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Abstract— We propose an adaptive lossy joint source-channel
coding (JSCC) scheme for sending correlated sources over two-
terminal discrete-memoryless two-way channels (DM-TWCs).
The main idea is to couple the independent operations of
the terminals via an adaptive coding mechanism, which can
mitigate cross-interference resulting from simultaneous channel
transmissions and concurrently exploit the sources’ correlation
to reduce the end-to-end reconstruction distortions. Our adaptive
JSCC scheme not only subsumes existing lossy coding methods
for two-way simultaneous communication but also improves
their performance. Furthermore, we derive outer bounds for
our two-way lossy transmission problem and establish complete
JSCC theorems in some special settings. In these special cases,
a non-adaptive separate source-channel coding (SSCC) scheme
achieves the optimal performance, thus simplifying the design of
the source-channel communication system.

Index Terms— Network information theory, two-way chan-
nels, lossy transmission, joint source-channel coding, correlated
sources, hybrid analog and digital coding, superposition coding,
adaptive coding.

I. INTRODUCTION

SHANNON’S two-way communication [4] considers
full-duplex data transmission between two terminals. The

terminals can send and receive data simultaneously on a
shared two-way channel (TWC) without multiplexing [5] to
make the best utilization of channel resources. The TWC
was recently used as a building block in the construction of
high spectral-efficiency transmission systems [6]–[8]. How-
ever, designing an adaptive coding scheme for simultaneous
transmission on TWCs remains challenging. More precisely,
adaptive coding generates current channel inputs by taking into
consideration past received signals. This mechanism concep-
tually improves the system’s performance, but finding optimal
coding methods remains elusive.

In this paper, we investigate the adaptive coding prob-
lem from an information-theoretic perspective. Specifically,
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Fig. 1. The block diagram for the lossy transmission of correlated source
pair (SK

1 , SK
2 ) via N uses of a noisy DM-TWC.

we consider the two-way lossy source-channel communication
system depicted in Fig 1, where two terminals exchange cor-
related sources on a discrete-memoryless TWC (DM-TWC).
Our objective is to characterize the achievable distortion region
of the system for any given correlated sources, memoryless
channel, transmission rate, and distortion measures. Before
presenting our contributions, we first review existing results
on two-way channel coding and source coding.

A. Literature Review

The capacity problem for general DM-TWCs is not yet
completely solved in single-letter form. In [4], Shannon pre-
sented a random coding inner bound and a cut-set outer bound
to the capacity region. He also exploited channel symmetry
properties [4, Section 11] to determine the capacity region in
some special cases, which are further generalized in [9]–[14].
For DM-TWCs with symmetry properties, it was shown that
Shannon’s inner bound is tight, and hence adaptive coding is
not needed to achieve capacity. In the literature, there are other
improved inner bounds [15]–[19] and outer bounds [9], [20].
A common idea to improve on Shannon’s inner bound is to
coordinate the terminals’ transmission via a stationary process.
Although the terminals operate independently, the adaptive
encoding procedure driven by the stationary process ultimately
coordinates their encoding operations, thus jointly optimizing
their transmissions. In the improved outer bounds, one typi-
cally seeks extra dependency among channel inputs.

In two-terminal two-way lossy source coding, the DM-TWC
in Fig. 1 is assumed to be noiseless. In [21], Kaspi estab-
lished a rate-distortion (RD) region for this system,1 which
characterizes the trade-off between source compression rate
and distortion, under an interactive communication protocol.
Specifically, the protocol divides the entire transmission period
into small segments, and only one terminal sends data at each
segment. With this protocol, each terminal can decode a coarse
description of the other terminal’s messages after observing a

1Kaspi’s original proof relies on tree codes using an intricate
approach. A simper proof can be found in [22, Section 20.3.3] based on
the Wyzer-Ziv source coding scheme [23].
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new segment of channel outputs. All decoded coarse descrip-
tions are then treated as side-information to compress source
messages until final reconstructions are obtained. In [24], Maor
and Merhav extended Kaspi’s result within the application of
successive source refinement. Another related two-way source
coding problem, where each terminal is only interested in
extracting hidden information related to the source messages
of the other terminal, is tackled in [25] under the so-called col-
laborative information bottleneck problem. The rate-relevance
trade-off is determined under Kaspi’s transmission protocol.

In addition to the above results, there are other extensions
of the source coding problem such as two-way source coding
with a helper [26], two-way multi-terminal source coding [27],
[28], and two-way function computation [29], [30]. The capac-
ity problem was also studied for TWCs with memory [13] and
in a multi-terminal setting with more than two terminals such
as multi-access/broadcast, Z, and interference TWCs [31] and
three-way channels [32]–[34]. These architectures are beyond
the scope of this paper.

B. Notation and Problem Setup

We next introduce the notation used in the paper. The
symbols Z+ and R≥0 denote the sets of positive integers and
non-negative real numbers, respectively. For any i ≥ 1, let
Ai � (A1, A2, . . . , Ai) denote a length-i sequence of random
variables with common alphabet A. The realization of Ai will
be denoted by ai = (a1, a2, . . . , ai) ∈ Ai, where Ai is the
i-fold Cartesian product of A. When the length i is clear
from the context, we may write A and a in lieu of Ai and
ai, respectively. Throughout the paper, all alphabets are finite,
except for the Gaussian case briefly considered in Section VI-
A. Moreover, we delineate each terminal by index j or j′,
where j, j′ ∈ {1, 2}. To simplify the presentation, we assume
that j �= j′ when these indices appear together. Furthermore,
the kth source message of terminal j is denoted by Sj,k, and
its reconstruction at terminal j′ is given by Ŝj,k; also, the nth
channel input and output of terminal j are denoted by Xj,n and
Yj,n, respectively. For these system variables, we use Sj , Ŝj ,
Xj , and Yj to denote their respective alphabets. The standard
notation E stands for the expectation operator and �{·} stands
for the indicator function.

We are now ready to define our problem. As depicted
in Fig. 1, two terminals exchange a block of correlated
source messages (SK

1 , SK
2 ) of length-K via N uses of a

noisy TWC. Terminal j only observes SK
j and intends to

reconstruct SK
j′ from SK

j and Y N
j subject to a distortion

constraint. Here, we assume that the source pairs (S1,k, S2,k),
1 ≤ k ≤ K , are independent and have the common
joint probability distribution PS1,S2 ; i.e., PSK

1 ,SK
2

(sK
1 , sK

2 ) =∏K
k=1 PS1,S2(s1,k, s2,k), where (s1,k, s2,k) ∈ S1 × S2. The

distortion for the reconstruction ŝK
j of source message sK

j is
assessed via dj(sK

j , ŝK
j ) � K−1

∑K
k=1 dj(sj,k, ŝj,k), where

dj : Sj × Ŝj→R≥0 is a single-letter distortion measure for
source Sj . Furthermore, the noisy TWC is used without adopt-
ing any interactive communication protocol such as in [21],
[24]. We only consider DM-TWCs with input alphabet Xj

and output alphabet Yj for terminal j, j = 1, 2, and with

transition probability PY1,Y2|X1,X2 . More precisely, we have
that PY1,n,Y2,n|Xn

1 ,Xn
2 ,Y n−1

1 ,Y n−1
2

= PY1,n,Y2,n|X1,n,X2,n
=

PY1,Y2|X1,X2 for all n. For this system setup, we seek
direct (forward) and converse coding theorems for lossy
source-channel transmissibility.

C. Related Work and Our Approach

To the best of our knowledge, there are only few works
related to our problem setup. In [4, Section 14], Shannon
implicitly illustrated that perfect matching among the source
and channel statistics and alphabets results in error-free com-
munication, with the optimal scheme given by uncoded trans-
mission. In [24], the JSCC problem was studied for DM-TWCs
which consist of two independent one-way channels. Together
with the protocol mentioned in Section I-A, Kaspi’s source
coding result was extended for successive source refinement.
Also, a complete JSCC theorem was derived in this particular
setting. By contrast, the authors in [35, Section VIII] tackled
the two-way transmission problem for general DM-TWCs
without deploying any protocol. The correlation-preserving
coding scheme of [36] was adopted for almost lossless trans-
mission; i.e., when requiring the block error rate of the source
reconstructions to vanish asymptotically. Similar to Shannon’s
idea, the (non-adaptive) coding scheme of [35] can preserve
source correlation in the channel inputs to facilitate two-
way transmission; however, it does not apply to the lossy
setup. In this paper, we tackle a transmission problem that
is more general in many aspects; e.g., we do not consider a
particular type of DM-TWC or assume a given communication
protocol. We next sketch the concepts behind our main JSCC
achievability result.

As the transmissions of the terminals influence each other
on a shared channel and generally cause cross-interference,
we propose to design the coding strategies jointly.2 For
this purpose, we construct joint source-channel codes to
induce a stationary Markov chain that couples all variables
of the communication system in Fig. 1. In principle, when
the channel inputs are generated by such codes, all system
variables will behave according to the stationary distribution
of the induced chain, thus coordinating the independent
transmissions of the terminals. Specifically, we combine the
following coding techniques to build our adaptive codes. First,
we adopt the functional form of superposition coding [37]
to generate channel inputs, which plays a central role in
inducing the desired Markov transmission process. We also
modify the analog/digital hybrid coding scheme of [38]
to exploit side-information for decoding, in addition to its
original source-correlation-preserving mechanism. Moreover,
we use past channel inputs and outputs similarly to [15]

2As a DM-TWC can be viewed as two interacting one-way channels [13,
Section II-C], each terminal’s input carries information and selects the trans-
mission (sub-)channel for the other terminal. For example, the information
of terminal 1 is transmitted to terminal 2 through the marginal channel
PY2|X1,X2 via channel input X1. However, any specific input X1 = x1

also concurrently determines the marginal (sub-)channel PY1|X1=x1,X2 for
terminal 2 to transmit information. By mitigating cross-interference, we mean
that the encoders of the two terminals generate appropriate correlated channel
inputs that simultaneously facilitate the channel selections and the information
transmissions on the selected (sub-)channels.
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to enable adaptive coding. We note that although these
techniques are not new, combining and integrating them into
an adaptive two-way coding framework for our problem setup
is challenging, especially to ensure stationarity of the system
variables. We next summarize the contributions of the paper.

D. Summary of Contributions

Our primary contribution is the construction of an adaptive
coding scheme to prove a direct JSCC theorem; but we also
derive some converse results and complete JSCC theorems.
The details are as follows.
• Inner Bounds and Examples: a general JSCC result (Theo-
rem 1) in single-letter form for two-way lossy simultaneous
transmission is established using the concepts of superposi-
tion coding, hybrid analog/digital coding, and adaptive chan-
nel coding, together with a low-complexity sliding-window
decoder. Two simplified achievability results (Corollaries 1
and 2) are derived from the main theorem. Moreover, our
coding method is shown to subsume some basic schemes such
as uncoded transmission and the concatenation of Wyner-Ziv
(WZ) source coding and Shannon’s (or Han’s) channel coding;
it also recovers the almost lossless transmission of [35]. Four
illustrated examples (Examples 1-4) are provided to highlight
the difference between the coding schemes. Overall, not only
do we create a unified framework for the prior coding methods
but we also improve on their performance.
• Outer Bounds and Complete JSCC Theorems: two outer
bounds (Lemmas 1 and 2) to the achievable distortion region
are obtained using standard arguments. The bounds are
expressed in terms of the standard RD function and the
conditional RD function and are hence easy to compute for
many classical models of correlated sources. Furthermore, four
complete theorems (Theorems 2-5) that fully characterize the
achievable distortion region for certain system settings are
obtained. Specifically, for DM-TWCs with symmetry prop-
erties [13], we show the optimality of SSCC in the following
settings:

• lossy transmission of independent sources;
• almost lossless transmission of correlated sources;
• lossy transmission of correlated sources whose WZ and

conditional RD functions are equal;
• lossy transmission of correlated sources having a com-

mon part in the sense of Gács-Körner-Witsenhausen [22,
Section 14.2.2].

Examples for Theorems 4 and 5 (Examples 5-7) are also
provided.

The rest of the paper is organized as follows. In Section II,
definitions and background information are provided. Our
direct coding theorem is presented in Section III, and its proof
is provided in Appendix A. Simplified versions of the main
theorem are given in Section IV, together with a derivation
of the associated coding schemes. Section V establishes con-
verse results and complete JSCC theorems. Examples and a
discussion are given in Section VI, and conclusions are drawn
in Section VII.

II. PRELIMINARIES

In this section, we define joint source-channel codes and the
achievable distortion region for source-channel communication
over a TWC. We also review various RD function expressions
for point-to-point communication and channel coding results
for DM-TWCs, which will be used in Section IV.

A. Definitions

For our problem setup, a joint source-channel code is
defined as follows.

Definition 1: An (N, K) code for transmitting (SK
1 , SK

2 )
over a DM-TWC consists of two sequences of encoding
functions f

1
� {f1,n}N

n=1 and f
2

� {f2,n}N
n=1 such that

f1,1 : SK
1 → X1, f1,n : SK

1 × Yn−1
1 → X1

f2,1 : SK
2 → X2, f2,n : SK

2 × Yn−1
2 → X2

for n = 2, 3, . . . , N , and two decoding functions g1 : SK
1 ×

YN
1 → ŜK

2 and g2 : SK
2 × YN

2 → ŜK
1 .

