1) Suppose f is a differentiable function on \mathbb{R} with $f(0) = 1$ and that f satisfies the equation $xf''(x) + f'(x) + xf(x) = 0$ (this is called a differential equation)

 i) find $f'(0)$;

 ii) find $f''(0)$.

2) Find the derivative of each the functions below.

 i) $f(x) = \sin^{-1}(\sqrt{\sin x})$, for $0 < x < \pi$.

 ii) $f(x) = \tan^{-1}\left(\sqrt{\frac{1-x}{1+x}}\right)$.

3) Suppose that f is differentiable and one-to-one with inverse f^{-1}. Moreover suppose that $f'(x) \neq 0$ for all x and that F is a differentiable function with $F' = f$. Let $G(x) = xf^{-1}(x) - F(f^{-1}(x))$. Show that $G'(x) = f^{-1}(x)$.

4) Consider the curve in the plane $y^3 - 3y = x$.

 i) find the points where the curve crosses the y-axis;

 ii) find the slope of the tangent line at each of these points.