Unit \#4 - Interpreting Derivatives, Local Linearity, Marginal Rates Section 3.5

Some material from "Calculus, Single and MultiVariable" by Hughes-Hallett, Gleason, McCallum et. al.
Copyright 2005 by John Wiley \& Sons, Inc.
This material is used by permission of John Wiley \& Sons, Inc.

TEST PREPARATION PROBLEMS

44. $y=5+4.9 \cos \left(\frac{\pi}{6} t\right)$
(a) $\frac{d y}{d t}=-4.9 \frac{\pi}{6} \sin \left(\frac{\pi}{6} t\right)$. This represents the rate at which the depth of the water is changing, in feet (units of y) per hour (units of t).
(b) $\frac{d y}{d t}=0$ when $\sin =0$, or when

$$
\begin{aligned}
\frac{\pi}{6} t & =0, \pi, 2 \pi, \text { etc. } \\
t & =\frac{6}{\pi} \times\{0, \pi, 2 \pi, \ldots\} \\
t & =0,6,12,18,24 \text { hours }
\end{aligned}
$$

in the period $0 \leq t \leq 24$. At these times, the depth of water is not changing, and is frequently associated with high- or low-tide. (We will study this question further in our study of optimization problems.)
45. $y=15+\sin (2 \pi t)$
(a) The vertical velocity is given by $v=\frac{d y}{d t}=2 \pi \cos (2 \pi t)$.
(b)

48. $P(t)=4000+500 \sin \left(2 \pi t-\frac{\pi}{2}\right)$
(a) The period is $\frac{2 \pi}{2 \pi}=1$ year. The sine wave "starts" when $\left(2 \pi t-\frac{\pi}{2}\right)=0$ or $t=\frac{1}{4}$ of a year.
The population average is 4000, and its amplitude is 500 .

(b) The population reaches its maximum at $t=1 / 2$ year, and that max population is 4500. The minimum occurs at $t=0$ years, and represents a population of 3500 .
(c) The population is growing fastest at $t=1 / 4$, and is decreasing fastest at $t=3 / 4$ years.
(d) On July 1st, $t=1 / 2$, and at that point, the population is at its peak. This means that $P^{\prime}(1 / 2)=0$ (instantaneous rate of change is zero). We can confirm this with the derivative,

$$
\begin{aligned}
P^{\prime}(t) & =500(2 \pi) \cos \left(2 \pi t-\frac{\pi}{2}\right) \\
\text { so } P^{\prime}(1 / 2) & =500(2 \pi) \cos \left(2 \pi \frac{1}{2}-\frac{\pi}{2}\right) \\
& =500(2 \pi) \cos \left(\frac{\pi}{2}\right) \\
& =0
\end{aligned}
$$

49. (a) From the diagram below,

$$
\begin{aligned}
\frac{O D}{a} & =\cos (\theta)
\end{aligned} r \text { so } O D=a \cos (\theta)
$$

Since we have a right-angle triangle,

$$
\begin{aligned}
& \quad(P D)^{2}+d^{2}=l^{2} \\
& \text { or } a^{2} \sin ^{2}(\theta)+d^{2}=l^{2} \\
& \text { so } d=\sqrt{l^{2}-a^{2} \sin ^{2}(\theta)}
\end{aligned}
$$

Finally, we can write the relationship between x and θ :

$$
\begin{aligned}
x & =O D+D Q \\
& =a \cos (\theta)+\sqrt{l^{2}-a^{2} \sin ^{2}(\theta)}
\end{aligned}
$$

(b) The derivative $\frac{d x}{d t}$ can be carefully computed using the chain rule, understanding that θ is also a function of time.

$$
\begin{aligned}
\frac{d x}{d t} & =-a \sin (\theta) \frac{d \theta}{d t}+\frac{1}{2}\left(l^{2}-a^{2} \sin ^{2}(\theta)\right)^{-1 / 2}\left(-a^{2}\left(2 \sin (\theta) \cos (\theta) \frac{d \theta}{d t}\right)\right) \\
& =-a \sin (\theta) \frac{d \theta}{d t}-\frac{a^{2} \sin (\theta) \cos (\theta) \frac{d \theta}{d t}}{\sqrt{l^{2}-a^{2} \sin ^{2}(\theta)}}
\end{aligned}
$$

(i) Using the values given, $\frac{d \theta}{d t}=2 \mathrm{rad} / \mathrm{s}$ and $\theta=\pi / 2$,

$$
\begin{aligned}
\left.\frac{d x}{d t}\right|_{\theta=\pi / 2} & =-a \sin (\pi / 2)(2)-\frac{a^{2} \sin (\pi / 2) \cos (\pi / 2)(2)}{\sqrt{l^{2}-a^{2} \sin ^{2}(\theta)}} \\
\text { but since } \cos (\pi / 2)=0,\left.\quad \frac{d x}{d t}\right|_{\theta=\pi / 2} & =-2 a \mathrm{~cm} / \mathrm{s}
\end{aligned}
$$

