1. [1pt each]
 (a) If \(x_0, y_0 \) is a solution of the linear Diophantine equation \(ay - bx = k \), show that the general solutions are given by
 \[
 \begin{cases}
 x = x_0 + a't \\
 y = y_0 + b't
 \end{cases}
 \]
 where \(\gcd(a, b) = d \) and \(a = a'd \) and \(b = b'd \), and \(t \in \mathbb{Z} \).

 (b) Solve the following linear Diophantine equation
 \[299x + 481y = 78 \]

2. [1pt each] Solve the congruences
 (a) \(x^2 \equiv -3 \pmod{19} \).
 (b) \(x^3 + x^2 + 1 \equiv 0 \pmod{11} \).

3. [1pt each]
 Let \(n \in \mathbb{N} \) and \(a, b \in \mathbb{Z} \).
 (a) Prove that the linear congruence \(ax \equiv b \pmod{n} \) has a unique solution in \(\mathbb{Z}_n \) if \(\gcd(a, n) = 1 \).
 (b) Let \(n = 13 \), and take \(a = 3 \) and \(b = 5 \). Find the fraction \(5/3 \pmod{13} \).
 (c) Let \(n = 13 \). Interpret the relation
 \[
 (1/2) + (2/3) = (7/6) \quad \text{in } \mathbb{Z}_{13}.
 \]

4. [1pt each]
 Find all solutions to the following equations:
 (a) \(27x \equiv 1 \pmod{57} \)
 (b) \(15x \equiv 9 \pmod{63} \)
5. [1pt each]

(a) If \(p \) is a prime number, and \(k < p \) is a positive integer, show that \(p \nmid k! \).

(b) Show that \(\binom{p}{k} \equiv 0 \pmod{p} \) for \(k = 1, \ldots, p - 1 \).

(c) If \(p \) is a prime number, prove that \((x + y)^p \equiv x^p + y^p \pmod{p} \) for all integers \(x \) and \(y \).

(d) Let \(p \) be a prime number. Prove that \(x^p \equiv x \pmod{p} \) for all integers \(x \). (This is known as Fermat’s Little Theorem).

6.

(a) [2pts] Euler’s theorem: Let \(m \in \mathbb{N} \) and let \(\varphi(m) \) be the Euler function. Suppose that \(a \in \mathbb{Z} \) with \(\gcd(a, m) = 1 \). Then
\[
a^{\varphi(m)} \equiv 1 \pmod{m}.
\]

(b) [1pt] Find the smallest positive integer \(n \) that satisfies \(3^{59} \equiv n \pmod{17} \)

(c) [1pt] The same question as (b): \(7^{133} \equiv n \pmod{37} \)

7.

(a) [1pt] Find the continued fraction expansion for \(61/48 \).

(b) [2pts] Using the continued fraction, find all solutions of the linear Diophantine equation
\[
61x - 48y = 1.
\]

Practice Problems: Page 36 B.14(b)(c), 16(c)(d). Page 41 A.1(c),2(b), B.11,14, 15(a)(b).