Week 4: Limits and Continuity

Goals:

- Introduce limits
- Study limit properties. Learn to evaluate limits
- Introduce continuity

Suggested Textbook Readings: Chapter 10: §10.1 - §10.3.

Practice Problems:

- §10.1: 3, 11, 23, 29, 31, 35, 39, 43
- §10.2: 2, 7, 13, 19, 23, 29, 35, 45
- §10.3: 9, 10
- §10.5 Review: 7, 15, 19, 25, 29, 41

Answers for §10.2 Problem 2

(a) \(\lim_{x \to 0^-} f(x) = 0 \)
(b) \(\lim_{x \to 0^+} f(x) = -\infty \)
(c) \(\lim_{x \to 0} f(x) \) doesn’t exist
(d) \(\lim_{x \to -\infty} f(x) = +\infty \)
(e) \(\lim_{x \to 1} f(x) = 2 \)
(f) \(\lim_{x \to -\infty} f(x) = 1 \)
(g) \(\lim_{x \to 2^+} f(x) = 1 \)
Limits

To prepare for this topic, you should read section §10.1 and §10.2 in the textbook.

We say that the limit of a function \(f(x) \), as \(x \) approaches a point \(a \), is equal to a number \(L \) if the \(f(x) \) can be made as close to \(L \) as desired by making \(x \) sufficiently close to \(a \), but not equal to \(a \). We write this as

\[
\lim_{x \to a} f(x) = L
\]

If there is no such number, we say that the limit does not exist.

For example, if we look at the function \(f(x) = 2 + x \) as \(x \) approaches 3, we get the following table:

<table>
<thead>
<tr>
<th>(x)</th>
<th>2.99</th>
<th>2.999</th>
<th>2.9999</th>
<th>3</th>
<th>3.0001</th>
<th>3.001</th>
<th>3.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x) = 2 + x)</td>
<td>4.99</td>
<td>4.999</td>
<td>4.9999</td>
<td>5</td>
<td>5.0001</td>
<td>5.001</td>
<td>5.01</td>
</tr>
</tbody>
</table>

From the table, the closer \(x \) gets to 3 from either side, the closer \(f(x) \) gets to 5. This suggests that

\[
\lim_{x \to 3} f(x) = 5
\]

Example 1: Estimate the limit \(\lim_{x \to 0} \frac{3x}{x} \)

\[\text{If } x \neq 0 \quad \frac{3x}{x} = 3 \quad \text{the graph of } y = \frac{3x}{x} \text{ is} \]

\[\lim_{x \to 0} \frac{3x}{x} = 3 \]

Example 2: Use a table to estimate the following limit

\[
\lim_{x \to 0} \frac{e^x - 1}{x} = 1
\]

<table>
<thead>
<tr>
<th>(x)</th>
<th>-0.1</th>
<th>-0.01</th>
<th>-0.001</th>
<th>-0.0001</th>
<th>0</th>
<th>0.0001</th>
<th>0.001</th>
<th>0.01</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e^x - 1)</td>
<td>0.951626</td>
<td>0.995017</td>
<td>0.9995</td>
<td>0.99995</td>
<td>1.00005</td>
<td>1.0005</td>
<td>1.005017</td>
<td>1.0517</td>
<td></td>
</tr>
</tbody>
</table>
Estimate Limit from Graphs

Example 3: Let \(f(x) = \frac{x^3 - 1}{x - 1} \). Draw the graph of \(y = f(x) \). Use the graph to estimate
\[
\lim_{x \to 1} \frac{x^3 - 1}{x - 1}.
\]

Since \(x^3 - 1 = (x-1)(x^2 + x + 1) \), we have
\[
\frac{x^3 - 1}{x - 1} = \frac{(x-1)(x^2 + x + 1)}{x - 1} = x^2 + x + 1 \quad \text{if } x \neq 1.
\]

So
\[
\lim_{x \to 1} \frac{x^3 - 1}{x - 1} = 3
\]

Example 4: Estimate \(\lim_{x \to 2} f(x) \) and \(\lim_{x \to 1} f(x) \), where the graph of \(f \) is given below.

\[\lim_{x \to 2} f(x) = f(2) = 0.5 \]

\[\lim_{x \to 1} f(x) = 2 \]
LIMITS DO NOT ALWAYS EXIST

Example 5: Consider the following limits:

1. \[\lim_{x \to 0} \frac{1}{x^2} \]

 The graph of \(y = \frac{1}{x^2} \) is
 when \(x \) approaches 0, the value of \(\frac{1}{x^2} \) increases without bound
 so the limit doesn't exist.