The channel inputs at time n = 1 are only functions
of the source messages, i.e., Xj,1 = fj,1(SK

j ), but the
subsequent channel inputs are generated by also adapting to
the previous channel outputs via Xj,n = fj,n(SK

j , Y n−1
j ) for

n = 2, 3, . . . , N . Such encoding strategy is called adaptive
coding, in contrast to its non-adaptive counterpart where
Xj,n = fj,n(Sk

j ) for all n. We remark that our code definition
also involves block-wise decoding; i.e., terminal j reconstructs
SK

j′ via ŜK
j′ = gj(SK

j , Y N
j ) after receiving the entire N

channel outputs.
Moreover, the rate of the joint source-channel code is given

by K/N (source symbols/channel use), and the associated
expected distortion is Dj(K) � E[dj(SK

j , ŜK
j )], where the

expectation is taken with respect to the joint probability
distribution

PSK
1 ,SK

2 ,XN
1 ,XN

2 ,Y N
1 ,Y N

2
= PSK

1 ,SK
2

(
N∏

n=1

PX1,n|SK
1 ,Y n−1

1

)
(

N∏
n=1

PX2,n|SK
2 ,Y n−1

2

)(
N∏

n=1

PY1,n,Y2,n|X1,n,X2,n

)
,

where PY1,nY2,n|X1,n,X2,n
= PY1,Y2|X1,X2 for n = 1, 2, . . . , N

(determined by the DM-TWC).
Definition 2: A distortion pair (D1, D2) is said to be

achievable at rate R if there exists a sequence of (N, K)
joint source-channel codes (where N is a function of K) such
that limK→∞ K/N = R and lim supK→∞ Dj(K) ≤ Dj ,
j = 1, 2. The achievable distortion region of a rate-R two-
way lossy transmission system is the convex closure of the
set of all achievable distortion pairs (at rate R).

B. Rate-Distortion Functions

As a DM-TWC can be viewed as two state-dependent one-
way channels, the following source coding related functions
(each expressed in terms of a constrained minimization of a
mutual information quantity) for one-way systems are also
useful in the two-way channel setup.
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• Standard RD function [22, Sec. 3.6]:

R(j)(Dj) = min
PŜj |Sj

:E[dj(Sj,Ŝj)]≤Dj

I(Sj ; Ŝj). (1)

• WZ-RD function [23]: Letting Tj ∈ Tj with |Tj | ≤ |Sj |+
1 denote an auxiliary random variable that satisfies the
Markov chain Tj �−− Sj �−− Sj′ , we have

R
(j)
WZ(Dj)= min

PTj |Sj

min
h:Tj×Sj′→Ŝj

E[dj(Sj ,h(Tj ,Sj′ )]≤Dj

I(Sj ; Tj|Sj′). (2)

• Conditional RD function [39]:

RSj|Sj′ (Dj) = min
PŜj |S1,S2

E[dj(Sj,Ŝj)]≤Dj

I(Sj ; Ŝj |Sj′). (3)

We remark that the source coding schemes that achieve the
standard RD and WZ-RD functions can be the building blocks
of an SSCC scheme for our overall system. For example,
terminal j can apply the WZ coding scheme to compress
source SK

j given side-information SK
j′ . Although the coding

scheme that achieves the conditional RD function cannot be
applied in our problem setup (since there is no common
side-information at the encoder and the decoder in general),
the scheme is useful when S1 and S2 have a common part in
the sense of Gács-Körner-Witsenhausen [22, Section 14.2.2].
We will use this result in Theorem 5 (see Section V-B).

C. Capacity Bounds for DM-TWCs

To introduce capacity bounds for DM-TWCs, we first
give some definitions. Roughly speaking, an (N, Rc,1, Rc,2)
channel code for a DM-TWC is defined similarly to an (N, K)
joint source-channel code, except that the correlated sources
SK

1 and SK
2 are replaced with independent and uniformly

distributed random indices I1 ∈ I1 and I2 ∈ I2, respectively,
where |I1| = 2NRc,1 and |I2| = 2NRc,2 . As a result, two-
way channel codes can incorporate or exclude adaptive coding.
Given a DM-TWC, a channel coding rate pair (Rc,1, Rc,2) is
called achievable if there exists a sequence of (N, Rc,1, Rc,2)
channel codes such that I1 and I2 can be reliably exchanged
(i.e., with asymptotically vanishing decoding error probabil-
ity). The capacity region is defined as the convex closure of
the set of all achievable rate pairs.

To date, a single-letter characterization of the capacity
region of general DM-TWCs is still not found. In [4], Shannon
derived the inner bound region

conv

( ⋃
PX1PX2

{
(Rc,1, Rc,2) : Rc,1<I(X1; Y2|X2),

Rc,2<I(X2; Y1|X1)
})

(4)

and the outer bound region⋃
PX1,X2

{
(Rc,1, Rc,2) : Rc,1<I(X1; Y2|X2),

Rc,2<I(X2; Y1|X1)
}

for channel capacity, where conv(·) denotes taking the closure
of the convex hull. In general, the two capacity bounds
do not coincide, but they match each other for channels
with symmetry properties; i.e., DM-TWCs that satisfy the
channel symmetry conditions in either [13, Theorem 1] or [13,
Theorem 4]. For these “symmetric” DM-TWCs, the capacity
region can be exactly determined via non-adaptive coding and
is given by the set of all achievable rate pairs in (4) under
independent inputs. Moreover, taking the convex closure in
(4) is not needed.

Shannon’s inner bound result was later improved by
Han [15] under an adaptive channel coding scheme, showing
that any rate pair in the following region is achievable:

conv

( ⋃
PṼ1,Ṽ2,W̃1,W̃2,X1,X2

{
(Rc,1, Rc,2) :

Rc,1 < I(Ṽ1; X2, Y2, Ṽ2, W̃2), Rc,2 <I(Ṽ2; X1, Y1, Ṽ1, W̃1)
})

where the joint probability distribution PṼ1,Ṽ2,W̃1,W̃2,X1,X2
is

defined in [15, Section IV].3 We note that Kramer further
generalized Han’s result from a concatenated coding perspec-
tive [18, Section 4.3.2] with achievable rate pairs obtained
in terms of conditional directed mutual information quanti-
ties using a random coding error exponent analysis under
maximum-likelihood decoding [40]. In this paper, as we pur-
sue single-letter expressions, we mainly focus on Shannon’s
and Han’s results.

III. DIRECT JSCC THEOREM BASED ON ADAPTIVE

CODING

This section establishes the most general achievability result
in the paper. Without loss of generality, we only consider rate-
one transmission, i.e., N = K; other rates can be obtained
via suitable super-symbols.4 The main idea is to employ a
stationary Markov chain to coordinate the independent encod-
ing operations of the two terminals. More specifically, we first
construct a coded channel in Section III-A to represent the use
of the DM-TWC multiple times for adaptive coding purposes;
the coded channel also integrates two encoding functions so
that the raw inputs of the coded channel are naturally converted
into adaptive channel inputs to the original channel. To coor-
dinate the independent transmissions of the two terminals,
we next couple the variables of the coded channel at different
time instants via a stationary time-homogeneous Markov chain
(Sections III-B and III-C). Roughly speaking, when the raw
inputs of the coded channel are drawn from the stationary
Markov chain, the adaptive channel inputs to the original
DM-TWC become coupled. Here we remark that stationarity
is key in obtaining an achievable region in single-letter form
as given in Theorem 1 in Section III-D. In the following,
we formally describe the above technical ingredients used in
obtaining Theorem 1.

3The random variables Ṽj and W̃j correspond to the random variables Ũj

and W̃j in Han’s scheme, respectively.
4To obtain a rate- K1

N1
result, we define a super source symbol (resp., a super

channel input/output symbol) by combining K1 source symbols (resp., N1

channel input/output symbols).
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Fig. 2. An illustration of the transmission over the two-way coded channel.

A. Two-Way Coded Channel

Consider an auxiliary coded channel built on the origi-
nal (physical) DM-TWC, as shown in the central box of
Fig. 2. The coded channel has inputs Sj , Uj , S̃j , Ũj and W̃j

at terminal j. The input pairs (Sj , Uj) and (S̃j , Ũj) are
used to carry the current and some prior source information,
respectively, where Uj (resp., Ũj) denotes the coded version of
Sj (resp., S̃j). The input W̃j carries some past channel inputs
and outputs at terminal j. The new channel also involves two
encoding functions Fj : Sj ×Uj ×S̃j ×Ũj ×W̃j → Xj , which
transform the inputs of the coded channel into the inputs for
the original DM-TWC. The outputs of the new channel are
still Y1 and Y2. The joint input probability distribution of the
coded channel is given by

PS1,S2,U1,U2,S̃1,S̃2,Ũ1,Ũ2,W̃1,W̃2

= PS1,S2PU1|S1PU2|S2PS̃1,S̃2,Ũ1,Ũ2,W̃1,W̃2
, (5)

and the transition probability of the coded channel is given by

PY1,Y2|S1,S2,U1,U2,S̃1,S̃2,Ũ1,Ũ2,W̃1,W̃2

(y1, y2|s1, s2, u1, u2, s̃1, s̃2, ũ1, ũ2, w̃1, w̃2)

=
∑

x1,x2

�{x1 = F1(s1, u1, s̃1, ũ1, w̃1)}

· �{x2 =F2(s2, u2, s̃2, ũ2, w̃2)}PY1,Y2|X1,X2(y1, y2|x1, x2).
(6)

B. Markov Chain for the Coded Channel

For the repeated use over time of the two-way coded
channel, we next construct a discrete-time Markov chain for
the overall system with state space:

S1 × S2 × U1 × U2 × S̃1 × S̃2 × Ũ1 × Ũ2

× W̃1 × W̃2 ×X1 ×X2 × Y1 × Y2, (7)

where S̃j � Sj , Ũj � Uj , and W̃j � Xj×Yj for j = 1, 2. This
Markov chain will be used to coordinate the transmissions of
the two terminals as shown in Fig. 2. Let

Z(t) � (S(t)
1 , S

(t)
2 , U

(t)
1 , U

(t)
2 , S̃

(t)
1 , S̃

(t)
2 , Ũ

(t)
1 , Ũ

(t)
2 ,

W̃
(t)
1 , W̃

(t)
2 , X

(t)
1 , X

(t)
2 , Y

(t)
1 , Y

(t)
2 ) (8)

denote the state of the Markov chain at time t ∈ Z+,
where we set S̃

(t)
j � S

(t−1)
j , Ũ

(t)
j � U

(t−1)
j , and W̃

(t)
j �

(X(t−1)
j , Y

(t−1)
j ). Given a parameter tuple (PU1|S1 , PU2|S2 ,

PS̃1,S̃2,Ũ1,Ũ2,W̃1,W̃2
, F1, F2), we generate the quadruple (S(t)

1 ,

S
(t)
2 , U

(t)
1 , U

(t)
2 ) for all t according to PS1,S2,U1,U2 = PS1,S2

PU1|S1PU2|S2 independently of (S̃(t)
1 , S̃

(t)
2 , Ũ

(t)
1 , Ũ

(t)
2 , W̃

(t)
1 ,

W̃
(t)
2 ). The tuple (S̃(1)

1 , S̃
(1)
2 , Ũ

(1)
1 , Ũ

(1)
2 , W̃

(1)
1 , W̃

(1)
2 ) is ini-

tialized according to PS̃1,S̃2,Ũ1,Ũ2,W̃1,W̃2
. The physical channel

input at terminal j is naturally produced as X
(t)
j = Fj(S

(t)
j ,

U
(t)
j , S̃

(t)
j , Ũ

(t)
j , W̃

(t)
j ), and the received channel output is

Y
(t)
j . Based on this construction, the transition kernel of

{Z(t)} is given in (9), as shown at the bottom of the page,
for t ≥ 2. It is easy to see that the process {Z(t)} is a first-
order time-homogeneous Markov chain. However, whether or
not the chain is stationary depends on the given parameters.

C. Stationary Distribution Under Distortion Constraints

To obtain an achievability result with time-independent
conditions, we only consider a stationary Markov chain. The
following procedure can be used to find its parameters. Given
PS1,S2 and PY1,Y2|X1,X2 , we first fix a choice of PUj |Sj

and
Fj , j = 1, 2, and write the transition kernel (9) in matrix form
as QZ . The matrix QZ is stochastic, and since all alphabets
are finite, an eigenvector of QZ associated with the eigenvalue
1 exists and gives a stationary distribution PZ for {Z(t)},
i.e., PZ = PZQZ . Clearly, using the marginal distribution
PS̃1,S̃2,Ũ1,Ũ2,W̃1,W̃2

of PZ with the chosen PUj |Sj
and Fj , j =

1, 2, to initialize the Markov chain ensures stationarity. Note
that for the stationary chain the two independent quadruples
(S(t)

1 , S
(t)
2 , U

(t)
1 , U

(t)
2 ) and (S̃(t)

1 , S̃
(t)
2 , Ũ

(t)
1 , Ũ

(t)
2 ) have identi-

cal distributions for all t; thus PS1,S2,U1,U2 = PS̃1,S̃2,Ũ1,Ũ2
.

