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Abstract: Two Rényi-type generalizations of the Shannon cross-entropy, the Rényi cross-entropy
and the Natural Rényi cross-entropy, were recently used as loss functions for the improved design
of deep learning generative adversarial networks. In this work, we derive the Rényi and Natural
Rényi differential cross-entropy measures in closed form for a wide class of common continuous
distributions belonging to the exponential family, and we tabulate the results for ease of reference.
We also summarise the Rényi-type cross-entropy rates between stationary Gaussian processes and
between finite-alphabet time-invariant Markov sources.

Keywords: Rényi information measures; cross-entropy; divergence measures; exponential family
distributions; Gaussian processes; Markov sources

1. Introduction

The Rényi entropy [1] of order α of a probability mass function p with finite support S
is defined as

Hα(p) =
1

1− α
ln ∑

x∈S
p(x)α (1)

for α > 0, α 6= 1. The Rényi entropy generalizes the Shannon entropy,

H(p) = − ∑
x∈S

p(x) ln p(x), (2)

in the sense that as α→ 1, Hα(p)→ H(p). Several other Rényi-type information measures
have been put forward, each obeying the condition that their limit as α goes to one reduces
to a Shannon-type information measure. This includes the Rényi divergence (of order α)
between two discrete distributions p and q with common finite support S, given by

Dα(p||q) = 1
α− 1

ln ∑
x∈S

p(x)αq(x)1−α (3)

which reduces to the familiar Kullback–Leibler divergence,

DKL(p||q) = ∑
x∈S

p(x) ln
p(x)
q(x)

, (4)

as α→ 1. Note that in some cases [2], there may exist multiple Rényi-type generalisations
for the same information measure (particularly for mutual information).

Many of these definitions admit natural counterparts in the case when the involved
distributions have a probability density function (pdf). This gives rise to information
measures such as the Rényi differential entropy for pdf p with support S,

hα(p) =
1

1− α
ln
∫
S

p(x)α dx, (5)
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and the Rényi differential divergence between pdfs p and q with common support S,

Dα(p‖q) = 1
α− 1

ln
∫
S

p(x)αq(x)1−α dx. (6)

The Rényi cross-entropy between distributions p and q is an analogous generalization
of the Shannon cross-entropy

H(p; q) = − ∑
x∈S

p(x) ln q(x). (7)

Two definitions for this measure have been recently suggested. In light of the fact that
Shannon’s cross-entropy satisfies H(p; q) = D(p‖q) + H(p), a natural definition of the
Rényi cross-entropy is:

H̃α(p; q) := Dα(p||q) + Hα(p). (8)

This definition was indeed proposed in [3] in the continuous case, with the differential
cross-entropy measure given by

h̃α(p; q) := Dα(p||q) + hα(p). (9)

In contrast, prior to [3], the authors of [4] introduced the Rényi cross-entropy in their
study of shifted Rényi measures expressed as the logarithm of weighted generalized power
means. Specifically, upon simplifying Definition 6 in [4], their expression for the Rényi
cross-entropy between distributions p and q is given by

Hα(p; q) :=
1

1− α
ln ∑

x∈S
p(x)q(x)α−1. (10)

For the continuous case, (10) can be readily converted to yield the Rényi differential cross-
entropy between pdfs p and q:

hα(p; q) :=
1

1− α
ln
∫
S

p(x)q(x)α−1 dx. (11)

Note that both (8) and (10) reduce to the Shannon cross-entropy H(p; q) as α→ 1 [5].
A similar result holds for (9) and (11), where the Shannon differential cross-entropy,

h(p; q) = −
∫
S

p(x) ln q(x) dx, (12)

is obtained. Further, the Rényi (differential) entropy is recovered in all equations when
p = q (almost everywhere). These properties alone make these definitions viable extensions
of the Shannon (differential) cross-entropy.