2. \[\lim_{x \to 0} \frac{|x|}{x} \]

 \[\frac{|x|}{x} = \begin{cases}
 1 & x > 0 \\
 -1 & x < 0
 \end{cases} \]

 It is not defined at \(x = 0 \).

 The graph of \(y = \frac{|x|}{x} \) is
 if \(x \) approaches 0 from the left, the value of \(\frac{|x|}{x} \) is -1, and if
 \(x \) approaches 0 from the right, the value of \(\frac{|x|}{x} \) is 1.

 So the limit doesn't exist.

3. \[\lim_{x \to 0} \frac{1}{x} \]

 The graph of \(y = \frac{1}{x} \) is
 if \(x \) approaches 0 from the left, the value of \(\frac{1}{x} \) approaches \(-\infty\),
 and if \(x \) approaches 0 from the right, the value of \(\frac{1}{x} \) approaches \(+\infty \).

 So the limit doesn't exist.
One-Sided Limits

In examining the limits we just calculated, we see it can sometimes be informative to determine the one-sided limit of a function; for these limits we consider values of the function as \(x \) approaches from only one direction. The left-side limit (or the right-side limit) (if exist) as \(x \) approaches \(a \) from left (or right) is denoted by \(\lim_{x \to a^-} f(x) \) (or \(\lim_{x \to a^+} f(x) \)).

The limit of \(f(x) \) exists and \(\lim_{x \to a} f(x) = L \) if and only if

- both left and right-side limits exist, and
- \(\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = L \)

Example 6: For the function \(f \) given in the figure below, find the following limits.

![Graph of a function with points labeled a, b, c, d, e, and asymptotes]

(a) \(\lim_{x \to a^-} f(x) = \infty \)
(b) \(\lim_{x \to a^+} f(x) = \infty \)

(c) \(\lim_{x \to b} f(x) = f(b) \)
(d) \(\lim_{x \to c^-} f(x) = 8 \)

(e) \(\lim_{x \to c^+} f(x) = 3 \)
(f) \(\lim_{x \to d^-} f(x) = -2 \)

(g) \(\lim_{x \to d^+} f(x) = -2 \)
(h) \(\lim_{x \to e} f(x) = 5 \)

Vertical Asymptote

The line \(x = a \) is a vertical asymptote for the graph of the function \(f \) if and only if

\[\lim_{x \to a^+} f(x) = \pm \infty \quad \text{or} \quad \lim_{x \to a^-} f(x) = \pm \infty \]

[Textbook, page 590 (12th), page 600 (13th)]
Finding a limit

<table>
<thead>
<tr>
<th>Properties of Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. If (f(x) = c) is a constant function, (\lim_{x \to a} f(x) = c)</td>
</tr>
<tr>
<td>2. (\lim_{x \to a} x^n = a^n), for any positive integer (n)</td>
</tr>
<tr>
<td>3. (\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x))</td>
</tr>
<tr>
<td>4. (\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x))</td>
</tr>
<tr>
<td>5. (\lim_{x \to a} c f(x) = c \lim_{x \to a} f(x))</td>
</tr>
<tr>
<td>6. If (f(x)) is a polynomial function, then (\lim_{x \to a} f(x) = f(a))</td>
</tr>
<tr>
<td>7. (\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}), if (\lim_{x \to a} g(x) \neq 0)</td>
</tr>
<tr>
<td>8. (\lim_{x \to a} \sqrt{f(x)} = \sqrt{\lim_{x \to a} f(x)})</td>
</tr>
</tbody>
</table>