Moreover, due to our construction of {Z(t)}, we have the
following necessary conditions for stationarity

PS1,S2 = PS̃1,S̃2
, (10)

PUj |Sj
= PŨj |S̃j

, (11)

for j = 1, 2. For source reconstruction, we next asso-
ciate the parameters with decoding functions5 Gj : Ũj′ ×
Sj × Uj × S̃j × Ũj × W̃j × Yj → ˆ̃Sj′ , j = 1, 2. For
simplicity, we call the tuple (PU1|S1 , PU2|S2 , PS̃1,S̃2,Ũ1,Ũ2

,
PW̃1,W̃2|S̃1,S̃2,Ũ1,Ũ2

, F1, F2, G1, G2) a configuration, which
specifies a stationary distribution PZ with the following fac-

5As will be seen at the end of the section or in Appendix A, terminal j

reconstructs the prior source message S̃j′ as ˆ̃Sj′ after recovering Ũj′ ; this
reconstruction is done via Gj .

PZ(t)|Z(t−1)(s1, s2, u1, u2, s̃1, s̃2, ũ1, ũ2, w̃1, w̃2, x1, x2, y1, y2|s′1, s′2, u′
1, u

′
2, s̃

′
1, s̃

′
2, ũ

′
1, ũ

′
2, w̃

′
1, w̃

′
2, x

′
1, x

′
2, y

′
1, y

′
2)

= PS1,S2(s1, s2)PU1|S1(u1|s1)PU2|S2(u2|s2)�{s̃1 = s′1}�{s̃2 = s′2}�{ũ1 = u′
1}�{ũ2 = u′

2}�{w̃1 = (x′
1, y

′
1)}

· �{w̃2 = (x′
2, y

′
2)}�{x1 = F1(s1, u1, s̃1, ũ1, w̃1)}�{x2 = F2(s2, u2, s̃2, ũ2, w̃2)}PY1,Y2|X1,X2(y1, y2|x1, x2) (9)
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torization

PS1,S2PU1|S1PU2|S2︸ ︷︷ ︸
=PS1,S2,U1,U2

PS̃1,S̃2
PŨ1|S̃1

PŨ2|S̃2︸ ︷︷ ︸
=PS̃1,S̃2,Ũ1,Ũ2

PW̃1,W̃2|S̃1,S̃2,Ũ1,Ũ2

·PX1|S1,U1,S̃1,Ũ1,W̃1
PX2|S2,U2,S̃2,Ũ2,W̃2

PY1,Y2|X1,X2 ,

where PS1,S2 and PY1,Y2|X1,X2 are fixed by the problem setup
and PXj |Sj ,Uj ,S̃j,Ũj ,W̃j

is determined by Fj , j = 1, 2. We also
let ΠZ(D1, D2) denote the set of all configurations that
induce a stationary chain and satisfy the distortion constraints:

E[dj(S̃j ,
ˆ̃Sj)] ≤ Dj for j = 1, 2.

D. Main Result: JSCC Achievability

Based on the above setup, we establish the achievability
result in Theorem 1 below; the proof is given in Appendix A.
In Theorem 1, one can further convexify the achievable
distortion region via a standard time-sharing argument [42].

Theorem 1 (Adaptive JSCC): A distortion pair (D1, D2)
is achievable for the rate-one lossy transmission of correlated
sources over a DM-TWC if there exists a configuration in
ΠZ(D1, D2) such that

I(S̃1; Ũ1) < I(Ũ1; S2, U2, S̃2, Ũ2, W̃2, X2, Y2), (12a)

I(S̃2; Ũ2) < I(Ũ2; S1, U1, S̃1, Ũ1, W̃1, X1, Y1). (12b)

To facilitate the understanding of the conditions in (12a),
we sketch our coding method used in the proof, which extends
the hybrid analog/digital coding scheme of [38], used in
conjunction with superposition block Markov encoding [15],
[41] and a sliding-window decoder, as shown in Fig. 3.
In our method, instead of exchanging a single block of source
message pairs (SK

1 , SK
2 ) via K channel uses, we exchange B

blocks of such source message pairs via K(B + 1) channel
uses for some B ∈ Z+. The overall transmission rate is B

B+1 ,
which approaches 1 as B goes to infinity. The extra K channel
uses can be viewed as added redundancy for data protection.

For 1 ≤ b ≤ B, let S
(b)
j = (S(b)

j,1 , S
(b)
j,2 , . . . , S

(b)
j,K) denote

the bth source message block at terminal j; the same
indexing convention applies to other variables. As shown
in Fig. 3(a),6 the encoding involves hybrid analog/digital
coding, superposition coding, and adaptive channel coding.
In the bth transmission block, terminal j first encodes its
source message S

(b)
j into the digital codeword U

(b)
j . Then,

the current information (S(b)
j , U

(b)
j ) and the prior information

(S(b−1)
j , U

(b−1)
j ) and (X(b−1)

j , Y
(b−1)
j ) are combined to

generate the channel input X
(b)
j .

To reconstruct source messages, we employ a
sliding-window decoder as depicted in Fig. 3(b). The decoder
is designed to operate on two consecutive transmission
blocks, but each time it only decodes the earlier source block.

6To simplify the presentation of our encoding scheme, we write S
(b−1)
j ,

U
(b−1)
j , and (X

(b−1)
j , Y

(b−1)
j ) in lieu of S̃

(b)
j , Ũ

(b)
j , and W̃

(b)
j , respec-

tively, to refer to the prior information variables at block instance b, for

2 ≤ b ≤ B + 1. Later, when presenting our decoder, we also use Ŝ
(b−1)
j

(resp., Û
(b−1)
j ) rather than ˆ̃S

(b)
j (resp., ˆ̃U

(b)
j ) to denote the reconstruction

of S̃
(b)
j (resp., Ũ

(b)
j ).

For 2 ≤ b ≤ B + 1, suppose that the decoding window is
now across the (b − 1)st and the bth transmission blocks.
Given that terminal j has successfully recovered U

(b′)
j′ and

reconstructed S
(b′)
j′ for all b′ < b − 1, the decoder uses all

available information in the (b − 1)st and the bth blocks to

recover U
(b−1)
j′ and reconstructs S

(b−1)
j′ as Ŝ

(b−1)

j′ via Gj .
Then, the decoder moves to the bth and the (b + 1)st blocks
to reconstruct S

(b)
j′ .

With the above sketch, the left-hand-side and the right-
hand-side of (12a) can be interpreted as source compression
rates and as transmission rates for reliable communication,
respectively. Moreover, the appearance of (S̃j , Ũj) (rather than
(Sj , Uj)) on the left-hand-side of (12a) is due to the sliding-
window decoder. The tuple (Sj , Uj , S̃j, Ũj , W̃j , Xj , Yj) on
the right-hand-side of (12a) also illuminates the fact that the
decoder at terminal j uses all information within two blocks to
decode Ũj′ . The detailed coding scheme and the formal proof
is provided in Appendix A.

In ending this section, we remark that the unified random
coding theorem by Lee and Chung in [43] can be employed to
derive achievability results for our source-channel communica-
tion based on an unfolded network perspective. Although this
approach is powerful due to its generality, the main theorem
[43, Theorem 1] is not guaranteed to provide a single-letter
characterization of the achievable region. Here, the main
challenge lies in finding appropriate coding parameters to
induce a desired stationarity property for all involved random
variables. In network information theory, one often encounters
a trade-off between the tightness of an achievable region and
its characterization complexity. Our work aims to improve the
existing single-letter results. A by-product is a demonstration
of choosing coding parameters for the unified random coding
theorem of [43] to obtain achievability conditions in single-
letter form. In the next section, we simplify the expressions in
(12a) by imposing some encoding constraints. Examples illus-
trating Theorem 1 will be given in Section VI.

IV. SIMPLIFIED CONFIGURATIONS AND SPECIAL CASES

In this section, we consider two simplified forms of encod-
ing to derive special cases from Theorem 1. Our objective is
not only to obtain simpler achievability conditions but also
to recover existing direct coding theorems for our problem
setup. By-products of the derivation are reduced-complexity
coding schemes in those special cases. As we will see later in
Section V-B, the reduced-complexity schemes in the special
cases are sometimes optimal in the sense that the associated
achievable distortion region matches a certain outer bound;
i.e., the scheme provides a complete JSCC theorem. In such a
case, optimal performance can be achieved by a less complex
coding scheme. To ease our presentation, we will not refer
to the probability distributions PS1,S2 and PY1,Y2|X1,X2 in the
following result statements as they are fixed and given by the
problem setup. Also, we continue to focus on the rate-one case.

A. A Non-Adaptive JSCC Scheme

Our first simplification disables the superposition and adap-
tive coding components, i.e., we let Xj = Fj(Sj , Uj, S̃j ,
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Fig. 3. An illustration of the proposed JSCC method.

Ũj , W̃j) � fj(S̃j , Ũj) and ˆ̃Sj′ = Gj(Ũj′ , Sj , Uj , S̃j , Ũj,
W̃j , Yj) � gj(Ũj′ , S̃j , Ũj, Yj) for some fj and gj , j = 1, 2.
Set PS̃1,S̃2

= PS1,S2 , and set PŨj |S̃j
= PUj |Sj

for a chosen
PUj |Sj

, j = 1, 2, so that (10) and (11) holds. We also set
the pair (W̃1, W̃2) to be independent of (S1, S2, U1, U2, S̃1,
S̃2, Ũ1, Ũ2, X1, X2, Y1, Y2) with joint probability distribution
given by

PW̃1,W̃2
(w̃1, w̃2)=

∑
a1∈S1,a2∈S2,b1∈U1,b2∈U2

PS̃1,S̃2
(a1, a2)

· PŨ1|S̃1
(b1|a1)PŨ2|S̃2

(b2|a2)�{x̃1 = f1(a1, b1)}
· �{x̃2 = f2(a2, b2)}PY1,Y2|X1,X2(ỹ1, ỹ2|x̃1, x̃2). (13)

With the above setting, one can directly verify that

PZ = PS1,S2PU1|S1PU2|S2PS̃1,S̃2
PŨ1|S̃1

PŨ2|S̃2
PW̃1,W̃2

PX1|S̃1,Ũ1
PX2|S̃2,Ũ2

PY1,Y2|X1,X2 (14)

is a stationary distribution, i.e., PZ = QZPZ . Given such
PZ , suppose that the chosen gj attains distortion level
Dj , j = 1, 2, so that the configuration (PU1|S1 , PU2|S2 ,
PS̃1,S̃2,Ũ1,Ũ2

, PW̃1,W̃2
, f1, f2, g1, g2) is in ΠZ(D1, D2). For

simplicity, we define the set Π′
Z(D1, D2) ⊂ ΠZ(D1, D2) as

the one that contains all such special configurations. Using
Π′

Z(D1, D2), Theorem 1 reduces to the following corollary.
Corollary 1 (Non-Adaptive Hybrid Coding): A distortion

pair (D1, D2) is achievable for the rate-one lossy transmission
of correlated sources over a DM-TWC if there exists a
configuration in Π′

Z(D1, D2) such that

I(S̃1; Ũ1|S̃2, Ũ2) < I(Ũ1; Y2|S̃2, Ũ2), (15a)

I(S̃2; Ũ2|S̃1, Ũ1) < I(Ũ2; Y1|S̃1, Ũ1). (15b)

Proof: Since Ũj′ is independent of (Sj , Uj) and by def-
inition W̃j is independent of (S̃j′ , Sj , Uj , S̃j, Ũj , Xj , Yj) for
j = 1, 2, we can remove (Sj , Uj , W̃j) from (12a) without
changing the values on the right-hand-side of (12a), e.g.,

I(Ũ1; S2, U2, S̃2, Ũ2, W̃2, X2, Y2)

= I(Ũ1; S̃2, Ũ2, X2, Y2) + I(Ũ1; S2, U2, W̃2|S̃2, Ũ2, X2, Y2)︸ ︷︷ ︸
=0

.

For (12a), we then have the derivation at the bottom of this
page, where the two equalities in (16), shown at the bottom
of the page, hold since X2 = f2(S̃2, Ũ2). By symmetry, one
can analogously deduce (15b) from (12b).

