn) for
function f : Y → {0, 1}. We use a result given in [32, pp. 325],
[33] which states that a sufficient condition for {Z̃n} to be a
Markov process is that

Pr{Z̃n+1 = z̃n+1|Zn = zn}
= Pr{Z̃n+1 = z̃n+1|Z̃n = f(zn)} (21)

for all z̃n+1 and zn. Let f be given by (15). Then, using (10),
we have

Pr{Z̃n+1 = 0|Zn = zn}
= Pr

{
Zn+1 ∈ {0, 1, . . . , 2q−1 − 1}|Zn = zn

}

=

2g−1−1∑
i=0

Pr{Zn+1 = i|Zn = zn}

=
2g−1−1∑
i=0

Q(i|zn)

=

{
ε+

∑2q−1−1
i=0 (1 − ε)ρi, if zn < 2q−1∑2q−1−1

i=0 (1 − ε)ρi, if zn ≥ 2q−1.
(22)

In addition

Pr{Z̃n+1 = 0|Z̃n = 0}

=

2q−1−1∑
i=0

Pr{Z̃n+1 = 0|Zn = i}Pr{Zn = i}
Pr{Z̃n = 0}

. (23)

Note that, according to (22), for all j = 0, . . . , 2q−1 − 1, we
have

Pr{Z̃n+1 = 0|Zn = j} = ε+

2q−1−1∑
i=0

(1 − ε)ρi.

Hence, (23) is equal to⎛
⎝ε+

2q−1−1∑
i=0

(1 − ε)ρi

⎞
⎠ ∑2q−1−1

i=0 Pr{Zn = i}
Pr{Z̃n = 0}

=

⎛
⎝ε+

2q−1−1∑
i=0

(1 − ε)ρi

⎞
⎠ Pr{Z̃n = 0}

Pr{Z̃n = 0}

= ε+

2q−1−1∑
i=0

(1 − ε)ρi.

Using the same reasoning, it can be shown that

Pr{Z̃n+1 = 0|Z̃n = 1} =
2q−1−1∑
i=0

(1 − ε)ρi. (24)

Thus, according to (23) and (24)

Pr{Z̃n+1 = 0|Z̃n = z̃n}

=

{
ε+

∑2q−1−1
i=0 (1 − ε)ρi, if z̃n = 0∑2q−1−1

i=0 (1 − ε)ρi, if z̃n = 1.
(25)

It can be seen from (22) and (25) that condition (21) is satis-
fied for the NBNDC-QB with memory order M = 1 and the
function f defined via (15). Consequently, {Z̃n} is a first-order
Markov chain. �

APPENDIX C
PROOF OF THEOREM 1

For θ∗ to be the optimal detection rule, it is necessary and
sufficient that, for all xN ∈ {0, 1}N and yN ∈ {0, 1, . . . , 2q −
1}N , the following holds:

γ
Δ
=

Pr{XN = ỹN |Y N = yN}
Pr{XN = xN |Y N = yN} ≥ 1.

γ can be written as

γ =
Pr{Y N = yN |XN = ỹN}Pr{XN = ỹN}
Pr{Y N = yN |XN = xN}Pr{XN = xN} .

Note that, by (2) and (4), we have Pr{Y N = yN |XN = xN} =
Pr{ZN = zN}, where zi = yi − (2q − 1)xi/(−1)xi ∈ {0, 1,
. . . , 2q − 1}, i = 1, 2, . . . , N . In addition, note that, by the
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definition of θ∗ (with k∗ = 2q−1), if we let ai
Δ
= yi − (2q −

1)ỹi/(−1)ỹi , with ỹi = θ∗(yi), then ai ∈ {0, 1, . . . , 2q−1 − 1}
for all i = 1, . . . , N .

Thus we have, with aN = (a1, . . . , aN ), zn = (z1, . . . , zn),
and ỹn = (ỹ1, . . . , ỹn) as above

γ =
Pr{ZN = aN}Pr{XN = ỹN}
Pr{ZN = zN}Pr{XN = xN}

=
Pr{Z1 = a1}P (ỹ1)

Pr{Z1 = z1}P (x1)

N∏
k=2

Q(ak|ak−1)P (ỹk|ỹk−1)

Q(zk|zk−1)P (xk|xk−1)

=

N∏
k=2

Q(ak|ak−1)P (ỹk|ỹk−1)

Q(zk|zk−1)P (xk|xk−1)

where the last equality follows from Pr{Z1 = a1}P (ỹ1) =
Pr{Z1 = z1}P (x1) since X1 = Ỹ1 according to the
hypothesis.