Finding closed-form expressions for the cross-entropy measure in (9) for continuous
distributions is direct, since the Rényi divergence and the Rényi differential entropy were
already calculated for numerous distributions in [6,7], respectively. However, deriving the
measure in (11) is more involved. We hereafter refer to the measures H̃α(p; q) in (8) and
h̃α(p; q) in (9) as the Natural Rényi cross-entropy and the Natural Rényi differential cross-entropy,
respectively; while we plainly call the measures Hα(p; q) in (10) and hα(p; q) (11) as the
Rényi cross-entropy and the Rényi differential cross-entropy, respectively.

In a recent conference paper [8], we showed how to calculate the Rényi differential
cross-entropy hα(p; q) between distributions of the same type from the exponential family.
Building upon the results shown there, the purpose of this paper is to derive in closed
form the expression of hα(p; q) for thirteen commonly used univariate distributions from
the exponential family, as well as for multivariate Gaussians, and tabulate the results
for ease of reference. We also analytically derive the Natural Rényi differential cross-
entropy h̃α(p; q) for the same set of distributions. Finally, we present tables summarising



Entropy 2022, 24, 1417 3 of 9

the Rényi and Natural Rényi (differential) cross-entropy rate measures, along with their
Shannon counterparts, for two important classes of sources with memory, namely stationary
Gaussian sources and finite-state time-invariant Markov sources.

Motivation for determining formulae for the Rényi cross-entropy originates from the
use of the Shannon differential cross-entropy as a loss function for the design of deep
learning generative adversarial networks (GANs) in [9]. The parameter α, ubiquitous
to all Rényi information measures, allows one to fine-tune the loss function to improve
the quality of the GAN-generated output. This can be seen in [3,5,10], which used the
Rényi differential cross-entropy, and the Natural Rényi differential cross-entropy measures,
respectively, to generalize the original GAN loss function (which is recovered as α → 1),
resulting in both improved GAN system stability and performance for multiple image
datasets. It is also shown in [5,10] that the introduced Rényi-centric generalized loss
function preserves the equilibrium point satisfied by the original GAN via the so-called
Jensen-Rényi divergence [11], a natural extension of the Jensen–Shannon divergence [12]
upon which the equilibrium result of [9] is established. Other GAN systems that utilize
different generalized loss functions were recently developed and analysed in [13–15] (see
also the references therein for prior work).

The rest of this paper is organised as follows. In Section 2, the formulae for the Rényi
differential cross-entropy and Natural Rényi differential cross-entropy for distributions
from the exponential family are given. In Section 3, these calculations are systematically
carried out for fourteen pairs of distributions of the same type within the exponential
family, and the results are presented in two tables. The Rényi and Natural Rényi differential
cross-entropy rates are presented in Section 4 for stationary Gaussian sources; furthermore,
the Rényi and Natural Rényi cross-entropy rates are provided in Section 5 for finite-state
time-invariant Markov sources. Finally, the paper is concluded in Section 6.

2. Rényi and Natural Rényi Differential Cross-Entropies for Distributions from the
Exponential Family

An exponential family is a class of probability distributions over a support S ⊆ Rn

defined by a parameter space Θ ⊆ Rm and functions b : S 7→ R, c : Θ 7→ R, T : S 7→ Rm,
and η : Θ 7→ Rm such that the pdf in this family has the form

f (x) = c(θ)b(x) exp(〈η(θ), T(x)〉), x ∈ S (13)

where 〈·, ·〉 denotes the standard inner product in Rm. Alternatively, by using the (natural)
parameter η = η(θ), the pdf can also be written

f (x) = b(x) exp(〈η, T(x)〉+ A(η)), (14)

where A(η) : η(Θ) 7→ R with A(η) = ln c(θ). Examples of important pdfs we consider
from the exponential family are included in Appendix A.