We remark that Corollary 1 further subsumes several special
cases. In the following derivations, we will show that our
chosen parameters form a configuration in Π′

Z(D1, D2). As
PW̃1,W̃2

can be determined via (13) given other parameters,
we will not specify PW̃1,W̃2

for the sake of simplicity.
(i) Uncoded Transmission Scheme: Strictly speaking,

the achievability result of an uncoded scheme cannot
be deduced from Corollary 1 since the conditions in
(15) have no impact on the scheme’s performance.
Nevertheless, we still can view it as a special case
since every uncoded scheme can be converted into
a configuration in our setup, which implies that our
coding scheme (used to prove Theorem 1) can emulate
uncoded transmission and attains the same distortion
levels. Specifically, let Xj = Sj , j = 1, 2. Given
encoding functions f̃j and decoding functions g̃j of an

uncoded scheme such that E[dj(S̃j ,
ˆ̃Sj)] ≤ Dj , we set

Xj = fj(Ũj , S̃j) = f̃j(S̃j) and ˆ̃Sj = gj′(Ũj , S̃j′ , Ũj′ ,
Yj′) = g̃j′(S̃j′ , Yj′ ). Also, set PS̃1,S̃1

= PS1,S2 and

I(S̃1; Ũ1) < I(Ũ1; S̃2, Ũ2, X2, Y2)

⇔ H(Ũ1) − H(Ũ1|S̃1) < I(Ũ1; S̃2, Ũ2) + I(Ũ1; X2, Y2|S̃2, Ũ2)

⇔ H(Ũ1) − H(Ũ1|S̃1, S̃2, Ũ2) < H(Ũ1) − H(Ũ1|S̃2, Ũ2) + I(Ũ1; X2, Y2|S̃2, Ũ2)

⇔ H(Ũ1|S̃2, Ũ2) −H(Ũ1|S̃1, S̃2, Ũ2) < I(Ũ1; X2|S̃2, Ũ2)︸ ︷︷ ︸
=0

+ I(Ũ1; Y2|X2, S̃2, Ũ2)︸ ︷︷ ︸
=I(Ũ1;Y2|S̃2,Ũ2)

(16)

⇔ I(S̃1; Ũ1|S̃2, Ũ2) < I(Ũ1; Y2|S̃2, Ũ2),
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Uj = Ũj = constant. This setting determines PUj |Sj
and

PŨj |S̃j
uniquely and satisfies (10) and (11). We further

obtain PW̃1,W̃2
via (13). Clearly, the configuration

(PU1|S1 , PU2|S2 , PS̃1,S̃2,Ũ1,Ũ2
, PW̃1,W̃2

, f̃1, f̃2, g̃1, g̃2)
belongs to Π′

Z(D1, D2). Thus, one can establish the
achievability result of uncoded transmission in our setup
by giving appropriate functions f̃j and g̃j . A more
detailed performance analysis for this scheme can be
found in [1].

(ii) SSCC for the Lossy Transmission of Independent Sources:
To satisfy (10), we let PS1,S2 = PS̃1,S̃2

= PS1PS2 .
Define two independent random variables V1 ∈ X1 and
V2 ∈ X2, whose joint probability distribution PV1PV2

achieves the rate pair (I(V1; Y2|V2), I(V2; Y1|V1)) in
Shannon’s capacity inner bound. For j = 1, 2, we let
Ŝj denote the reconstruction variable in the standard RD
function of Sj in (1) and choose PŜj |Sj

that attains

R(j)(Dj). Also, we define (V ′
1 , V ′

2) ∈ X1 × X2 with
PV ′

1
PV ′

2
= PV1PV2 and define Ŝ′

j ∈ Ŝj as the recon-
struction variable in the standard RD function of S̃j at
distortion level Dj , i.e., we set PŜ′

j |S̃j
= PŜj |Sj

. For

j = 1, 2, let Uj � (Vj , Ŝj) and Ũj � (V ′
j , Ŝ′

j) and set
PUj |Sj

= PVj PŜj |Sj
and PŨj |S̃j

= PV ′
j
PŜ′

j |S̃j
. Clearly,

the necessary condition in (11) is satisfied. Moreover, set

Xj = fj(Ũj , S̃j) = fj((V ′
j , Ŝ′

j), S̃j) = V ′
j

and choose the decoding function gj as

ˆ̃Sj′ = gj(Ũj′ , Ũj, S̃j , Ỹj)

= gj((V ′
j′ , Ŝ

′
j′), (V

′
j , Ŝ′

j), S̃j , Ỹj) = Ŝ′
j′ ,

which yields E[dj(S̃j ,
ˆ̃Sj)] ≤ Dj for j = 1, 2. The above

construction ensures that the tuple

(PV1PŜ1|S1︸ ︷︷ ︸
=PU1|S1

, PV2PŜ2|S2︸ ︷︷ ︸
=PU2|S2

, PS̃1
PS̃2

PV ′
1
PŜ′

1|S̃1
PV ′

2
PŜ′

2|S̃2︸ ︷︷ ︸
=PS̃1,S̃2,Ũ1,Ũ2

,

PW̃1,W̃2
, f1, f2, g1, g2)

is a configuration in Π′
Z(D1, D2). Next, using the fact

that S1 and S2 are independent, one can simplify the
sufficient conditions in (15) as follows (the details are
given in Appendix B):

R(1)(D1) < I(X1; Y2|X2)
R(2)(D2) < I(X1; Y1|X2)

which is the achievability result for the SSCC scheme
based on the standard lossy source coding and Shannon’s
random channel coding (without time-sharing).

(iii) SSCC for the Lossy Transmission of Correlated Sources:
For j = 1, 2, we define pairs (V1, V2) ∈ X1 × X2

and (V ′
1 , V ′

2) ∈ X1 × X2 in the same way as in the
special case (ii); set the two pairs to have identical
distributions, i.e., PV1PV2 = PV ′

1
PV ′

2
. Letting Tj ∈ Tj

denote the auxiliary random variable in the WZ RD
function of Sj in (2), we choose PTj |Sj

and the associated

decoding function hj′(Tj , Sj′) that achieves R
(j)
WZ(Dj).

Similarly, we use T ′
j ∈ Tj in the WZ RD function of

S̃j and set PT ′
j |S̃j

= PTj |Sj
. Letting Uj � (Vj , Tj)

and Ũj � (V ′
j , T ′

j), we set PUj |Sj
= PVj PTj |Sj

and
PŨj |S̃j

= PV ′
j
PT ′

j |S̃j
. Also, set PS̃1,S̃2

= PS1,S2 . Thus,
(10) and (11) are satisfied. Moreover, we set the encoding
and decoding functions as

Xj = fj(Ũj , S̃j) = fj((V ′
j , T ′

j), S̃j) = V ′
j

and

ˆ̃Sj = gj′(Ũj , Ũj′ , S̃j′ , Ỹj′ )

= gj′((V ′
j , T ′

j), (V
′

j′ , T
′
j′), S̃j′ , Ỹj′) = hj′ (T ′

j , S̃j′),

such that the decoder satisfies E[dj(S̃j ,
ˆ̃Sj)] ≤ Dj for

j = 1, 2. With the above specifications, we next apply
(13) to obtain PW̃1,W̃2

, yielding the following configura-
tion in Π′

Z(D1, D2):

(PV1PT1|S1︸ ︷︷ ︸
=PU1|S1

, PV2PT2|S2︸ ︷︷ ︸
=PU2|S2

, PS̃1,S̃2
PV ′

1
PT ′

1|S̃1
PV ′

2
PT ′

2|S̃2︸ ︷︷ ︸
=PS̃1,S̃2,Ũ1,Ũ2

,

PW̃1,W̃1
, f1, f2, h1, h2).

Furthermore, using the Markov chain relationship:
T ′

1 �−− S̃1 �−− S̃2 �−− T ′
2 and the memoryless property

of the channel, one can easily deduce the following two
inequalities from (15):

R
(1)
WZ(D1) < I(X1; Y2|X2)

R
(2)
WZ(D2) < I(X2; Y1|X1)

which is the achievability result for the SSCC scheme
based on the WZ lossy source coding and Shannon’s
random channel coding (without time-sharing) [1]. As
the derivation is very similar to the previous case (see
Appendix B), we omit the details.

(iv) Correlation-Preserving Coding Scheme for (Almost)
Lossless Transmission of Correlated Sources [35]: Sup-
pose that Sj = Ŝj and consider the Hamming distortion
measure [22, Sec. 3.6]. We first set PS̃1,S̃2

= PS1,S2

to meet the necessary condition in (10). Recall the
definitions of (V1, V2) and (V ′

1 , V ′
2) in the special case (ii)

with PV1PV2 = PV ′
1
PV ′

2
, which achieve the same rate pair

(I(V1; Y2|V2), I(V2; Y1|V1)) in Shannon’s capacity inner
bound. Moreover, we recall the variables (Ŝ1, Ŝ2) and
(Ŝ′

1, Ŝ
′
2) from the special case (ii), but here we choose

PŜj |Sj
to achieve R(j)(0) in (1) and set PŜ′

j |S̃j
= PŜj |Sj

for j = 1, 2. Let Uj � (Vj , Ŝj) and Ũj � (V ′
j , Ŝ′

j), and
set PUj |Sj

= PVj PŜj |Sj
and PŨj |S̃j

= PV ′
j
PŜ′

j |S̃j
. The

setting satisfies the condition in (11). We next consider
the following encoding and decoding functions:

Xj = fj(Ũj , S̃j) = fj((V ′
j , Ŝ′

j), S̃j) = V ′
j

and

ˆ̃Sj′ = gj(Ũj′ , Ũj, S̃j , Yj)

= gj((V ′
j′ , Ŝ

′
j′), (V

′
j , Ŝ′

j), S̃j , Ỹj) = Ŝ′
j′ .
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Using (13) to obtain PW̃1,W̃2
, we ensure that the resulting

configuration belongs to Π′
Z(0, 0). Furthermore, one can

easily show that the sufficient conditions in (15) become

R(1)(0) = H(S̃1|S̃2)
< I(V ′

1 ; Y2|V ′
2 , S̃2) = I(X1; Y2|X2, S̃2)

R(2)(0) = H(S̃2|S̃1)
< I(V ′

2 ; Y1|V ′
1 , S̃1) = I(X2; Y1|X1, S̃1)

which recover the achievability conditions in [35,
Cor. 8.1] (the rate-one case without coded time-sharing).
Note that the block error rate for reconstructing the
source messages is asymptotically vanishing here since
the above conditions imply that limK→∞ Pr

(
E
)

= 0
(see Appendix A for the definition of the error event

E) and hence limK→∞ Pr
(
(S̃K

j , ˆ̃SK
j ) ∈ T (K)

ε

)
= 1 for

j = 1, 2, where T (K)
ε denotes the jointly typical set with

parameters K and ε as defined in [22]. This result implies

that limK→∞ Pr
(
{S̃K

1 �= ˆ̃SK
1 } ∪ {S̃K

2 �= ˆ̃SK
2 }
)

= 0.
In fact, since superposition coding is disabled in this sim-

plified scheme, it is unnecessary to use the sliding window
decoder. The decoding of each new source block can be done
within the same transmission block. The block diagram of such
coding system is depicted in Fig. 4 with the following system
operations. The source messages SK

j are first mapped to a
digital codeword UK

j (Mj) with index Mj . The channel inputs
XK

j are then generated via the symbol-by-symbol map f̃j ,
which combines the digital information UK

j (M1) with the raw
(or analog) information SK

j . Upon receiving Y K
j , terminal j

estimates the codeword index Mj′ based on all available
information. Finally, the decoded codeword Uj′(M̂j′ ) and
source message SK

j are passed together through the symbol-
by-symbol map g̃j to produce ŜK

j′ . The performance of this
specific coding system is analyzed in [2]. The sufficient con-
ditions in the achievability result are identical to those in (15)
except that (S̃1, S̃2, Ũ1, Ũ2) are replaced with (S1, S2, U1, U2).

B. An SSCC Scheme With Adaptive Channel Coding

In the second simplification, we disable superposition cod-
ing for the raw source messages; i.e., we let Xj = Fj(Sj , Uj,

S̃j , Ũj, W̃j) � fj(Uj , Ũj , W̃j) and ˆ̃Sj′ = Gj(Ũj′ , Sj , Uj, S̃j ,
Ũj , W̃j , Yj) � gj(Ũj′ , S̃j) for some fj and gj , j = 1, 2. Set
PS̃1,S̃2

= PS1,S2 to satisfy (10). Let Vj , Ṽj , and W̃j be the
auxiliary random variables used in Han’s result [15] and let
γj : Vj×Ṽj×W̃j → Xj denote terminal j’s encoding function.
Here, we choose PV1,V2,Ṽ1,Ṽ2,W̃1,W̃2

and γj that achieves
the rate pair (I(Ṽ1; X2, Y2, Ṽ2, W̃2), I(Ṽ2; X1, Y1, Ṽ1, W̃1)) in
Han’s channel coding inner bound. Note that in Han’s result,
PV1,V2,Ṽ1,Ṽ2,W̃1,W̃2

= PV1PV2PṼ1
PṼ2

PW̃1,W̃2|Ṽ1,Ṽ2
and PṼj

=
PVj , j = 1, 2.

Moreover, recall in (2) the auxiliary random variable Tj in
the WZ-RD function for Sj , j = 1, 2; we choose PTj |Sj

and

the associated decoding function hj′ that attains R
(j)
WZ(Dj).