Example 7: (a) \(\lim_{x \to 2} (x^2 + x) = \lim_{x \to 2} x^2 + \lim_{x \to 2} x = 4 + 2 = 6 \)

(b) \(\lim_{x \to 2} [(x + 1)(x - 3)] = \lim_{x \to 2} (x + 1) \lim_{x \to 2} (x - 3) = (2 + 1)(2 - 3) = -3 \)

(c) \(\lim_{x \to 1} \frac{2x^2 + x - 3}{x^3 + 4} = \frac{\lim_{x \to 1} (2x^2 + x - 3)}{\lim_{x \to 1} (x^3 + 4)} = \frac{2 + 1 - 3}{1 + 4} = 0 \)

(d) \(\lim_{x \to -2} \sqrt{x^2 - 1} = \sqrt{\lim_{x \to -2} (x^2 - 1)} = \sqrt{3} \)
Example 8: (a) Find \(\lim_{x \to -1} \frac{x^2 - 1}{x + 1} \).

Note that \(x^2 - 1 = (x-1)(x+1) \).

\[
\frac{x^2 - 1}{x + 1} = \frac{(x-1)(x+1)}{x+1} = x-1 \quad \text{if} \quad x \neq -1
\]

Then \(\lim_{x \to -1} \frac{x^2 - 1}{x + 1} = \lim_{x \to -1} (x-1) = -2 \).

(b) Find \(\lim_{x \to 4} \frac{x - 4}{\sqrt{x+5} - 3} \).

\[
\lim_{x \to 4} \frac{x - 4}{\sqrt{x+5} - 3} = \lim_{x \to 4} \frac{x - 4}{\sqrt{x+5} - 3} \cdot \frac{\sqrt{x+5} + 3}{\sqrt{x+5} + 3} = \lim_{x \to 4} \frac{(x-4)(\sqrt{x+5} + 3)}{\sqrt{x+5}^2 - 3^2} = \lim_{x \to 4} \frac{(x-4)(\sqrt{x+5} + 3)}{x-4} = \lim_{x \to 4} (\sqrt{x+5} + 3) = 6
\]

If a limit cannot be evaluated by direct substitution, then we need to manipulate the expression of the function to find the limit if it exists. A fundamental result is the following:

If \(f \) and \(g \) are two functions for which \(f(x) = g(x) \), for all \(x \neq a \), then

\[
\lim_{x \to a} f(x) = \lim_{x \to a} g(x)
\]
Example 9: If \(f(x) = x^2 + x + 1 \), find

\[
\lim_{{h \to 0}} \frac{f(x+h) - f(x)}{h}
\]

\[
f(x+h) = (x+h)^2 + (x+h) + 1
\]

\[
f(x) = x^2 + x + 1
\]

\[
f(x+h) - f(x) = (x+h)^2 + (x+h) + 1 - (x^2 + x + 1)
\]

\[
= 2xh + h^2 + h = h(2x + h + 1)
\]

Then

\[
\frac{f(x+h) - f(x)}{h} = \frac{h(2x + h + 1)}{h} = 2x + h + 1 \quad \text{if} \quad h \neq 0
\]

\[
\lim_{{h \to 0}} \frac{f(x+h) - f(x)}{h} = \lim_{{h \to 0}} (2x + h + 1) = 2x + 1
\]
Limits at Infinity

We can also consider the behaviour of the function when \(x \) is very large. We say that the limit of \(f(x) \) as \(x \) approaches infinity is equal to \(L \), denoted by

\[
\lim_{x \to \infty} f(x) = L
\]

if \(f(x) \) becomes arbitrarily close to \(L \) when \(x \) is arbitrarily large. We make the similar definition for \(x \to -\infty \) when \(x \) is negative. For example, in compound interest we have seen that the value of \(\left(1 + \frac{1}{n} \right)^n \) approaches \(e \) when \(n \) approaches \(+\infty \). It can be denoted by

\[
\lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n = e
\]

Example 10: \(\lim_{x \to \infty} \frac{1}{x} = 0 \)

In fact \(\lim_{x \to \infty} \frac{1}{x^p} = 0 \) for \(p > 0 \). This can be used to find limits of rational functions.