(ii) Using the values given, $\frac{d \theta}{d t}=2 \mathrm{rad} / \mathrm{s}$ and $\theta=\pi / 4$,

$$
\begin{aligned}
\left.\frac{d x}{d t}\right|_{\theta=\pi / 4} & =-a \sin (\pi / 4)(2)-\frac{a^{2} \sin (\pi / 4) \cos (\pi / 4)(2)}{\sqrt{l^{2}-a^{2} \sin ^{2}(\pi / 4)}} \\
& =-2 a \frac{1}{\sqrt{2}}-\frac{a^{2}\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right)(2)}{\sqrt{l^{2}-a^{2}\left(\frac{1}{\sqrt{2})^{2}}\right.}} \\
& =\frac{-2 a}{\sqrt{2}}-\frac{a^{2}}{\sqrt{l^{2}-\frac{a^{2}}{2}}} \mathrm{~cm} / \mathrm{s}
\end{aligned}
$$

50. $f(x)=\sin (x)$ so $f^{\prime}(x)=\cos (x)$.

- At $x=0$, the tangent line is defined by $f(0)=0$ and $f^{\prime}(0)=1$, so

$$
y=1(x-0)+0=x
$$

is the tangent line to $f(x)$ at $x=\frac{\pi}{3}$.

- At $x=\frac{\pi}{3}$, the tangent line is defined by $f(\pi / 3)=\frac{\sqrt{3}}{2}$ and $f^{\prime}(\pi / 3)=\frac{1}{2}$, so

$$
y=\frac{1}{2}\left(x-\frac{\pi}{3}\right)+\frac{\sqrt{3}}{2}
$$

is the tangent line to $f(x)$ at $x=0$.
The estimates of each tangent line at the point $x=\pi / 6$ would be

- Based on $x=0$ tangent line, $f(x) \approx x$, so $f(\pi / 6) \approx \pi / 6 \approx 0.5236$.
- Based on $x=\pi / 3$ tangent line, $f(x) \approx \frac{1}{2}\left(x-\frac{\pi}{3}\right)+\frac{\sqrt{3}}{2}$,
so $f(\pi / 6) \approx \frac{1}{2}\left(\pi / 6-\frac{\pi}{3}\right)+\frac{\sqrt{3}}{2} \approx 0.6042$
- The actual value of $f(x)=\sin (x)$ at $x=\pi / 6$ is $\sin (\pi / 6)=0.5$.

From these calculations, the estimate obtained by using the tangent line based at $x=0$ gives the more accurate prediction for $f(x)$ at $x=\pi / 6$
A sketch might help explain these results.

In the interval $x \in[0, \pi / 6]$, the function stays very close to linear (i.e. does not curve much), which means that the tangent line stays a good approximation for a relatively long time.
The function is most curved/least linear around its peak, so the linear approximation around $x=\pi / 3$ is less accurate even over the same Δx.
51. Let $f(x)=\sin (x)$ and $g(x)=k e^{-x}$. They intersect when $f(x)=g(x)$, and they are tangent at that intersection if $f^{\prime}(x)=g^{\prime}(x)$ as well. Thus we must have

$$
\sin (x)=k e^{-x} \quad \text { and } \cos (x)=-k e^{-x}
$$

We can't solve either equation on its own, but we can divide one by the other:

$$
\begin{aligned}
\frac{\sin (x)}{\cos (x)} & =\frac{k e^{-x}}{-k e^{-x}} \\
\tan (x) & =-1 \\
x & =\frac{3 \pi}{4}, \frac{7 \pi}{4}, \ldots
\end{aligned}
$$

Since we only need one value of k, we try the first value, $x=3 \pi / 4$.

$$
\begin{aligned}
\sin (3 \pi / 4) & =k e^{-3 \pi / 4} & \\
\frac{1}{\sqrt{2}} e^{3 \pi / 4} & =k k & \approx 7.46
\end{aligned}
$$

We confirm our answer by verifying both the values and derivatives are equal at $x=3 \pi / 4$,

$$
\sin (3 \pi / 4)=7.46 e^{-3 \pi / 4} \approx 0.7071 \quad \text { and } \cos (3 \pi / 4)=-7.46 e^{-3 \pi / 4} \approx-0.7071
$$

The actual point of tangency is at $(x, y)=\left(\frac{3 \pi}{4}, \frac{1}{\sqrt{2}}\right)$. A sketch is shown below.