We also define its counterpart T̃j for S̃j and set PT̃j |S̃j
=

PTj |Sj
for j = 1, 2. Let Uj � (Vj , Tj) and Ũj � (Ṽj , T̃j)

and set PUj |Sj
= PVj PTj |Sj

and PŨj |S̃j
= PṼj

PT̃j |S̃j
, which

satisfy (11). Next, we consider the following encoding and
decoding functions: fj(Uj , Ũj, W̃j) = γj(Vj , Ṽj , W̃j) and

gj(Ũj′ , S̃j) = hj(T̃j′ , S̃j), which ensures that E[dj(S̃j ,
ˆ̃Sj)] ≤

Dj for j = 1, 2. Under the above setting, the joint probability
distribution of all involved random variables is then given by

PZ = PS1,S2 PV1PT1|S1︸ ︷︷ ︸
=PU1|S1

PV2PT2|S2︸ ︷︷ ︸
=PU2|S2

PS̃1,S̃2

· PṼ1
PT̃1|S̃1︸ ︷︷ ︸

=PŨ1|S̃1

PṼ2
PT̃2|S̃2︸ ︷︷ ︸

=PŨ2|S̃2

PW̃1,W̃2|Ṽ1,Ṽ2︸ ︷︷ ︸
=PW̃1,W̃2|S̃1,S̃2,Ũ1,Ũ2

· PX1|V1,Ṽ1,W̃1
PX2|V2,Ṽ2,W̃2

PY1,Y2|X1,X2 , (17)

where PW̃1,W̃2|Ṽ1,Ṽ2
is specified by Han’s result [15] and

PXj |Vj,Ṽj ,W̃j
is determined by γj , j = 1, 2. It can be shown

(by definition) that PZ = PZQZ , thus implying that

(PV1PT1|S1 , PV2PT2|S2 , PS̃1,S̃2
PṼ1

PT̃1|S̃1
PṼ2

PT̃2|S̃2
,

PW̃1,W̃2|Ṽ1,Ṽ2
, γ1, γ2, h1, h2) ∈ ΠZ(D1, D2).

Letting Π′′
Z(D1, D2) ⊆ ΠZ(D1, D2) denote the set of all

such special configurations, we obtain the following corollary
from Theorem 1.

Corollary 2 (SSCC With WZ Source Coding and Han’s
Adaptive Channel Coding): A distortion pair (D1, D2) is
achievable for the rate-one lossy transmission of correlated
sources over a DM-TWC if there exists a configuration in
Π

′′
Z(D1, D2) such that

R
(1)
WZ(D1) < I(Ṽ1; X2, Y2, Ṽ2, W̃2), (18a)

R
(2)
WZ(D2) < I(Ṽ2; X1, Y1, Ṽ1, W̃1). (18b)

Proof: For any configuration in Π′′
Z(D1, D2), the asso-

ciated stationary distribution PZ can be factorized into the
product form in (17). In addition to the independence between
(S1, S2, U1, U2) and (S̃1, S̃2, Ũ1, Ũ2, W̃1, W̃2), the quadru-
ple (S̃1, S̃2, T̃1, T̃2) is independent of (Ṽ1, Ṽ2). These facts
imply the independence between Ṽj and (Sj′ , Vj′ , S̃j′ , T̃j′).
Moreover, we have the following Markov chain relationships:
T1 �−− S1 �−− S2 �−− T2, T̃1 �−− S̃1 �−− S̃2 �−− T̃2,
and T̃j �−− (Ṽj , Sj′ , Uj′ , S̃j′ , T̃j′) �−− (Ṽj′ , W̃j′ , Xj′ , Yj′ ),
j = 1, 2. We now show that (12a) reduces to (18a), where
(19), shown at the bottom of the next page, holds since
I(Ũ1; S̃2, T̃2|S2, U2) = I(Ũ1; S̃2, T̃2) and Ũj = (Ṽj , T̃j), and
we have the equivalence in (20), shown at the bottom of the
next page, since

I(S̃1; T̃1) − I(Ṽ1, T̃1; S̃2, T̃2)

= I(S̃1; T̃1) − I(T̃1; S̃2, T̃2) − I(Ṽ1; S̃2, T̃2|T̃1)︸ ︷︷ ︸
=0

= I(S̃1; T̃1) − I(T̃1; S̃2, T̃2) − I(S̃1; T̃1|S̃2) + I(S̃1; T̃1|S̃2)

= H(T̃1) − H(T̃1|S̃1) − H(T̃1) + H(T̃1|S̃2, T̃2)︸ ︷︷ ︸
=H(T̃1|S̃2)

− H(T̃1|S̃2) + H(T̃1|S̃1, S̃2)︸ ︷︷ ︸
=H(T̃1|S̃1)

+I(S̃1; T̃1|S̃2)

= I(S̃1; T̃1|S̃2),
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Fig. 4. Rate-one non-adaptive hybrid coding scheme for the transmission of correlated sources over DM-TWCs.

and

I(Ṽ1, T̃1; Ṽ2, W̃2, X2, Y2|S2, U2, S̃2, T̃2)

= I(Ṽ1; Ṽ2, W̃2, X2, Y2|S2, U2, S̃2, T̃2)

+ I(T̃1; Ṽ2, W̃2, X2, Y2|S2, U2, S̃2, T̃2, Ṽ1)︸ ︷︷ ︸
=0

= H(Ṽ1|S2, U2, S̃2, T̃2)

− H(Ṽ1|S2, U2, S̃2, T̃2, Ṽ2, W̃2, X2, Y2)

= H(Ṽ1) − H(Ṽ1|Ṽ2, W̃2, X2, Y2) (21)

= I(Ṽ1; Ṽ2, W̃2, X2, Y2),

where (21) holds since Ṽ1 is independent of (S2, V2, S̃2, T̃2)
given (Ṽ2, W̃2, X2, Y2). By symmetry, one can also deduce
(18b) from (12b), thus completing the proof.

We note that by working with super-symbols, we obtain a
rate-K/N extension of Corollary 2.

Corollary 3 (General Rate SSCC With WZ Source Cod-
ing and Han’s Adaptive Channel Coding): A distortion pair
(D1, D2) is achievable for the rate-K/N lossy transmission
of correlated sources over a DM-TWC if

K · R(1)
WZ(D1) < N · I(Ṽ1; X2, Y2, Ṽ2, W̃2), (22a)

K · R(2)
WZ(D2) < N · I(Ṽ2; X1, Y1, Ṽ1, W̃1), (22b)

for some joint probability distribution PṼ1,Ṽ2,W̃1,W̃2,X1,X2
as

defined in [15, Section IV].
As Han’s channel coding result subsumes Shannon’s result,

the following corollary is immediate, which is perhaps the
simplest SSCC result for our problem setup.

Corollary 4 (General Rate SSCC With WZ Source Cod-
ing and Non-Adaptive Channel Coding): A distortion pair
(D1, D2) is achievable for the rate-K/N lossy transmission
of correlated sources over a DM-TWC if

K · R(1)
WZ(D1) < N · I(X1; Y2|X2), (23a)

K · R(2)
WZ(D2) < N · I(X2; Y1|X1), (23b)

for some PX1PX2 .
As our general JSCC scheme (in the proof of Theorem 1)

does not consider time-sharing for the sake of simplicity,
the channel coding rate pairs obtained by the convex closure
operation in Han’s and Shannon’s inner bound (see Section II-
C) are excluded in Corollary 3 and Corollary 4, respectively.
However, one can clearly incorporate time-sharing in our
coding scheme and Theorem 1. After such convexification
operation, any achievable rate pair in Han’s (resp., Shannon’s)
capacity inner bound, i.e., (22) (resp., (23)) will be included.
Furthermore, despite the fact that Corollary 3 strictly subsumes
Corollary 4, the associated achievable distortion regions are
identical when DM-TWCs are symmetric [13]; i.e., when
Shannon’s inner bound is tight. In such situation, the simpler
coding scheme of Corollary 4 is preferred.

To end our discussion on the achievability part, we remark
that integrating source refinement and cross-interference mit-
igation in each channel input is seemingly the most efficient
way for source transmission. However, we observe that sepa-
rately achieving the two objectives can sometimes result in
a better performance in related problems such as two-way
channel coding [14] and two-way function computation [30].
Thus, it is of interest to ask under what conditions the
separation of the two objectives also benefits source-channel
communication, which we leave as future research.

V. CONVERSE RESULTS AND COMPLETE JSCC THEOREMS

The last two sections were devoted to the construction of
achievable coding schemes. In this section, we derive two outer
bounds to the achievable distortion region. Our objective is
not only to identify unattainable distortion pairs but also to
establish complete JSCC theorems.

A. Two Outer Bounds

Lemmas 1 and 2 provide two outer bounds. Lemma 2 is
obtained via a genie-aided argument where the encoder at

I(S̃1; Ũ1) < I(Ũ1; S2, U2, S̃2, Ũ2, W̃2, X2, Y2)

⇔ I(S̃1; T̃1) + I(S̃1; Ṽ1|T̃1)︸ ︷︷ ︸
=0

< I(Ũ1; S2, U2)︸ ︷︷ ︸
=0

+I(Ũ1; S̃2, Ṽ2, T̃2, W̃2, X2, Y2|S2, U2)

⇔ I(S̃1; T̃1) − I(Ũ1; S̃2, T̃2|S2, U2) < I(Ũ1; Ṽ2, W̃2, X2, Y2|S2, U2, S̃2, T̃2)

⇔ I(S̃1; T̃1) − I(Ṽ1, T̃1; S̃2, T̃2) < I(Ṽ1, T̃1; Ṽ2, W̃2, X2, Y2|S2, U2, S̃2, T̃2) (19)

⇔ I(S̃1; T̃1|S̃2) < I(Ṽ1; Ṽ2, W̃2, X2, Y2) (20)
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terminal j can access the decoder side-information SK
j′ at

terminal j′. The proofs are standard and hence omitted. Details
are given in [1] and [2], respectively.

Lemma 1: If a rate-K/N JSCC scheme achieves the distor-
tion levels D1 and D2 for the lossy transmission of correlated
sources over a DM-TWC, then

K · R(1)(D1) ≤ K · I(S1; S2) + N · I(X1; Y2|X2), (24a)

K · R(2)(D2) ≤ K · I(S1; S2) + N · I(X2; Y1|X1), (24b)

for some PX1,X2 .
Lemma 2 (Genie-Aided Outer Bound): If a rate-K/N JSCC

scheme achieves the distortion levels D1 and D2 for the lossy
transmission of correlated sources over a DM-TWC, then we
have

K · RS1|S2(D1) ≤ N · I(X1; Y2|X2), (25a)

K · RS2|S1(D2) ≤ N · I(X2; Y1|X1), (25b)

for some PX1,X2 .
Lemmas 1 and 2 generally give different outer bounds;

however, the regions are identical for independent sources S1

and S2 since in this case I(S1; S2) = 0 and R(j)(Dj) =
RSj |Sj′ (Dj). The conditions in (1) and (2) are also equivalent
for arbitrarily correlated sources for the specific distortion
requirement (D1, D2) = (0, 0) since RSj |Sj′ (0) = R(j)(0) −
I(S1; S2) = H(Sj |Sj′ ).

B. Complete JSCC Theorems

Matching the achievability results in Section IV with the
converse results in Lemmas 1 and 2, we obtain three complete
JSCC theorems (Theorems 2-4). We also establish a complete
theorem (Theorem 5) for correlated source pairs that have
common parts. In the results below, a “symmetric DM-TWC”
is a DM-TWC that possesses the symmetry properties defined
in [13]. With these properties, Shannon’s inner bound in (4) is
tight and hence the capacity region is achieved via independent
inputs. Moreover, taking the convex closure in (4) is not
needed.

Theorem 2 (Lossy Transmission of Independent Sources):
For the rate-K/N lossy transmission of independent sources
over a symmetric DM-TWC, a distortion pair (D1, D2) is
achievable if and only if

K · R(1)(D1) ≤ N · I(X1; Y2|X2),
K · R(2)(D2) ≤ N · I(X2; Y1|X1),

for some PX1PX2 .
Proof: This result is due to the special case (ii) of Corol-

lary 1 and Lemma 1, together with the facts that R
(j)
WZ(Dj) =

R(j)(Dj) and I(S1; S2) = 0 for independent sources pair.
Theorem 3 (Almost Lossless Transmission of Correlated

Sources): For the rate-K/N transmission of correlated sources
over a symmetric DM-TWC, the almost lossless transmission
is achievable if and only if

K · H(S1|S2) ≤ N · I(X1; Y2|X2),
K · H(S2|S1) ≤ N · I(X2; Y1|X1),

for some PX1PX2 .

Proof: In Lemma 1, we have that K · R(j)(0) − K ·
I(S1; S2) = K · H(Sj |Sj′). Combining this result with the
special case (iv) of Corollary 1 then completes the proof.

Theorem 4 (Lossy Transmission of Correlated Sources With
Equal WZ and Conditional RD Functions): For the rate-
K/N lossy transmission of correlated sources whose WZ-RD
functions equal to their conditional RD functions over a
symmetric DM-TWC, a distortion pair (D1, D2) is achievable
if and only if

K · RS1|S2(D1) ≤ N · I(X1; Y2|X2),
K · RS2|S1(D2) ≤ N · I(X2; Y1|X1),

for some PX1PX2 .
Proof: The result follows from the special case (iii) of

Corollary 1 and Lemma 2.
Theorem 5 (Lossy Transmission of Correlated Sources With

a Common Part): Assume that correlated sources S1 and
S2 have a common part S0 in the sense of Gács-Körner-
Witsenhausen and the triplet (S0, S1, S2) forms a Markov
chain S1 �−− S0 �−− S2. For the rate-K/N lossy transmis-
sion of such correlated sources over a symmetric DM-TWC,
a distortion pair (D1, D2) is achievable if and only if

K · RS1|S0(D1) ≤ N · I(X1; Y2|X2), (26a)

K · RS2|S0(D2) ≤ N · I(X2; Y1|X1), (26b)

for some PX1PX2 .
Proof: We construct a two-way coding scheme using two

one-way SSCC schemes, one for each direction of the bi-
directional transmission. Specifically, we employ the source
coding scheme that achieves the distortion level Dj of the
conditional RD function R

(j)
Sj|S0

(Dj) given in (3), j = 1, 2,
followed by Shannon’s one-way channel coding for data pro-
tection. The sufficient conditions for achieving the distortion
pair (D1, D2) as shown in (26) are thus immediate. Note
that in this two-way coding scheme, we do not employ
time-sharing and the channel inputs X1 and X2 are indepen-
dent.