We partition the index set K = {2, 3, . . . , N} as follows:
K = A1 ∪ A2 ∪ A3 ∪ A4, where

A1
Δ
= {k ∈ K : xk = ỹk, xk−1 = ỹk−1}

A2
Δ
= {k ∈ K : xk �= ỹk, xk−1 �= ỹk−1}

A3
Δ
= {k ∈ K : xk �= ỹk, xk−1 = ỹk−1}

A4
Δ
= {k ∈ K : xk = ỹk, xk−1 �= ỹk−1}.

Hence

γ =

4∏
i=1

∏
k∈Ai

Q(ak|ak−1)P (ỹk|ỹk−1)

Q(zk|zk−1)P (xk|xk−1)
.

In set A1, since xk = ỹk and xk−1 = ỹk−1, we see that zk = ak
and zk−1 = ak−1. Thus

∏
k∈A1

Q(ak|ak−1)P (ỹk|ỹk−1)

Q(zk|zk−1)P (xk|xk−1)

=
∏
k∈A1

Q(ak|ak−1)P (xk|xk−1)

Q(ak|ak−1)P (xk|xk−1)
= 1.

In A2, xk �= ỹk and xk−1 �= ỹk−1 imply that xk = 1 − ỹk
and xk−1 = 1 − ỹk−1. In addition, if xk �= ỹk and xk−1 �=
ỹk−1, then by the definition of θ∗ (with k∗ = 2q − 1),
zk, zk−1 ≥ 2q−1. Now since the Markov source is symmetric
(p00 = p11), we obtain that P (ỹk|ỹk−1) = P (xk|xk−1). Noting
that ak, ak−1 < 2q−1 and according to (10) and (11), we have

∏
k∈A2

Q(ak|ak−1)P (ỹk|ỹk−1)

Q(zk|zk−1)P (xk|xk−1)
=

∏
k∈A2

Q(ak|ak−1)

Q(zk|zk−1)
≥ 1.

We next note that, since X1 = Ỹ1 and XN = ỸN , we clearly
must have |A3| = |A4|, where |B| denotes the number of ele-
ments in set B. Furthermore, in A3, we have xk �= ỹk implying
xk = 1 − ỹk. Therefore, according to the definitions of zk and
ak and using (2), it can be seen that zk = (2q − 1)− ak and
zk−1 = ak−1. Similarly, in set A4, we have zk = ak and zk−1 =

(2q − 1)− ak−1. In addition, due to the source symmetry and
noting that p00 ∈ [1/2, 1], we have

min
k∈A3

P (ỹk|ỹk−1)

P (xk|xk−1)
= min

j∈A4

P (ỹj |ỹj−1)

P (xj |xj−1)
=

p10
p00

=
1 − p00
p00

.

Thus, according to (10) and (11), we have

∏
k∈A3

Q(ak|ak−1)P (ỹk|ỹk−1)

Q(zk|zk−1)P (xk|xk−1)
×
∏
k∈A4

Q(ak|ak−1)P (ỹk|ỹk−1)

Q(zk|zk−1)P (xk|xk−1)

≥
∏
k∈A3

Q(ak|ak−1)(1 − p00)

Q(2q − 1 − ak|ak−1)p00

×
∏
k∈A4

Q(ak|ak−1)(1 − p00)

Q(ak|2q − 1 − ak−1)p00

≥
∏
k∈A3

(1 − ε)ρ2q−1−1(1 − p00)

(1 − ε)ρ2q−1p00
×

∏
k∈A4

(1 − p00)

p00

=

|A3|∏
i=1

ρ2q−1−1

ρ2q−1

×
[

1 − p00
p00

]2
(26)

where the second inequality follows by taking minimum over
the first product and noting that (Q(ak|ak−1)/Q(ak|2q − 1 −
ak−1)) ≥ 1 for all k. Clearly, if (17) holds, then

|A3|∏
i=1

ρ2q−1−1

ρ2q−1

×
[

1 − p00
p00

]2
≥ 1.

Thus, γ ≥ 1, and mapping θ∗ is an optimal MAP decoding rule.
To prove the converse, assume that (17) does not hold, i.e.,

ρ2q−1−1

ρ2q−1

×
[

1 − p00
p00

]2
< 1.

Now, for

xN =(0, 0, . . . , 0)

yN =(0, 0, . . . , 0, 2q−1, 0, . . . , 0)

where the only nonzero component of yN is in an arbitrary
position i ∈ {2, . . . , N − 1}, we have

γ=1×1×· · ·×1×
(
ρ2q−1−1

ρ2q−1

×
[

1−p00
p00

]2)
×1×· · ·×1<1.

Hence, if (17) does not hold, there exists some xN and yN , such
that the mapping θ∗ does not decode optimally. �
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