Example 11: \(\lim_{x \to \infty} \frac{4x^2 + 5}{2x^2 + 1} \)

By the graph, \(\lim_{x \to \infty} \frac{4x^2 + 5}{2x^2 + 1} = 2 \).

\[
\lim_{x \to \infty} \frac{4x^2 + 5}{2x^2 + 1} = \lim_{x \to \infty} \frac{(4x^2 + 5)/x^2}{(2x^2 + 1)/x^2} = \lim_{x \to \infty} \frac{4 + \frac{5}{x^2}}{2 + \frac{1}{x^2}} = \frac{4}{2} = 2
\]

HORIZONTAL ASYMPTOTE

Let \(f \) be a function. The line \(y = b \) is a horizontal asymptote for the graph of \(f \) if and only if at least one of the following is true:

\[
\lim_{x \to +\infty} f(x) = b, \text{ or } \lim_{x \to -\infty} f(x) = b
\]

[Textbook, page 591 (12th), page 602 (13th)]
Example 12: (a) \[\lim_{x \to -\infty} \frac{x}{(3x - 1)^2} = \lim_{x \to -\infty} \frac{x}{9x^2 - 6x + 1} = \lim_{x \to -\infty} \frac{\frac{x}{x^2}}{\frac{9x^2 - 6x + 1}{x^2}} = \frac{1}{9} \]

(b) \[\lim_{x \to -\infty} \frac{x^5 - x^4}{x^4 - x^3 + 2} = \lim_{x \to -\infty} \frac{(x^5 - x^4)}{(x^4 - x^3 + 2)} \cdot \frac{1}{x^4} = \lim_{x \to -\infty} \frac{x - 1}{1 - \frac{1}{x} + \frac{2}{x^2}} = \infty \]

(c) \[\lim_{x \to \infty} (\sqrt{x^2 + x} - x) = \lim_{x \to \infty} \left(\sqrt{x^2 + x} - x \right) \cdot \frac{\sqrt{x^2 + x} + x}{\sqrt{x^2 + x} + x} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + x} = \lim_{x \to \infty} \frac{x}{\sqrt{x^2 + x} + x} = \frac{1}{2} \]
Continuity

To prepare for this topic, you should read section §10.3 in the textbook.

A function is continuous at a if and only if the following three conditions are met:

1. $f(a)$ exists
2. $\lim_{x \to a} f(x)$ exists
3. $\lim_{x \to a} f(x) = f(a)$

If f is not continuous at a, then f is said to be discontinuous at a, and a is called a point of discontinuity of f.

Concept Question 1 At what points does the function fail to be continuous?

![Graph showing points of discontinuity](image)

- at $x = a$, the function is not defined
- at $x = c$, $\lim_{x \to c^-} f \neq \lim_{x \to c^+} f$
- at $x = e$, $\lim_{x \to e^-} f = \lim_{x \to e^+} f \neq f(e)$

The polynomial, exponential and logarithmic functions are continuous on their domains.
Example 13: Find all points of discontinuity.

(a) \(f(x) = \frac{x^2 - 3}{x^2 + 2x - 8} \)

\(x^2 - 3 \) and \(x^2 + 2x - 8 \) are continuous functions.

\(f(x) \) is not defined if \(x^2 + 2x - 8 = 0 \), that is, if \(x = -4 \) or \(x = 2 \).

So \(f \) is not continuous at \(x = -4 \) and \(x = 2 \).

(b) \(f(x) = \begin{cases}
 x + 2, & \text{if } x > 2, \\
 3, & \text{if } x = 2, \\
 x^2, & \text{if } x < 2.
\end{cases} \)

\(y = x + 2 \) and \(y = x^2 \) are continuous. The only possible place that \(f(x) \) is discontinuous is at \(x = 2 \).

Since

\(\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} x^2 = 4 \)

\(\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} x + 2 = 4 \)

but \(f(2) = 3 \).

We have \(\lim_{x \to 2} f(x) \neq f(2) \)

So the function is not continuous at \(x = 2 \).