The proof of the converse part is presented in Appendix C.
Although the inputs X1 and X2 are arbitrarily correlated in
the outer bound result, we can restrict to independent inputs
without changing the outer bound region due to the channel
symmetry property, i.e., the capacity region of the DM-TWC
can be determined via independent channel inputs. Combining
this fact with the achievability result then completes the proof.

From the above results, one may find that one challenge
in obtaining a complete JSCC theorem lies in determining
the capacity region for DM-TWCs. Nevertheless, even if the
capacity region of a DM-TWC can be exactly determined,
obtaining a complete theorem for coding correlated sources
is still difficult since the separation principle may not hold
(i.e., separate source and channel coding is not optimal) in
general. A similar difficulty has been observed in the simpler
(one-way) problem of sending correlated sources over multiple
access channels [Section 14, 22]. Our JSCC theorems in this
section are special instances where the separation principle
holds.
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Fig. 5. A general Venn diagram of the achievable distortion regions for the
coding schemes presented in Sections III and IV, for a fixed source pair and
channel. Moreover, Examples 1-3 in Section VI-A show that certain inclusion
relationships can be strict.

VI. EXAMPLES AND DISCUSSION

In this section, we illustrate our achievability results and
discuss possible extensions. The Venn diagram in Fig. 5
summarizes the relationship of the achievable rate regions for
the coding schemes in Sections III and IV. We begin with
three examples showing that some inclusion relationships can
be strict, followed by illustrative examples for Theorems 1, 4,
and 5.

A. Examples

Examples 1 and 2 below show that Theorem 1 strictly gener-
alizes Corollary 1 and Corollary 2, respectively. Example 3 not
only illustrates a special use of the two-way hybrid coding
scheme but also reveals that Corollary 1 strictly subsumes
all of its special cases; see Section IV-A. Example 4 shows
how a simple instance of our adaptive JSCC helps source
transmission. At the end of this section, we provide two
examples (Examples 5-6) for Theorem 4 and an example
(Example 7) for Theorem 5. Note that except for the Gaussian
case examined in Example 6, the Hamming distortion is
considered in all examples. Let Ber(p) denote a Bernoulli
random variable with probability of success p ∈ [0, 1], and let
Hb(·) denotes the binary entropy function. We will also need
the following specialized converse result in Examples 1 and 4,
whose proof is similar to Lemma 1.

Proposition 1: Assume that the non-adaptive encoder fj :
SK

j → XK
j is used for j = 1, 2. If a distortion pair (D1, D2) is

achievable for the rate-one lossy transmission of independent
sources over a DM-TWC, then

R(1)(D1) ≤ I(X1; Y2|X2, Q),
R(2)(D2) ≤ I(X2; Y1|X1, Q),

for some PQPX1|QPX2|Q.
Note that the pair (I(X1; Y2|X2, Q), I(X2; Y1|X1, Q))

under the distribution PQPX1|QPX2|Q in Proposition 1 is an
alternative expression for the achievable rate pair in Shannon’s
inner bound (see (4)).

Example 1 (Transmitting Independent Binary Non-Uniform
Sources over Dueck’s DM-TWC [46]): Consider the indepen-
dent sources S1 = Ber(0.89) and S2 = Ber(0.89) so that

H(S1) = H(S2) ≈ 0.5. We recall Dueck’s DM-TWC [46],
where Xj = (Xj,1, Xj,2),7 Y j = (X1,1 · X2,1, Nj ⊕
Xj′,2, Nj′), the symbol ⊕ denotes the modulo-2 addition, and
N1 = Ber(0.5) and N2 = Ber(0.5) are independent channel
noise variables that are independent of all channel inputs
and sources. Han [15] showed that the channel coding rate
pair (Rc,1, Rc,2) = (0.5, 0.5) is not achievable via Shannon’s
random coding scheme but can be achieved via his adaptive
channel coding scheme. Based on this fact and Proposition 1,
we conclude that the hybrid coding scheme of Corollary 1
cannot achieve the distortion pair (D1, D2) = (0, 0) (since it
uses non-adaptive encoders and violates the necessary condi-
tions in Proposition 1). By contrast, Corollary 2 shows that
the distortion pair (0, 0) is achievable via our general JSCC
scheme as RWZ,j(0) = H(Sj) < Rc,j holds for j = 1, 2.
Thus, Theorem 1 strictly subsumes Corollary 1.

Example 2 (Transmitting Correlated Binary Sources
over Binary-Multiplying DM-TWCs [4]): Consider the
binary-multiplying TWC given by Yj = X1 ·X2 for j = 1, 2.
The capacity region of the channel is not known, but it is
known that any symmetric achievable channel coding rate
pair is component-wise upper bounded by (0.646, 0.646) [9].
Suppose that we want to exchange binary correlated sources
with joint probability distribution PS1,S2(0, 0) = 0 and
PS1,S2(s1, s2) = 1/3 for (s1, s2) �= (0, 0). The WZ coding
theorem indicates that the minimum source coding rate pair is
(H(S1|S2), H(S2|S1)) = (0.667, 0.667) to achieve the distor-
tion pair (D1, D2) = (0, 0). Clearly, this pair is not achievable
by any SSCC scheme, including the adaptive coding scheme
of Corollary 2, because the source coding rate exceeds the
largest possible transmission rate for reliable communication.
However, the uncoded scheme: Xj = Sj for j = 1, 2 can be
easily shown to provide lossless transmission. As Corollary 2
and the uncoded scheme are special cases of our general JSCC
method, Theorem 1 strictly subsumes Corollary 2.

Example 3 (Transmitting Correlated Binary Sources over a
Mixed-Type DM-TWC): Suppose that all alphabets are binary.
Let the source messages S1 and S2 have the joint probability
distribution PS1,S2(1, 0) = 0 and PS1,S2(s1, s2) = 1/3 for
(s1, s2) �= (1, 0). Consider the DM-TWC described by Y1 =
X1⊕X2⊕N1 and Y2 = X1 ·X2, where N1 = Ber(0.05) that is
independent of Sj’s and Xj’s. In other words, we have a (one-
way) binary-multiplying channel in one direction and a binary
additive channel with additive noise in another direction.

For this channel, none of the special cases of Corollary 1
can achieve the distortion pair (D1, D2) = (0, 0). More
specifically, the SSCC schemes in the special cases cannot
attain the distortion pair since H(S1|S2) < I(X1; Y2|X2) and
H(S2|S1) < I(X2; Y1|X1) cannot hold simultaneously. More-
over, using uncoded transmission in both directions yields
the distortion pair (D1, D2) = (0, 0.033). However, we can
use the two-way hybrid coding scheme in Corollary 1 in
the following way: use uncoded transmission from termi-
nal 1 to 2 and use the concatenation of WZ source coding
and Shannon’s channel coding for the reverse direction. Then

7As Dueck’s DM-TWC has Xj = {0, 1}2 and Yj = {0, 1}3, we here use
(Xj,1, Xj,2) ∈ Xj to denote the two channel inputs of terminal j.
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Fig. 6. An illustration of adaptive encoding and sliding-window decoding in Example 4. At time-b, terminal 2 cannot perfectly decode S
(b−1)
1 from Y

(b)
2,2

due to the additive noise N
(b)
2 . However, at time-(b + 1), the adaptive channel inputs X

(b+1)
1,1 and X

(b+1)
2,1 enable a perfect decoding for N

(b)
2 (based on

Y
(b)
2,3 , Y

(b+1)
2,1 , and the noise correlation) at terminal 2, which can be used to eliminate the noise in Y

(b)
2,2 and achieve error-free transmission.

the distortion pair (0, 0) is achievable. This example shows
that Corollary 1 is a strictly generalization of its presented
special cases.

Example 4 (Transmitting Independent Binary Uniform
Sources over Dueck’s DM-TWC): Consider the almost loss-
less transmission of the independent sources S1 = Ber(0.5)
and S2 = Ber(0.5) through Dueck’s DM-TWC (given in
Example 1). Here, the binary noise variables N1 and N2

are assumed to be correlated with joint distribution given by
PN1,N2(0, 0) = 0 and PN1,N2(n1, n2) = 1/3 for (n1, n2) �=
(0, 0). For this channel, the optimal symmetric rate pair in
Proposition 1 is obtained as (I(X1; Y2|X2), I(X2; Y1|X1)) =
(0.9503, 0.9503). Since the required source coding rate
R

(j)
WZ(0) = H(Sj) = 1 (at terminal j) exceeds the outer bound

in Proposition 1, the hybrid coding scheme in Corollary 1
cannot achieve the distortion pair (D1, D2) = (0, 0).

By contrast, the following use of our general JSCC
scheme provides rate-one lossless transmission. Suppose that
we exchange a length-K of such source pair via K + 1
channel uses. Clearly, the transmission rate approaches
one as K goes to infinity. For j = 1, 2, we next set
(X(1)

j,1 , X
(1)
j,2 ) = (1, S

(1)
j ), (X(K+1)

j,1 , X
(K+1)
j,2 ) = (Y (K)

j,3 , 1),
and (X(b)

j,1 , X
(b)
j,2 ) = (Y (n−1)

j,3 , S
(b)
j ) for b = 2, 3, . . . , K , where

the superscripts represent time index. Via such adaptive
encoding, terminal j can exploit the correlation between N1

and N2 to perfectly decode N
(b−1)
j from Y

(b)
j,1 and Y

(b−1)
j,3 and

reconstruct S
(b−1)
j′ as Ŝ

(b−1)
j′ = N

(b−1)
j ⊕Y

(b−1)
j,2 = S

(b−1)
j′ for

all 2 ≤ b ≤ K +1, thus achieving zero-error transmission. For
2 ≤ b ≤ K , the above encoding and decoding procedure is
depicted in Fig. 6. Note that whether or not the SSCC scheme
in Corollary 2 achieves the same performance remains unclear.

Example 5 (Transmitting Binary Correlated Sources
With Z-channel Correlation over Binary Additive Noise
DM-TWCs): Suppose that all alphabets are binary. Given
0 ≤ ε1, ε2 < 0.5, the binary additive noise DM-TWC is
described by Yj = Xj ⊕ Xj′ ⊕ Nj , j = 1, 2, where the
channel noise variables N1 = Ber(ε1) and N2 = Ber(ε2) are
independent of each other, of the source messages, and of the

channel inputs. The capacity region of the channel is given
by [45]: {(Rc1 , Rc2) : 0 ≤ Rc1 ≤ 1 − Hb(ε2), 0 ≤ Rc2 ≤ 1 −
Hb(ε1)}. Consider the binary correlated source pair (S1, S2)
with Z-channel correlation [44]; i.e., the transition matrices
[PS2|S1(·|·)] and [PS1|S2(·|·)] between the sources S1 and S2

can be interpreted as a Z-channel and a reverse Z-channel,
respectively. Assume that the crossover probabilities of the
Z-type channels are α1 and α2, respectively. Let PS1(1) = q1

and PS2(1) = q2, where q2 is a function of q1 and α1 (note that
one may also write q1 as a function of q2 and α2). According
to Theorem 4, the achievable distortion region for the rate-
K/N transmission consists of all pairs (D1, D2) that satisfy
the inequalities, shown at the bottom of the next page.

Example 6 (Transmitting Correlated Gaussian Sources over
DM-TWCs With Additive White Gaussian Noise (AWGN)
DM-TWCs): Consider the squared-error distortion measure.
The AWGN DM-TWC is described by Yj = Xj + Xj′ + Nj ,
j = 1, 2, where N1 and N2 are independent zero mean
Gaussian noises with variance σ2

1 and σ2
2 , respectively, and

are independent of the source messages and of the channel
inputs. The average power of channel inputs Xj is set as
Pj for j = 1, 2. Moreover, the correlated sources S1 and S2

are considered to be zero-mean unit-variance jointly Gaussian
random variables with correlation coefficient ρ for some 0 ≤
ρ ≤ 1. For this setting, Theorem 4 yields the achievable
distortion region {(D1, D2) : Dj ≥ (1 − ρ2)(1 + Pj

σj′
)

K
N , j =

1, 2}, for the rate-K/N transmission. The detailed derivation
can be found in [1, Lemma 4].

