1) Let \(f(x) = \begin{cases}
 x - 1 & x < 2 \\
 a & x = 2 \\
 ax^2 + b & x > 2
\end{cases} \)
For which \(a \) and \(b \) is \(f \) continuous at 2?

2) Suppose that \(f \) is continuous on \([0,1]\) and \(f(0) = f(1) \). Show that there is \(c \in [0,1/2] \) such that \(f(c) = f(c + 1/2) \).

3) Show that \(\sin(x) = x - 1 \) has a solution. You don’t have to find it; just demonstrate that a solution exists.

4) In each of the two parts below you are given a function \(f \) defined for all \(x \neq 0 \). You must decide if there is another function, \(F \), defined for all \(x \) such that (i) \(F \) is continuous (on all of the real line) and (ii) \(F(x) = f(x) \) for all \(x \neq 0 \).

 i) \(f(x) = \frac{\sin x}{x} \);

 ii) \(f(x) = \frac{|x|}{x} \).