In [8], the cross-entropy between pdfs f1 and f2 of the same type from the exponential
family was proven to be

hα( f1; f2) =
A(η1)− A(ηh) + ln Eh

1− α
− A(η2), (15)

where
Eh = E fh

[
b(X)α−1

]
=
∫

b(x)α−1 fh(x) dx. (16)

Here, fh refers to a distribution of the same type as f1 and f2 within the exponential family
with natural parameter

ηh := η1 + (α− 1)η2. (17)
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It can also be shown that the Natural Rényi differential cross-entropy between f1 and
f2 is given by

h̃α( f1; f2) =
A(ηα)− A(αη1) + ln Eα

1− α
− A(η2), (18)

where
ηα = αη1 + (1− α)η2, (19)

and
Eα = E fα1

[
b(X)α−1

]
=
∫

b(x)α−1 fα1(x) dx (20)

where fα1 refers to a distribution of the same type as f1 and f2 within the exponential family
with natural parameter αη1.

3. Tables of Rényi and Natural Rényi Differential Cross-Entropies

Tables 1 and 2 list Rényi and Natural differential cross-entropy expressions, respec-
tively, between common distributions of the same type from the exponential family (which
we describe in Appendix A for convenience). The closed-form expressions were derived
using (15) and (18), respectively. In the tables, the subscript i is used to denote that a
parameter belongs to pdf fi, i = 1, 2.

Table 1. Rényi differential cross-entropies.

Name hα( f1; f2)

Beta
ln B(a2, b2) +

1
α− 1

ln
B(ah, bh)

B(a1, b1)

ah := a1 + (α− 1)(a2 − 1), ah > 0
bh := b1 + (α− 1)(b2 − 1), bh > 0

χ
(scaled)

1
2

(
k2 ln σ2

2 σ2
h − ln 2σ2

h

)
+ ln Γ

(
k2
2

)
+

1
α− 1

(
ln Γ

(
kh
2

)
− ln Γ

(
k1
2

)
− k1

2
ln σ2

1 σ2
h

)
σ2

h := 1
σ2

1
+ α−1

σ2
2

, σ2
h > 0

kh := k1 + (α− 1)(k2 − 1), kh > 0

χ
(non-scaled)

1
2
(k2 ln α− ln 2α) + ln Γ

(
k2
2

)
+

1
α− 1

(
ln Γ

(
kh
2

)
− ln Γ

(
k1
2

)
− k1

2
ln α

)
kh := k1 + (α− 1)(k2 − 1), kh > 0

χ2

1
1− α

( ν1
2

ln(α)− ln Γ
( ν1

2

)
+ ln Γ

( νh
2

))
+

2− ν2
2

ln(α) + ln 2Γ
( ν2

2

)
νh := ν1 + (α− 1)(ν2 − 2), νh > 0

Exponential
1

1− α
ln

λ1
λh
− ln λ2

λh := λ1 + (α− 1)λ2, λh > 0

Gamma

ln Γ(k2) + k2 ln θ2

+
1

1− α

(
ln

Γ(kh)

Γ(k1)
− kh ln θh − k1 ln θ1

)
θh := θ1+(a−1)θ2

(α−1)θ1θ1
, θh > 0

kh := k1 + (α− 1)k2, kh > 0



Entropy 2022, 24, 1417 5 of 9

Table 1. Cont.

Name hα( f1; f2)

Gaussian
(univariate)

1
2

(
ln(2πσ2

2 ) +
1

1− α
ln

(
σ2

2
(σ2)h

)
+

(µ1 − µ2)
2

(σ2)h

)
(σ2)h := σ2

2 + (α− 1)σ2
1 , (σ2)h > 0

Gaussian
(multivariate)

1
2− 2α

(
− ln |A||Σ1|+ (1− α) ln(2π)n|Σ2| − d

)
A := Σ−1

1 + (α− 1)Σ−1
2 , A � 0

d := µT
1 Σ−1

1 µ1 + (α− 1)µT
2 Σ−1

2 µ2
−(µT

1 Σ−1
1 + (α− 1)µT

2 Σ−1
2 )A−1(Σ−1

1 µ1 + (α− 1)Σ−1
2 µ2)

Gumbel
(β1 = β2 = β)

1
1− α

(
ln

Γ(2− α)