Example 7 (Transmitting Quaternary Correlated Sources
Over Binary Additive Noise DM-TWCs): Suppose that S1 =
S2 = Ŝ1 = Ŝ2 = {A, B, C, D} and X1 = X2 = Y1 =
Y2 = {0, 1}. Consider the correlated source pair with joint
probability distribution given by

PS1,S2(s1, s2) =

⎧⎪⎪⎨
⎪⎪⎩

1
8

if (s1, s2) ∈ {A, B} × {A, B}
∪{C, D} × {C, D},

0 otherwise.
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For such sources, we observe a binary common part S0;
S0 = 0 and S0 = 1 are corresponding to S1, S2 ∈ {A, B}
and S1, S2 ∈ {C, D}, respectively. Given this common part,
we can decompose Sj into (S0, S

′
j), where S′

j = Ber(0.5).
It is easy to show that Sj and (S0, S

′
j) have a one-to-one

correspondence and the Markov chain relationship S′
1 �−−

S0 �−− S′
2 holds. Moreover, the conditional RD function

PS′
j |S0(Dj) is given by PS′

j |S0(Dj) = 1 − Hb(Dj) for 0 ≤
Dj ≤ 0.5.

Due to the above decomposition, the terminals only need to
exchange (S′

1, S
′
2). When transmitting the pair (S′

1, S
′
2) over

the binary additive noise DM-TWCs (defined in Example 5)
at rate-K/N , we can apply Theorem 5 to characterize the
achievable distortion region of the overall system, which is
the convex hull of all distortion pairs (D1, D2) satisfying

K(1 − Hb(D1)) ≤ N(1 − Hb(ε2)),
K(1 − Hb(D2)) ≤ N(1 − Hb(ε1)).

B. Adaptive Coding With More Past Information

In our JSCC scheme (detailed in Appendix A),
we merely use the most recent channel inputs and outputs
(X(t−1)

j , Y
(t−1)
j ) to generate the current channel input X

(t)
j .

Although ideally one would use the entire past channel input
and output history for adaptive coding, the accumulated
information in this case causes the Markov chain not
only to have a time-varying transition kernel but also to
drastically expand the state space. The idea to jointly
optimize the terminals’ transmission via a stationary Markov
chain becomes infeasible. In the following, we sketch two
coding strategies to deal with this problem. Each of the
strategies can be directly integrated into our JSCC scheme,
but the encoding/decoding complexity will be higher and the
sufficient conditions will be significantly more complicated
than the current ones.

The first strategy is to generate X
(t)
j as a function of the

past μ channel inputs (X(t−μ)
j , X

(t−μ+1)
j , . . . , X

(t−1)
j ) and

outputs (Y (t−μ)
j , Y

(t−μ+1)
j , . . . , Y

(t−1)
j ) for some μ > 1,

which is similar to the memory-μ channel coding for DM-
TWCs [18, Section 4.4]. This strategy increases the encoding
and decoding complexity, but the state space complexity of
the Markov chain is constant.

The second strategy quantizes the past channel inputs and
outputs at each terminal into a set with fixed size. The channel
inputs can be then generated as a function of the quantized
information in that set, rather than the entire past information.
This strategy is similar to the Q-graph channel coding for
single-output DM-TWCs [19], and it adds a minor encoding
cost. However, as the quantized knowledge is not necessarily

a sufficient statistic for optimal decoding, we still need to
store all past information, which clearly increases system
complexity.8

C. Adaptive Coding With Incremental Side-Information

Our adaptive coding mainly coordinates the terminals’ trans-
mission on the shared channel as we did not attempt to apply
Kaspi’s interactive source coding idea [21] to make the best
use of the sequentially received signals. Here, we give an
SSCC scheme that encompasses both ideas.

The exchange of correlated sources SK
1 and SK

2 is now
accomplished in L rounds for some L ≥ 1, which comprises
N channel uses (note that N is a function of K). Specifically,
for 1 ≤ l ≤ L, let Nl denote the number of channel uses in
the lth round of transmission, where

∑L
l=1 Nl = N . In each

round, viewing the previously transmitted and decoded source
codewords as side-information, each terminal applies binning
for source coding, followed by Han’s adaptive channel coding.
Each terminal also decodes the other terminal’s source code-
word at the end of each transmission round. After L rounds,
each terminal reconstructs the other terminal’s source mes-
sages from the side-information and its own source messages.
Clearly, this simple SSCC scheme allows two-way simultane-
ous transmission and interactive source coding. We summarize
the achievability result in Proposition 2 below (without proof).
Here, Tj,l, j = 1, 2 and l = 1, 2, . . . , L, are auxiliary random
variables.

Proposition 2: A distortion pair (D1, D2) is achievable for
the rate-K/N lossy transmission of correlated sources over a
DM-TWC if for all 1 ≤ l ≤ L, we have that

K·I(S1; T1,l|S2, T
l−1
1 , T l−1

2 ) < Nl·I(Ṽ1,l; X2,l, Y2,l, Ṽ2,l, W̃2,l),

K·I(S2; T2,l|S1, T
l−1
1 , T l−1

2 ) < Nl·I(Ṽ2,l; X1,l, Y1,l, Ṽ1,l, W̃1,l),

for some PṼ1,l,Ṽ2,l,W̃1,l,W̃2,l,X1,l,X2,l
as defined in [15,

Section IV] and

PT L
1 ,T L

2 |S1,S2
=

L∏
l=1

PT1,l|S1,T l−1
1 ,T l−1

2
PT2,l|S2,T l−1

1 ,T l−1
2

and two decoding functions Ŝj′ = gj(Sj , T
L
j , T L

j′ ) such that
E[dj(Sj , Ŝj)] ≤ Dj for j = 1, 2.

Note that the above proposition reduces to Corollary 3 when
L = 1. In light of this, it is of interest to ask if there exists a
general adaptive JSCC scheme that integrates both features and
subsumes all of our presented achievability results. We leave
this question for future research.

8One can apply sliding-window decoding to limit the amount of past
information at each receiver.

K(1 − q1 + q1α1)

[
Hb

(
q1α1

1 − q1 + q1α1

)
− Hb

(
D1

1 − q1 + q1α1

)]
≤ N(1 − Hb(ε2)),

K(1 − q2 + q2α2)

[
Hb

(
q2α2

1 − q2 + q2α2

)
− Hb

(
D2

1 − q2 + q2α2

)]
≤ N(1 − Hb(ε1)).
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VII. CONCLUSION

We constructed an adaptive coding scheme to prove a
direct JSCC theorem, which characterizes an achievable dis-
tortion region for two-way lossy simultaneous transmission.
Our adaptive coding method demonstrates a way to coordi-
nate the independent transmissions of the terminals; it also
underscores the importance of preserving source correlation
as illustrated via several examples. Moreover, our coding
scheme subsumes several simple non-adaptive coding meth-
ods, providing a unified transmission framework that allows
for diverse various system complexity and performance trade-
offs. Although the general form of our scheme is complex,
in many cases its SSCC instances suffice to achieve the optimal
performance. Future directions include adaptive coding based
on the SSCC structure, symbol-wise adaptive coding (as
opposed to block-wise adaptive coding), and practical joint
source-channel code design for our problem setup. It is also
of interest to refine the outer bounds and derive a complete
characterization of the achievable RD region for two-way
source-channel communication (in either single-letter or multi-
letter expression).

APPENDIX

A. Proof of Theorem 1

Before presenting the proof, we remark that after specifying
our coding method and the set of stationary configurations,
one can prove the same result using [43, Theorem 1] since
our adaptive coding system involves block-wise operations.
Although this proof approach can eliminate certain error
analyses, it requires extra ingredients such as “unfolding the
network” and determining all coding parameters. This proof
approach also provides less insight into our adaptive coding
scheme. To better convey the ideas behind our coding scheme
and avoid introducing new terminology, we follow a standard
argument here.

Let T (n)
ε denote the typical set of sequences with parameters

n ∈ Z+ and ε > 0 as defined in [22]; the domain of T (n)
ε

will clear from the context and hence omitted. Here, we set
n = N = K as we consider the rate-one transmission. For
j = 1, 2 and b = 1, 2, · · · , B, we define 2nR

(b)
j as the size

of terminal j’s codebook C(b)
j , which is used to encode the

b-th block S
(b)
j of source messages. For an event E , we let E

denote its complement.
Codebook Generation: Given a configuration in

ΠZ(D1, D2), generate two length-n sequences (S̃
(1)

1 , S̃
(1)

2 ,

Ũ
(1)

1 , Ũ
(1)

2 , W̃
(1)

1 , W̃
(1)

2 ) and (S(B+1)
1 , S

(B+1)
2 , U

(B+1)
1 ,

U
(B+1)
2 ) to initialize and terminate the (B + 1)-blocks

encoding process with distributions

P
S̃

(1)
1 ,S̃

(1)
2 ,Ũ

(1)
1 ,Ũ

(1)
2 ,W̃

(1)
1 ,W̃

(1)
2

(̃s(1)
1 , s̃

(1)
2 , ũ

(1)
1 , ũ

(1)
2 , w̃

(1)
1 , w̃

(1)
2 )

=
n∏

i=1

PS̃1,S̃2,Ũ1,Ũ2,W̃1,W̃2
(s̃(1)

1,i , s̃
(1)
2,i , ũ

(1)
1,i , ũ

(1)
2,i , w̃

(1)
1,i , w̃

(1)
2,i )

(27)

and

P
S(B+1)

1 ,S
(B+1)
2 ,U

(B+1)
1 ,U

(B+1)
2

(s(B+1)
1 , s

(B+1)
2 , u

(B+1)
1 , u

(B+1)
2 )

=
n∏

i=1

PS1,S2,U1,U2(s
(B+1)
1,i , s

(B+1)
2,i , u

(B+1)
1,i , u

(B+1)
2,i ).

(28)

Moreover, generate codebooks C(b)
j � {U (b)

j (m(b)
j ) :

m
(b)
j = 1, 2, . . . , 2nR

(b)
j } for b = 1, 2, . . . , B and j =

1, 2, where U
(b)
j (m(b)

j ) is a length-n sequence distributed

according to PUj
(u(b)

j (m(b)
j )) =

∏n
i=1 PUj (u

(b)
j,i (m

(b)
j )) and

U
(b)
j (m(b)

j )’s are independent of each other. The initialization
and termination sequences and all codebooks are revealed to
both terminals. We note that due to the construction of the
Markov chain {Z(t)}, the codebook C(b)

j is also used for

Ũ
(b+1)

j .
Encoding: Let ε1 > ε > 0. For b = 1, 2, . . . , B

and j = 1, 2, terminal j finds m
(b)
j such that

(S(b)
j , U(m(b)

j )) ∈ T (n)
ε1 . If there is more than one such

index, the encoder chooses one of them at random. If there
is no such index, it chooses an index at random from
{1, 2, . . . , 2nR

(b)
j }. The transmitter then sends X

(b)
j , where

X
(b)
j,i = Fj(S

(b)
j,i , U

(b)
j,i (m(b)

j ), S̃(b)
j,i , Ũ

(b)
j,i , W̃

(b)
j,i ) for i =

1, 2, . . . , n, S̃
(b)
j,i = S

(b−1)
j,i , Ũ

(b)
j,i = U

(b−1)
j,i , and W̃

(b)
j,i =

(X(b−1)
j,i , Y

(b−1)
j,i ) for b = 2, 3, . . . , B. For b = B +1, X(B+1)

is generated in the same way using the termination sequence.
Decoding: For b=2, 3, . . . , B + 1 and j, j′=1, 2 with j �=j′,

terminal j finds an index m̂
(b−1)
j′ such that (S(b)

j , U
(b)
j ,

S̃
(b)

j , Ũ
(b)

j , Ũ
(b)

j′ (m̂(b−1)
j′ ), W̃

(b)

j , X
(b)
j , Y

(b)
j ) ∈ T (n)

ε , where

Ũ
(b)

j′ (m̂(b−1)
j′ ) ∈ C(b−1)

j′ . If there is more than one choice,
the decoder chooses one of them at random. If there is no
such index, it chooses one at random from {1, 2, . . . , 2nR

(b)
j ′ }.

The reconstruction for the source message S
(b−1)
j′ is given

by Ŝ
(b−1)
j′,i = Gj(Ũ

(b)
j′,i(m̂

(b−1)
j′ ), S(b)

j,i , U
(b)
j,i , S̃

(b)
j,i , Ũ

(b)
j,i , W̃

(b)
j,i ,

Y
(b)
j,i ) for i = 1, 2, . . . , n.

Performance Analysis: Let M
(b)
j and M̂

(b)
j denote the ran-

dom encoded and decoded indices for S
(b)
j . We first define the

events E(b)
1 , b = 1, 2, . . . , B+1, in (29a), shown at the bottom

of the next page, for terminal 1. We analogously define the
events E(b)

2 for terminal 2 (not shown here) and consider the
error event E = ∪B+1

b=1 E(b)
1 ∪ E(b)

2 . The expected distortion of
terminal j’s source reconstruction (averaged with respect to
all codebooks, source messages, channel inputs, and channel
outputs) can be bounded by

1
B

B∑
b=1

E[dj(S
(b)
j , Ŝ

(b)

j )]

≤ Pr(E)dj,max +
1
B

B∑
b=1

Pr
(
E
)
E[dj(S

(b)
j , Ŝ

(b)

j )|E ] (30)

≤ Pr(E)dj,max +
1
B

B∑
b=1

(1 + ε)E[dj(S
(b)
j , Ŝ

(b)
j )] (31)

= Pr(E)dj,max + (1 + ε)E[dj(Sj , Ŝj)] (32)

≤ Pr(E)dj,max + (1 + ε)Dj , (33)
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where (30) follows from E[dj(S
(b)
j , Ŝ

(b)

j )|E ] ≤ dj,max with
dj,max � maxsj ,ŝj dj(sj , ŝj), (31) is due to the typical average
lemma [22], (32) follows from the stationarity of the Markov
chain, and the last inequality holds by assumption.

If we can further show that Pr
(
E
)

→ 0 and the joint
source-channel coding rate goes to one as both n and B go
to infinity, then the distortion pair ((1 + ε)D1, (1 + ε)D2) is
achievable. Note that it suffices to show that Pr

(
E(1)

j

)
→ 0

and Pr
(
E(b)

j ∩ E(b−1)

j

)
→ 0 for all j = 1, 2 and b =

2, 3, . . . , B +1 since by the identity ∪B
b=1E

(b)
j = E(1)

j ∪
(
∪B

b=2

E(b)
j ∩ E(b−1)

j

)
, we have

Pr(E) ≤ Pr(E(1)
1 ) + Pr(E(1)

2 )

+
B+1∑
b=2

(
Pr(E(b)

1 ∩ E(b−1)

1 ) + Pr(E(b)
2 ∩ E(b−1)

2 )
)
.

Due to symmetry, we only analyze Pr
(
E(1)
1

)
and Pr

(
E(b)
1 ∩

E(b−1)

1

)
. For j = 1, 2 and b = 1, 2, . . . , B + 1, we first define

F (b)
j =

{
(S(b)

j , U
(b)
j (m(b)

j )) /∈ T (n)
ε1 for all m

(b)
j

}
,

F (b)
3 =

{
(S(b)

1 , S
(b)
2 , U

(b)
1 (M (b)

1 ), U (b)
2 (M (b)

2 ),

S̃
(b)

1 , S̃
(b)

2 , Ũ
(b)

1 (M (b−1)
1 ), Ũ

(b)

2 (M (b−1)
2 ),

W̃
(b)

1 , W̃
(b)

2 X
(b)
1 , X

(b)
2 , Y

(b)
1 , Y

(b)
2 ) /∈ T (n)

ε

}
,

F (b)
4 =

{
∃ m̂

(b−1)
1 �= M

(b−1)
1 s.t. (S(b)

2 , U
(b)
2 (M (b)

2 ), S̃
(b)

2 ,

Ũ
(b)

1 (m̂(b−1)
1 ), Ũ

(b)

2 (M (b−1)
2 ), W̃

(b)

2 , X
(b)
2 , Y

(b)
2 ) ∈ T (n)

ε

}
,

with the exception that F (1)
3 � E(1)

1 and F (B+1)
3 � E(B+1)

1

due to the initialization and termination phases of the encoding
process. Next, we use the following results (whose proofs are
omitted) to obtain (12a).

Claim 1: For b = 2, 3, . . . , B + 1, the event F (b)

3 ∩ F (b)

4

implies that M̂
(b−1)
1 = M

(b−1)
1 .

Claim 2: E(1)
1 ⊆ F (1)

1 ∪ F (1)
2 ∪ (F (1)

1 ∩ F (1)

2 ∩ E(1)
1 )

Claim 3: The inclusion E(b)
1 ∩E(b−1)

1 ⊆ F (b)
1 ∪F (b)

2 ∪(F (1)

1 ∩
F (1)

2 ∩ F (b)
3 ∩ E(b−1)

1 ) ∪ F (b)
4 holds for b = 2, 3, . . . , B.

Claim 4: E(B+1)
1 ∩ E (B)

1 ⊆ (F (B+1)
3 ∩ E(B)

1 ) ∪ F (B+1)
4

Claim 5: If R
(1)
j > I(Sj ; Uj) + δ1(ε1), then we have that

limn→∞ Pr
(
E(1)

j

)
= 0.

Claim 6: If R
(B)
1 < I(Ũ1; S2, U2, S̃2, Ũ2, W̃2, X2, Y2) −

δ(ε), then limn→∞ Pr
(
E(B+1)
1 ∩ E (B)

1

)
= 0.

Claim 7: For b = 2, 3, . . . , B, if R
(b)
j > I(Sj ; Uj) + δ1(ε1)

and R
(b−1)
1 < I(Ũ1; S2, U2, S̃2, Ũ2, W̃2, X2, Y2) − δ(ε), then

limn→∞ Pr
(
E(b)
1 ∩ E(b−1)

1

)
= 0.

Roughly speaking, the non-negative quantities δ1(ε1) and
δ(ε) above arise from the standard typicality arguments and
limε1→0 δ1(ε1) = 0 and limε→0 δ(ε) = 0. Here, Claim 1 holds
due to the definitions of F̄ (b)

3 and F̄ (b)
4 ; Claim 2 holds

since the right-hand-side is equal to E(1)
1 ∪ F (1)

1 ∪ F (1)
2 .

Claims 3 and 4 are shown using the fact that E(b)
1 ⊆ F (b)

3 ∪
F (b)

4 , which is a consequence of Claim 1. Claims 5-7 are
derived based on Claims 2-4, respectively. More specifically,
the union bound is applied to each inclusion relationship (in
Claims 2-4) to upper bound the probability of the event on the
left-hand-side. A thorough analysis then yields the conditions
in Claims 5-7, which ensure that all terms in the upper bound
asymptotically vanish. The proofs of Claims 5-7 invoke the
covering lemma [22], the conditional typical lemma [22], and
[38, Lemma 1].

Swapping the role of terminals 1 and 2, we obtain
limn→∞ Pr

(
E(1)
2

)
= 0 and are such that limn→∞ Pr

(
E(b)
2 ∩

E(b−1)

2

)
= 0 for b = 2, 3, . . . , B + 1 provided that R

(b)
j >

I(Sj ; Uj) + δ1(ε1) for j = 1, 2 and b = 1, 2, . . . , B and
R

(b−1)
2 < I(Ũ2; S1, U1, S̃1, Ũ1, W̃1, X1, Y1) − δ(ε) for b =

2, 3, . . . , B + 1. Combining all conditions above then gives
the two inequalities in (12a). To complete the proof, we first
increase B so that the JSCC rate B/(B + 1) is close to one.
Fixing this choice of B, we next make n sufficiently large to
ensure that all joint typicality requirements behind Claims 5-7
(and similar claims for terminal 2) are satisfied. As now we
have limn→∞ Pr(E)=0 (provided that all conditions hold) and
ε is arbitrary, the distortion pair (D1, D2) is achievable.

B. Auxiliary Result for Special Case (ii) of Corollary 1

By symmetry, we only show that I(S̃1; Ũ1|S̃2, Ũ2) <
I(Ũ1; Y2|S̃2, Ũ2) reduces to R(1)(D1) < I(X1; Y2|X2). First,
observe that

I(S̃1; Ũ1|S̃2, Ũ2)

= I(S̃1; V ′
1 , Ŝ′

1|S̃2, V
′
2 , Ŝ′

2)

= I(S̃1; V ′
1 |S̃2, V

′
2 , Ŝ′

2)︸ ︷︷ ︸
=0

+I(S̃1; Ŝ′
1|S̃2, V

′
2 , Ŝ′

2, V
′
1 )

= H(Ŝ′
1|S̃2, V

′
2 , Ŝ′

2, V
′
1) − H(Ŝ′

1|S̃2, V
′
2 , Ŝ′

2, V
′
1 , S̃1)

= H(Ŝ′
1) − H(Ŝ′

1|S̃1) (34)

= I(S̃1; Ŝ′
1)

E(1)
1 � {(S(1)

1 , S
(1)
2 , U

(1)
1 (M (1)

1 ), U (1)
2 (M (1)

2 ), S̃
(1)

1 , S̃
(1)

2 ,Ũ
(1)

1 , Ũ
(1)

2 , W̃
(1)

1 , W̃
(1)

2 , X
(b)
1 , X

(b)
2 , Y

(b)
1 , Y

(b)
2 ) /∈ T (n)

ε }.
(29a)

E(B+1)
1 � {(S(B+1)

1 , S
(B+1)
2 , U

(B+1)
1 , U

(B+1)
2 , S̃

(B+1)

1 , S̃
(B+1)

2 , Ũ
(B+1)

1 (M̂ (B)
1 ), Ũ

(B+1)

2 (M (B)
2 ),

W̃
(B+1)

1 , W̃
(B+1)

2 , X
(B+1)
1 , X

(B+1)
2 , Y

(B+1)
1 , Y

(B+1)
2 ) /∈ T (n)

ε }. (29b)

E(b)
1 � {(S(b)

1 , S
(b)
2 , U

(b)
1 (M (b)

1 ), U (b)
2 (M (b)

2 ), S̃
(b)

1 , S̃
(b)

2 , Ũ
(b)

1 (M̂ (b−1)
1 ), Ũ

(b)

2 (M (b−1)
2 ),

W̃
(b)

1 , W̃
(b)

2 , X
(b)
1 , X

(b)
2 , Y

(b)
1 , Y

(b)
2 ) /∈ T (n)

ε }, for b = 2, 3, . . . , B. (29c)
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= R(1)(D1) (35)

where (34) holds since S̃1 and S̃2 are independent and hence
Ŝ′

1 is independent of (S̃2, V
′
2 , Ŝ′

2, V
′
1), and (35) follows since

the joint probability distribution PS̃1,Ŝ′
1

= PS1,Ŝ1
achieves

R(1)(D1).
Moreover, we have that

I(Ũ1; Y2|S̃2, Ũ2)

= I(V ′
1 , Ŝ′

1; Y2|S̃2, V
′
2 , Ŝ′

2)

= I(V ′
1 ; Y2|S̃2, V

′
2 , Ŝ′

2) + I(Ŝ′
1; Y2|S̃2, V

′
2 , Ŝ′

2, V
′
1)

= I(X1; Y2|S̃2, X2, Ŝ
′
2) + I(Ŝ′

1; Y2|S̃2, X2, Ŝ
′
2, X1) (36)

= H(Y2|S̃2, X2, Ŝ
′
2) − H(Y2|S̃2, X2, Ŝ

′
2, X1) (37)

= H(Y2|X2) − H(Y2|X2, X1) (38)

= I(X1; Y2|X2)

where (36) follows since Xj = V ′
j , (37) holds since given

channel inputs X1 and X2, the output Y2 is independent
of other variables, and (38) holds due to the Markov chain
relationship (S̃2, Ŝ

′
2) �−− X2 �−− Y2.

C. Proof of Converse Part in Theorem 5

For k1 ≤ k2, let Sk2
j,k1

� (Sj,k1 , Sj,k1+1, . . . , Sj,k2).
Given a rate-K/N joint source-channel code that achieves the
distortion pair (D1, D2), we obtain (26a) by the following
derivation:

K · RS1|S0(D1)

≤ K · RS1|S0

(
K−1

K∑
k=1

E

[
d1(S1,k, Ŝ1,k)

])
(39)

≤
K∑

k=1

RS1|S0

(
E[d1(S1,k, Ŝ1,k)]

)
(40)

≤
K∑

k=1

I(S1,k; Ŝ1,k|S0,k) (41)

≤
K∑

k=1

I(S1,k; SK
2 , Y N

2 |S0,k) (42)

≤
K∑

k=1

H(S1,k|S0,k) − H(S1,k|Sk
0 , SK

2 , Y N
2 ) (43)

≤
K∑

k=1

H(S1,k|SK
0 , Sk−1

1 , SK
2 )

−H(S1,k|SK
0 , Sk−1

1 , SK
2 , Y N

2 ) (44)

=
K∑

k=1

I(S1,k; Y N
2 |SK

0 , Sk−1
1 , SK

2 )

= I(SK
1 ; Y N

2 |SK
0 , SK

2 )

=
N∑

n=1

I(SK
1 ; Y2,n|SK

0 , SK
2 , Y n−1

2 )

≤
N∑

n=1

H(Y2,n|X2,n)

−H(Y2,n|SK
0 , SK

1 , SK
2 , Y n−1

2 , X1,n, X2,n)
(45)

=
N∑

n=1

H(Y2,n|X2,n) − H(Y2,n|X1,n, X2,n) (46)

= N ·
N∑

n=1

1
N

· I(X1,n; Y2,n|X2,n)

≤ N · I(X1; Y2|X2), (47)

where (39) holds since RS1|S0(D1) is non-increasing and the
expected distortion of the code is not larger than D1, (40) and
(41) are respectively due to convexity and the definition of
conditional RD function, (42) follows from the data-processing
inequality, (43) holds since conditioning reduces entropy, (44)
holds by the Markov chain relationships S1,k �−− S0,k �−−
(Sk−1

0 , SK
0,k+1, S

k−1
1 ) and SK

1 �−− SK
0 �−− SK

2 and since
conditioning reduces entropy, (45) holds since X2,n is a func-
tion of (Y n−1

2 , SK
2 ) and since conditioning reduces entropy,

(46) follows from the memoryless property of channel, and
(47) holds with PX1,X2 = N−1

∑N
n=1 PX1,n,X2,n since

I(X1,n; Y2,n|X2,n) is concave in PX1,n,X2,n . By symmetry,
a similar argument shows (26b).
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