β
− µ1

β
− α ln ηh

)
+

µ2
β

ηh := e−µ1/β + (α− 1)e−µ2/β, ηh > 0

Half-Normal
1
2

(
ln(

πσ2
2

2
) +

1
1− α

ln

(
σ2

2
(σ2)h

))
(σ2)h := σ2

2 + (α− 1)σ2
1 , (σ2)h > 0

Laplace
(µ1 = µ2 = 0)

ln(2b2) +
1

1− α
ln
(

b2
2bh

)
bh := b2 + (1− α)b1, bh > 0

Maxwell
Boltzmann

1
2

(
ln 2π + 3 ln σ2

2

)
+ ln σ2

h

+
1

1− α

(
ln

Γ(2α)

Γ(α)
− 3

2
ln σ2

1 σ2
h

)
σ2

h := σ−2
1 + (α− 1)σ−2

2 , σ2
h > 0

Pareto
(m1 = m2 = m)

− ln m− ln λ2 +
1

1− α
ln

λ1
λh

λh := λ1 + (α− 1)(λ2 + 1), λh > 0

Rayleigh
ln σ2

1 − α ln σ2
h + ln Γ( 1−α

2 )

1− α
+ ln 2σ2

2

σ2
h := σ−2

1 + (α− 1)σ−2
2 , σ2

h > 0

Table 2. Natural Rényi differential cross-entropies.

Name h̃α( f1; f2)

Beta
ln B(a2, b2) +

1
α− 1

ln
B(aα, bα)

B(α(a1 − 1) + 1, α(b1 − 1) + 1)

aα := αa1 + (1− α)a2, aα > 0
bα := αb1 + (1− α)b2, bα > 0

χ
(scaled)

1
2

(
− ln

2σ2
1

α
+ k2 ln σ2

2 σ2
α

)
+ ln Γ

(
k2
2

)

+
1

1− α

αk1 ln σ2
α σ2

1
α

2
− ln Γ(

kα

2
) + ln Γ

(
α(k1 − 1) + 1

2

)
σ2

α := α
σ2

1
+ 1−α

σ2
2

, σ2
α > 0

kα := αk1 + (1− α)k2, kα > 0

χ
(non-scaled)

− ln 2α
2 + ln Γ( k2

2 )

+
1

1− α

(
− ln Γ(

kα

2
)− αk1 ln α

2
+ ln Γ(

α(k1 − 1) + 1
2

)

)
kα := αk1 + (1− α)k2, kα > 0
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Table 2. Cont.

Name h̃α( f1; f2)

χ2

1
1− α

(
− ln Γ

( να

2

)
+ α ln Γ

( ν1
2

))
+ ln Γ

( ν2
2

)
να := αν1 + (1− α)k, να > 0

Exponential
1

1− α
ln

λ1
αλα
− ln λ2

λα := αλ1 + (1− α)λ2, λα > 0

Gamma

ln Γ(k2) + k2 ln θ2

+
1

1− α

(
ln

Γ(k1)

Γ(kα)
− kα ln θα − α2k1 ln θ1

)
θα := αθ−1

1 + (1− α)θ−1
2 , kα := αk1 + (1− α)k2, θα > 0

Gaussian
(univariate)

1
2

(
ln(2πσ2

2 ) +
(µ1 − µ2)

2

(σ2)α
+

1
1− α

ln

(
ασ2

2
(σ2)α

))
(σ2)α := ασ2

2 + (1− α)σ2
1 , (σ2)α > 0

Gaussian
(multivariate)

1
2− 2α

(− ln |α|+ ln |A||Σ1|+ d) +
1
2

ln
(2π)n|Σ1|2
|Σ2|

A := αΣ−1
1 + (1− α)Σ−1

2 , A � 0
d := (µ1 − µ2)

TΣ1 AΣ2(µ1 − µ2)

Gumbel
(β1 = β2 = β)

µ2 + αµ1
β

+
1

1− α

(
ln

Γ(2− α)ηα

αβ
+

µ1
β

)
ηα := αe−µ1/β + (1− α)e−µ2/β, ηα > 0

Half-Normal
1
2

(
ln(

πσ2
2

2
) +

1
1− α

ln

(
ασ2

2
(σ2)α

))
(σ2)α := ασ2

2 + (1− α)σ2
1 , (σ2)α > 0

Laplace
(µ1 = µ2 = 0)

ln bα + ln αb1
1− α

+ ln 2b2

bα :=
α

b1
+

1− α

b2
, bα > 0

Maxwell Boltzmann

− ln 2 + 3 ln σ2
2

2
+ ln

α

σ2
1

+
1

1− α

(
3
2

ln
σασ2

1
α
− α ln

√
π

2
+ ln Γ

(
α +

1
2

))
σ2

α := α
σ2

1
+ 1−α

σ2
2

, σ2
α > 0

Pareto
(m1 = m2 = m)

1
1− α

(
ln λα − ln(1− α(λ1 − 1))

)
− ln λ2m

λα := αλ1 + (1− α)λ2, λα > 0

Rayleigh

ln σ2
1 (σ

2)α + ln α + ln Γ( 1−α
2 )

1− α
+ ln 2σ2

1

(σ2)α := ασ−2
1 + 1

2 ln 2σ4
1 σ4

2
α , (σ2)α > 0

4. Rényi and Natural Rényi Differential Cross-Entropy Rates for Stationary
Gaussian Processes

In [8], the Rényi differential cross-entropy rate between two stationary zero-mean
Gaussian processes is derived. We present its formula alongside the expressions of the
Shannon and Natural Rényi differential cross-entropy rates in Table 3. Here, f (λ) is the
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spectral density of the first zero-mean Gaussian process, g(λ) is the spectral density of the
second Gaussian process,

h(λ) = f (λ) + (α− 1)g(λ), (21)

and
j(λ) = α f (λ) + (1− α)g(λ). (22)

Table 3. Differential cross-entropy rates for stationary zero-mean Gaussian sources.

Information Measure Rate Constraint

Shannon
Differential
Cross-Entropy

1
2

ln 2π +
1

4π

∫ 2π

0

[
ln g(λ) +

f (λ)
g(λ)

]
dλ g(λ) > 0

Natural Rényi
Differential
Cross-Entropy

1
2

ln 4π2α
1

α−1 +
1

4π(1− α)

∫ 2π

0
ln

j(λ)
g(λ)α dλ

j(λ)
g(λ)

> 0

Rényi
Differential
Cross-Entropy

ln 2π

2
+

1
4π(1− α)

∫ 2π

0
[(2− α) ln g(λ)− ln h(λ)]dλ

g(λ)
h(λ)

> 0

5. Rényi and Natural Rényi Cross-Entropy Rates for Markov Sources

In [8], the Rényi cross-entropy rate between finite-state time-invariant Markov sources
was established, using, as in [16], tools from the theory of non-negative matrices and Perron–
Frobenius theory (e.g., cf. [17,18]). This measure, as well as the Shannon and Natural Rényi
differential cross-entropy rates, are derived and summarised in Table 4. Here, P and Q
are the m×m (stochastic) transition matrices associated with the first and second Markov
sources, respectively, where both sources have a common alphabet of size m. To allow any
value of the Rényi parameter α in (0, 1) ∪ (1, ∞), we assume that the transition matrix Q of
the second Markov chain has positive entries (Q > 0); however, the transition matrix P of
the first Markov chain is taken to be an arbitrary stochastic matrix. For simplicity, we assume
that the initial distribution vectors, p and q, of both Markov chains also have positive entries
(p > 0 and q > 0). This condition can be relaxed via the approach used to prove Theorem 1
in [16]. Moreover, πT

p denotes the stationary probability row vector associated with the
first Markov chain, and 1 is an m-dimensional column vector in which each element equals
one. Furthermore, � denotes element-wise multiplication (i.e., the Hadamard product
operation), and ˙ln is the element-wise natural logarithm.

Finally, the definition of λ(R) : Rm×m 7→ R for a matrix R is more involved. If R is
irreducible, λ(R) is its largest positive eigenvalue. Otherwise, rewriting R in its canonical
form as detailed in Proposition 1 in [16], we have that λ(R) = max(λ∗, λ∗), where λ∗ is the
maximum of all largest positive eigenvalues of (irreducible) sub-matrices of R correspond-
ing to self-communicating classes, and λ∗ is the maximum of all largest positive eigenvalues
of sub-matrices of R corresponding to classes reachable from an inessential class.

Table 4. Cross-entropy rates for time-invariant Markov sources.

Information Measure Rate

Shannon
Cross-Entropy

−πT
p
(

P� ˙lnQ
)
1

Natural Rényi
Cross-Entropy

1
α− 1

ln
λ(Pα �Q1−α)

λ(Pα)

Rényi
Cross-Entropy

1
1− α

ln λ(P�Qα−1)
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6. Conclusions

We have derived closed-form formulae for the Rényi and Natural Rényi differential
cross-entropies of commonly used distributions from the exponential family. This is of
potential use to further studies in information theory and machine learning, particularly
problems where deep neural networks, trained according to a Shannon cross-entropy
loss function, can be improved via generalized Rényi-type loss functions in virtue of
the extra degree of freedom provided by the Rényi (α) parameter. In addition, we have
provided formulae for the Rényi and Natural Rényi differential cross-entropy rates for
stationary zero-mean Gaussian processes and expressions for the cross-entropy rates for
Markov sources. Further work includes expanding the present collection by considering
distributions such as Levy or Weibull and investigating cross-entropy measures based on
the f -divergence [19–21], starting with Arimoto’s divergence [22].
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Appendix A

In Table A1, we describe the distributions of Tables 1 and 2 (for the multivariate Gaus-
sian, µ ∈ Rn is a mean vector, and Σ2 ∈ Rn ×Rn is a positive definite covariance matrix).

Table A1. Distributions listed in Tables 1 and 2.

Name Parameters (Θ) PDF f (x) Support

Beta (a > 0, b > 0) B(a, b)xa−1(1− x)b−1 S = (0, 1)

χ
(scaled) (k > 0, σ > 0)

21−k/2xk−1e−x2/2σ2

σkΓ
(

k
2

) S = R+

χ
(non-scaled) (k > 0)

21−k/2xk−1e−x2/2

Γ
(

k
2

) S = R+

χ2 (ν > 0)
1

2
ν
2 Γ
(

ν
2
) x

ν
2−1e−

x
2 S = R+

Exponential (λ > 0) λe−λx S = R+

Gamma (k > 0, θ > 0)
1

θkΓ(k)
xk−1e−

k
θ S = R+

Gaussian
(univariate) (µ,σ2 > 0)

1√
2πσ2

e−
1
2 (

x−µ
σ )

2

S = R

Gaussian
(multivariate) (µ, Σ2)

1√
(2π)n|Σ|

e−
1
2 (x−µ)T Σ−1(x−µ) S = Rn

Half-Normal (σ2 > 0)

√
2

πσ2 e−
1
2 (

x
σ )

2

S = R+

Gumbel (µ, β > 0)
1
β

exp−
( x− µ

β
+ e−

x−µ
β

)
S = R
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Table A1. Cont.

Name Parameters (Θ) PDF f (x) Support

Pareto (m > 0, a > 0) amax−(1+m) S = (m, ∞)

Maxwell Boltzmann (σ > 0)
2x2
√

πσ6
e−

1
2 (

x
σ )

2

S = R+

Rayleigh (σ2 > 0)
x

σ2 e−
1
2 (

x
σ )

2

S = R+

Laplace (µ, b2 > 0)
1
2b

e−
|x−µ|

b S = R

Notes

• B(a, b) =
∫ 1

0
ta−1(1− t)b−1 dt is the Beta function.

• Γ(z) =
∫ ∞

0
xz−1e−x dx is the Gamma function.
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